Résultats de la recherche

398 résultats correspondent à AASQA
Mardi 15 octobre 2019
Rapport
Suivi du financement du dispositif national de surveillance de la qualité de l’air sur la période 2013-2017
L’article 27 de l’arrêté du 19 avril 2017 relatif au dispositif national de surveillance de la qualité de l’air ambiant dispose que le LCSQA effectue le suivi du coût total du dispositif national de surveillance de la qualité de l’air. Tel est l’objet de ce rapport qui analyse les évolutions budgétaires du dispositif depuis 2013. Le financement total du dispositif national de surveillance de la qualité de l’air s’élève en 2017 à 71,8M€ (Tableau 1). Le financement du dispositif présente une hausse de 6,9% sur la période 2013-2017. En 2017, l’Etat finance le dispositif national de surveillance de la qualité de l’air par des subventions à hauteur de 33,7% et par des moindres recettes fiscales via la taxe générale sur les activités polluantes (TGAP) à hauteur de 37,4%. Le financement des AASQA représente 91% du financement total de la surveillance de la qualité de l’air en moyenne sur la période 2013-2017 et est en augmentation depuis 2013 (9,9%). Néanmoins, cette augmentation tend à ralentir depuis 2015. Le financement du LCSQA représente 8,5% du total en moyenne sur la période 2013-2017 et est en baisse depuis 2013 (-24,1%). Le financement de la mise en œuvre opérationnel du système Prev’Air est de 383 k€ en moyenne sur la période 2013-2017 et représente 0,5% du financement total de la surveillance de la qualité de l’air entre 2013 et 2017.
Jeudi 1 octobre 2009
Rapport
Suivi et optimisation de l'utilisation des TEOM-FDMS (1/2) : Guide pour l'utilisation du TEOM-FDMS (OBSOLETE)
Attention : ce guide est obsolète - Une version révisée est disponible dans l'espace documentaire (rubrique Guides méthodologiques)   Le présent guide a pour objet de fournir une aide aux utilisateurs des TEOM-FDMS dans les AASQA. Il a été construit à partir des expériences de chacune des AASQA, rencontrées au cours des journées d'échange sur les TