Résultats de la recherche

561 résultats correspondent à INERIS
Actualité
IMT Nord-Europe, l’Ineris et le LNE confortent leur partenariat dans le domaine de la surveillance de la qualité de l’air au sein du LCSQA
Forts de leurs complémentarités, IMT Nord-Europe, l’
Actualité
Qualité de l’air et climat : l’Ineris et l’IMT-NE participent à la 1ère conférence scientifique d’ACTRIS
L’
Actualité
Exercice 2024 combiné de comparaisons interlaboratoires de polluants réglementés gazeux et particulaires – 10 au 19 avril 2024
Le LCSQA organise actuellement, sur le site de l’
Jeudi 27 juin 2024
Rapport
Comparaison interlaboratoire 2022 pour les polluants gazeux mesurés en laboratoires mobiles
Un exercice de comparaison de moyens de mesures mobiles a été organisé par le LCSQA en mai 2022 sur le site de l’Ineris à Verneuil en Halatte. Il a réuni 9 participants (7 Associations agréés de surveillance de la qualité de l'air (AASQA) et le LCSQA/Ineris) et 9 moyens mobiles, constituant un parc de 49 analyseurs (17 NO/NOx, 8 SO2, 9 CO et 15 O3). Le déroulement de l’exercice a comporté 2 phases : la première phase consistant en une circulation de gaz étalon en aveugle visant à déceler la cohérence des raccordements entre les niveaux 2 et 3 de la chaîne nationale d’étalonnage et les éventuels défauts de linéarité des appareils et une seconde phase consistant à la réalisation de paliers de dopages pour l’ensemble des polluants. Lors de la circulation de gaz en aveugle, des écarts, par rapport à la tolérance de 4 %, critère déduit des comparaisons interlaboratoires (CIL) organisées par le LNE, (5% dans le cas du NO2) sur la lecture de concentrations, ont été constatés pour chaque gaz ; ils sont compris entre -9,6% et +9,6%. Pour certains de ces écarts, les causes ont été identifiées (problème lié au générateur d’ozone ayant servi à l’étalonnage et dérive des analyseurs). Ces écarts ont été observés immédiatement après l’étalonnage des analyseurs par les AASQA avec leurs propres gaz d’étalonnage de niveau 2 ou 3 (Laboratoire 3 : écart de 5% sur la lecture de leur propre étalon d’oxydes d’azote ; Laboratoire 4 : décalage du zéro en NO sur le titulaire et décalage du zéro sur le doublon SO2 ; Laboratoire 7 : dérive de l’analyseur doublon ozone). Lors de cet exercice de comparaison, une coupure d’électricité a eu lieu, touchant certains laboratoires lors du passage des étalons en aveugle en fin d’exercice, et ne leur permettant pas de procéder à la lecture de ces deniers. Cette coupure d’électricité a aussi touché le générateur d’ozone 49iPS de l’Ineris, le rendant indisponible pour les laboratoires qui n’ont pu procéder à la lecture de contrôle sur leurs analyseurs. En application de la norme NF ISO 5725-2, les intervalles de confiance de répétabilité et de reproductibilité ont été déterminés pour chaque polluant et les différents niveaux de concentration. L’examen des intervalles de confiance a conduit à des résultats satisfaisants pour les méthodes utilisées en termes de respect des recommandations des Directives Européennes (15 % d’incertitude de mesure aux valeurs limites réglementaires) : pour le polluant CO, l’intervalle de confiance de reproductibilité est de 3,9 % à la valeur limite sur 8h ; pour le polluant O3, cet intervalle est de 9,0 % à la valeur limite horaire ; pour le polluant SO2, cet intervalle est de 9,3 % à la valeur limite horaire ; l’intervalle de confiance de reproductibilité est de 6,2 % à pour le NO et de 7,5 % pour le NO2 aux valeurs limites horaires correspondantes. Par ailleurs, les résultats du traitement statistique, suivant la norme NF ISO 13528 et permettant la détermination des z-scores, sont, d’une manière générale, homogènes et très satisfaisants pour les participants, même si 3 laboratoires affichent un Z-score compris entre 2 et 3. Le Laboratoire 3, quant à lui, se démarque par un total de 18 z-scores compris entre 2 et 3. Ainsi, les z-scores des participants sont donc ≤ l2l sauf pour :  Le Laboratoire 8 qui présente un dépassement en CO (z=2,16) ; Le Laboratoire 7 qui présente un dépassement en O3 (z=2,16) ; Le Laboratoire 5 qui présente un dépassement en NO2 (z=-2,51) ; Le laboratoire 3 qui présente au total 18 dépassements dont 3 en CO (z=2,7 ; z=2,3 ; z=2,1), 3 en O3 (z=-2,3 ; z=-2,6 ; z=2,4), 1 en SO2 (z= 2,2), 6 en NO (z= 2,1 ; z = 2,4 ; z=2,9 ; z=2,8 ; z=2,9 ; z=2,8), 5 en NO2 (z = 2,2 ; z=2,9 ; z=2,4 ; z=2,4 ; z= 2,7). Ce dernier devra mettre en place des actions préventives afin de résoudre tous les écarts constatés lors de cette comparaison. En effet, un laboratoire dont le score z est supérieur ou égal à 3,0 ou inférieur ou égal à -3,0 donne lieu à un « signal d’action », nécessitant une action corrective. Un score z supérieur à 2,0 ou inférieur à -2,0 donne lieu à un signal d’avertissement, nécessitant une surveillance ou une action préventive.   interlaboratory comparison 2022 for gaseous pollutants measured in mobile laboratories An exercise to compare mobile measuring equipment was organised by the LCSQA in May 2022 at the Ineris site in Verneuil en Halatte. It brought together 9 participants (7 Air Quality Monitoring Associations (AASQA) and the LCSQA/Ineris) and 9 mobile devices, making up a fleet of 49 analysers (17 NO/NOx, 8 SO2, 9 CO and 15 O3). The exercise was carried out in 2 phases: the first phase consisted of a blind circulation of standard gas aimed at detecting the consistency of the connections between levels 2 and 3 of the national calibration chain and any linearity faults in the equipment, and the second phase consisted of carrying out spiking stages for all the pollutants. During blind gas circulation, deviations from the tolerance of 4% (5% in the case of NO2) on concentration readings were observed for each gas, ranging from -9,6% to +9,6%, a criterion derived from interlaboratory comparison (ILC) organised by LNE. The causes of some of these discrepancies have been identified (problem with the ozone generator used for calibration and analyser drift). These deviations were observed immediately after the analysers had been calibrated by the AASQAs with their own level 2 or 3 calibration gases (Laboratory 3: 5% deviation in the reading of their own nitrogen oxide standard; Laboratory 4: zero shift in NO on the holder and zero shift on the SO2 duplicate; Laboratory 7: drift of the ozone duplicate analyser). During this comparison exercise, a power cut occurred, affecting some laboratories during the blind run of the standards at the end of the exercise, and preventing them from reading the standards. This power cut also affected the LCSQA/Ineris 49iPS ozone generator, making it unavailable to the laboratories, which were unable to read the controls on their analysers. In accordance with standard NF ISO 5725-2, repeatability and reproducibility confidence intervals were determined for each pollutant and the various concentration levels. Examination of the confidence intervals produced satisfactory results for the methods used in terms of compliance with the recommendations of the European Directives (15% measurement uncertainty at the regulatory limit values): - for the CO pollutant, the reproducibility confidence interval is 3,9% at the 8h limit value; - for the O3 pollutant, this interval is 9,0% at the hourly limit value; - for the SO2 pollutant, the interval is 9,3% at the hourly limit value; - the reproducibility confidence interval is 6,2% for NO and 7.5% for NO2 at the corresponding hourly limit values. The results of statistical processing, in accordance with standard NF ISO 13 528 and enabling z-scores to be determined, were globally homogeneous and very satisfactory for the participants, even though 3 laboratories had a z-score between 2 and 3. Laboratory 3 stood out with a total of 18 z-scores between 2 and 3. The participants' z-scores were therefore ≤ l2l except for : - Laboratory 8, which exceeded the CO limit (z=2,16); - Laboratory 7, which has an O3 exceedance (z=2,16); - Laboratory 5, which has an NO2 exceedance (z=-2,51); - Laboratory 3, with a total of 18 exceedances, including o 3 for CO (z=2,7; z=2,3; z=2,1), o 3 for O3 (z=-2,3; z=-2,6; z=2,4), o 1 in SO2 (z= 2,2), o 6 in NO (z= 2,1; z = 2,4; z=2,9; z=2,8; z=2,9; z=2,8), o 5 for NO2 (z = 2,2; z=2,9; z=2,4; z=2,4; z= 2,7). The laboratory will have to take preventive action to resolve any discrepancies identified during this comparison. A laboratory with a z-score greater than or equal to 3,0 or less than or equal to -3,0 generates an "action signal", requiring corrective action. A z-score greater than 2,0 or less than -2,0 gives rise to a warning signal, requiring monitoring or preventive action.
Mardi 2 juillet 2024
Rapport
Amélioration du système de dopage PM - Enrichissement sélectif de matrice d’air ambiant en fonction de la granulométrie des particules
  Cette étude s’inscrit dans la suite des travaux portant sur l’amélioration du banc de dopage de matrice d’air ambiant. Il s’agit d’un montage expérimental utilisé par l’Ineris pour la réalisation de comparaisons interlaboratoires d’instruments de mesures des particules (systèmes de mesures automatiques (AMS), aethalomètres…). Les premiers essais ont montré qu’il était possible de générer des particules présentant un diamètre aérodynamique allant de 0,5 µm à 20 µm mais qu'il reste difficile de contrôler la granulométrie du dopage particulaire avec les méthodes utilisées. En effet, malgré la présence de particule de gros diamètre, la répartition granulométrique reste centrée autour de 600 nm. Afin de répondre à cette problématique l’Ineris s’est proposé d’étudier le principe de fonctionnement d’un impacteur virtuel et d’en adapter le dispositif afin de réaliser des dopages ciblés de matrice d’air ambiant enrichie en particules présentant un diamètre aérodynamique supérieur à 2,5 µm. Ainsi, cette note regroupe les principaux éléments permettant de comprendre le principe de fonctionnement de l’impaction inertielle et les méthodes existantes. Elle montre également que ces dispositifs peuvent être utilisés afin de séparer les particules en fonction de leur diamètre aérodynamique. De plus, lorsqu’associée à un système de collecte, le dispositif joue alors le rôle de concentrateur des particules présentant un diamètre supérieur au diamètre aérodynamique cible, appelé diamètre de coupure. Enfin, cette note présente les éléments retenus pour la conception d’un dispositif dimensionné pour le système de dopage de matrice d’air ambiant développé et exploité par Ineris. Sur la base de ces éléments, un prototype a pu être mis au point. Des essais restent à conduire afin de valider son bon fonctionnement et d’évaluer ses performances au sein du système de dopage de matrice d’air ambiant. A terme, cet impacteur pourrait être mis en œuvre lors des différents tests d’instrument de mesure des particules, comme par exemple les comparaisons inter-laboratoires dédiées aux systèmes de mesures automatiques ou encore les systèmes capteurs. Selective enrichment of ambient air matrix according to particle size This study is the continuation of the work on the improvement of the enhanced ambient air matrix system. This is an experimental facility used by Ineris to carry out inter-laboratory comparisons of PM measurement instruments (automatic measurement systems (AMS), aethalometers, etc.). The first report showed that it was possible to generate particles having an aerodynamic diameter ranging from 0.5 µm to 20 µm, but that it was still difficult to control the particle size of the PM source with the methods currently used. Indeed, despite the presence of large diameter particles, the size distribution remains centered around 600 nm. In order to answer this problem, Ineris proposed to study the operational principle of a virtual impactor and to adapt this type of devices in order to carry out targeted generation enriched in particles with an aerodynamic diameter greater than 2.5 µm. Thus, this note gathers the main elements allowing to understand the operating principle of inertial impaction and the existing methods. It also shows that these devices can be used to separate particles according to their aerodynamic diameter. Furthermore, when combined with a collection system, the device acts as a concentrator of particles having a diameter greater than the target aerodynamic diameter, called cut-off diameter. Finally, this note presents the selected elements for the design of a device adapted to our enhanced ambient air matrix system. On the basis of these elements, a prototype has been designed. Experiments remain to be carried out in order to validate its proper operation and to evaluate its performance within the enhanced ambient air matrix system. In the long term, this virtual impactor could be used in various tests of PM measurement instruments, such as inter-laboratory comparisons dedicated to automatic measurement systems or sensor systems.
Mardi 2 juillet 2024
Rapport
Comparaison interlaboratoires (CIL) 2022 des analyseurs de mesures automatiques des particules
Une comparaison interlaboratoires (CIL) d’analyseurs automatiques de particules (PM10) a été organisée par le Laboratoire central de surveillance de la qualité de l’air (LCSQA) du 26 avril au 6 mai 2022. Elle avait pour objectif d’évaluer les performances des analyseurs automatiques de la fraction PM10 des particules déclarés conformes pour la mesure réglementaire et mis en œuvre par les participants. Les essais ont été organisés sur le site de l’Ineris et, pour la première fois, conjointement à l’organisation de la « CIL moyens mobiles pour les gaz inorganiques ». Cela a été rendu possible grâce à l’évolution de la réglementation liée à l’utilisation des jauge Bêta mais également au déploiement d’un dispositif de dopage de l’air ambiant dans la remorque/laboratoire de l’Ineris. Sept analyseurs automatiques ont été mis en œuvre par sept ASQAA à savoir : deux BAM 1020 de Met One Instrument Inc, et cinq FIDAS 200 de Palas. Les mesures ont été réalisées sur une période de six jours dont deux jours avec de l’air ambiant dopé de sels inorganiques de diamètre inférieurs à 1,5µm et de poussières de type désertique (poussière d’Arizona) de diamètre compris entre 1 et 10µm. L’intervalle de confiance à la valeur limite a été calculé autour de 12% pour l’ensemble des participants, ce qui est inférieur à l’incertitude réglementaire de 25%. Un bon accord de cet intervalle a été observé entre les mesures de l’air ambiant et les mesure de l’air ambiant dopé. L’ensemble des scores Z a été calculé entre -2 et 2 excepté pour le BAM n°2 et le FIDAS n°5 sur les périodes pour lesquelles des problèmes techniques ont été identifiés. Le FIDAS n°3 a également montré une tendance à sous-estimer les fractions de taille les plus fines sans qu’aucun paramètre technique défectueux n’ait été identifié. La mise en œuvre du dispositif du système de dopage a été satisfaisant. L’air ambiant a pu être dopé de manière stable pendant des périodes de 12h afin d’atteindre des paliers de concentration jusqu’à 80 µg/m3. L’analyse des données a permis de valider la pertinence de l’utilisation des poussières d’Arizona pour le dopage de la fraction PM10. Cependant, des différences de comportement ont été observées entre les analyseurs pendant la mesure des sels inorganiques ultrafins. Ce point devra faire l’objet de plus amples analyses afin de valider ou pas l’utilisation de ces composés chimiques lors des exercices futurs. .     interlaboratory comparison 2022 (ILC) for automatic particulate matter (PM) analysers An interlaboratory comparison (ILC) for automatic particulate matter (PM) analysers was organised by the LCSQA-INERIS from 26 April to 06 May 2022. The objective was to evaluate the performance of the automatic particle analysers (declared compliant for regulatory measurement) used by the participants to measure the PM10 fraction. The tests were organised on the Ineris site at the same time as the organisation of the "mobile means ILC dor inorganic gases” for the first time, thanks to the evolution of the regulations related to the use of Beta gauges but also to the deployment of an ambient air doping device in the Ineris trailer/laboratory. Seven automatic analysers were used by seven ASQAA, namely: two BAM 1020 from Met One Instrument Inc, and five FIDAS 200 from Palas. Six days of measurements were carried out, including two days of ambient air enriched with inorganic salts of diameter less than 1.5µm and desert-type dust (Arizona dust) of diameter between 1 and 10µm. The confidence interval at the limit value was calculated to be around 12% for all participants. A good agreement of this interval was observed between the ambient air measurements and the enriched ambient air measurements. All Z-scores were measured between -2 and 2 except for BAM n°2 and FIDAS n°5 on the periods for which technical problems were identified. FIDAS No. 3 also showed a tendency to underestimate the smaller size fractions, without any problematic technical parameters being identified. The implementation of the doping system has been satisfactory. The ambient air could be doped stably for periods of 12 hours to reach concentration levels up to 80 µg/m3. The analysis of the data validated the relevance of using Arizona dust for the doping of the PM10 fraction. However, differences in behaviour were observed between the analysers during the measurement of ultrafine inorganic salts. This point will have to be further analysed in order to validate or not the use of these chemical compounds in future exercises.
Actualité
Annonce de soutenance de la thèse de doctorat d’Hasna Chebaicheb (IMT NE & Ineris, Programme CARA)
Hasna Chebaicheb soutiendra sa thèse de doctorat intitulée « Etude de la composition chi
Mardi 6 juin 2023
Rapport
Campagne 2021 d’étalonnage et de comparaison inter-laboratoire (CIL) des Q-ACSM
  Ce rapport présente les résultats d’une campagne d’étalonnage et de comparaison des Q-ACSM (Quadrupole Aerosol Chemical Speciation Monitor). Cette campagne a été organisée par le LCSQA du 25 mai au 13 juin 2021 à l’ACMCC (Aerosol Chemical Monitor Calibration Centre). Elle concernait dix Q-ACSM du programme CARA, dont huit Q-ACSM mis à disposition par les AASQA (Associations Agréées de Surveillance de la Qualité de l’Air), un par le LSCE-Ineris et un par l’IMT Nord Europe. L’ensemble des Q-ACSM participants à cette campagne ont été réceptionnés à partir du 25 mai 2021, puis installés par le LCSQA-Ineris avec l’appui logistique du Laboratoire des Sciences du Climat et de l'Environnement (LSCE). A la suite de leur mise en service, les instruments ont été configurés avec les paramètres d’étalonnages existants, déterminés en station, et des premières mesures ont permis d’évaluer le bon état de fonctionnement de chaque instrument. Certaines opérations de maintenance ont été réalisées par le distributeur Addair qui a été sollicité sur cette première partie de la campagne pour réaliser certaines prestations et pour répondre également à d’éventuels problèmes constatés. Puis, à la suite des opérations d'assurance qualité et de contrôles qualité (QA/QC) d’usages et la réalisation des blancs instrumentaux, les efficacités d’ionisation (IE et RIE) des instruments ont été étalonnés. Enfin, des mesures de l’air ambiant ont été réalisées par l’ensemble des participants du 05 au 13 juin 2021 dans le but de comparer les performances de chaque instrument pour la mesure des cinq espèces chimiques majeures (nitrate, ammonium, sulfate, chlore et matière organique (OM)) et d’évaluer les incertitudes de mesure des ACSM. Les performances des ACSM ont été évaluées sous la forme de score Z. Les résultats des participants ont été utilisés pour calculer la valeur de référence et le critère de performance. Les résultats sont très satisfaisants puisque l’ensemble des scores Z moyen sont compris entre -2 et 2 et des incertitudes de mesures ont été évaluées à 9 % pour NO3-, 8% pour OM, 13% pour NH4+ , 17% pour SO42- et 30% pour Cl-. .     2021, Q-ACSM calibration and inter-laboratory comparison (CIL) campaign This report presents the results of a calibration and comparison campaign of the Quadrupole Aerosol Chemical Speciation Monitors (Q-ACSM) organised by the national reference laboratory (LCSQA) of the French Air Quality Monitoring Associations (AASQA) which took place between 25 and 13 June 2021 at the ACMCC (Aerosol Chemical Monitor Calibration Centre). It brought together ten Q-ACSMs from the CARA program, including eight from the AASQA, one from the LSCE-Ineris and one from the ITM-Nord Europe. All the Q-ACSM participating in this campaign have been received from 25 May 2021 and installed by the LCSQA-Ineris with the logistical support of the Laboratoire des Sciences du Climat et de l'Environnement (LSCE). Then, the instruments have been configured with the existing calibration parameters and initial measurements have been performed in order to assess the good working order of each instrument. Some maintenance operations have been carried out by the distributor Addair, which was present during this first part of the campaign to carry out certain services and also to respond to any potential problems. Then, following the following the quality assurance and quality control (QA/QC) checks and blank measurements, the ionisation efficiencies (IE and RIE) of the instruments have been calibrated. Finally, ambient air measurements have been carried out by all participants from 05 to 13 June 2021 in order to compare the performance of each instrument for the measurement of the five major chemical species (nitrate, ammonium, sulphate, chlorine and organic matter (OM)) and to evaluate the measurement uncertainties of the ACSMs. The performance of the ACSMs have been evaluated in the form of a Z-score. The participants results have been used to calculate the reference value and the performance criterion. The results are very satisfactory as all average Z-scores are between -2 and 2 and measurement uncertainties were evaluated at 9% for NO3-, 8% for OM, 13% for NH4+ and 17% for SO42- and 30% for Cl-.
Actualité
Qualité de l’air et données satellitaires
Mercredi 23 juillet 2014
Rapport
Surveillance du mercure gazeux - Contrôles métrologiques des analyseurs LCSQA et AASQA – Tests de terrain
Le LCSQA/INERIS a réalisé une série de contrôles métrologiques en laboratoire visant à vérifier le bon fonctionnement des appareils actuellement utilisés dans le dispositif national de surveillance pour la mesure du mercure gazeux. Ces contrôles ont pour finalité de vérifier leur conformité au regard de quelques tests limités, de procéder à des essais d’intercomparaison en laboratoire et en situation de terrain afin de déterminer les incertitudes de mesures et, de là, vérifier le respect de l’exigence de 50 % de la Directive Européenne 2004/107/CE. Pour ce faire 4 analyseurs Tekran 2537A (AirNormand, Air Rhône Alpes, LCSQA/MD, LCSQA/INERIS), 1 analyseur Tekran 2537 B (LCSQA/INERIS) et un analyseur Lumex RA915AM (LCSQA/INERIS) ont été regroupés ponctuellement par le LCSQA/INERIS. Des tests métrologiques simplifiés ont été définis en s’inspirant de ceux mis en oeuvre pour les analyseurs de polluants classiques. Il s’agit de la linéarité, de la répétabilité et de la dérive sur 7 jours. L’ensemble des analyseurs n’a cependant pu être testé sur ces quelques caractéristiques faute de disponibilité suffisante ou en raison de dysfonctionnements. Concernant la linéarité, en dehors des écarts constatés entre les tubes de piégeage des analyseurs Tekran, on note que chaque analyseur présente une réponse linéaire, quel que soit le principe de mesure. L’étendue des pentes de régression allant de 0,56 à 1,47 traduit la dispersion des réponses des analyseurs. Les écarts de linéarité supérieurs à 4 ng/m3 se retrouvent dans la gamme 0 – 40 ng/m3. Afin de fiabiliser les donnée de mesures à faibles concentrations, les analyseurs devraient subir des tests de linéarité adaptés à la gamme de concentrations à mesurer sur le terrain. Les données de mesures en laboratoire ont été traitées statistiquement selon les normes NF ISO 5725-2 et NF ISO 13528, utilisées dans le cas des exercices de comparaison interlaboratoires. Le niveau de l’incertitude de mesure est élevé quel que soit le niveau de concentration et ne satisfait le critère d’incertitude de 50 % de la Directive européenne 2004/107/CE que pour les concentrations supérieures à 100 ng/m3 environ, ce qui ne correspond pas à la norme NF EN 15852 qui mentionne 50% d’incertitude à 1 ng/m3.L’examen de la répétabilité a été mené à une concentration proche du zéro (5,67 ng/m3) et à une concentration élevée (219 ng/m3). A forte concentration, la répétabilité est particulièrement homogène entre les analyseurs et meilleure (% plus faible) qu’à faible concentration. Les pourcentages relevés sont cependant très corrects et confirment que les analyseurs délivrent des mesures stables bien que présentant des décalages importants entre eux. Le test de dérive a été effectué sur 4 appareils, (3 Tekran et 1 Lumex), sur une durée de 7 jours à une concentration stable d’environ 50 ng/m3. Les pourcentages de dérive restent bien en deçà de la recommandation de 10 % de la norme NF EN 15852. Ce résultat conforte l’idée que le réglage de la fréquence de calibration à un calibrage automatique par semaine est suffisant pour respecter la norme.Ces observations seront à confirmer lors de la réalisation des prochains contrôles métrologiques du LCSQA/INERIS. Des vérifications complémentaires (débit de prélèvement, débit de perméation de la source interne,…) viendront compléter ces contrôles. Une périodicité de 2 ans est proposée pour la réalisation de ces contrôles qui pourraient, à cette occasion, permettre de procéder régulièrement à une comparaison inter laboratoire.L’intercomparaison de terrain a été réalisée avec 5 analyseurs (4 Tekran 2537 dont 1 version B, et 1 Lumex RA915AM). Ces équipements ont été installés dans le moyen de mesure mobile du LCSQA/INERIS qui a été implanté dans l’enceinte d’une société de production de chlore par électrolyse sur cathode de mercure. Cette campagne a été organisée avec le soutien d’Atmo Picardie. La période de mesure s’est étendue de fin octobre à mi novembre 2012. Les données recueillies démontrent la bonne synchronisation et la sensibilité équivalente des appareils ainsi que l’absence d’effet mémoire lié aux pics ponctuels de concentrations élevées. La courbe de tendance permettant d’estimer l’incertitude de mesure conduit à 58 % à 1 ng/m3, ce qui reste au-delà du critère d’exigence de la Directive Européenne et non conforme à la norme NF EN 15852. Pour autant ce critère est respecté au-delà de 3 ng/m3. Au-delà, les incertitudes se situent nettement sous la barre des 50 %. On peut considérer en effet que le niveau d’incertitude moyen est de l’ordre de 30 % au-delà des niveaux de concentration de fond ruraux et urbains, comme identifié lors des tests en laboratoire.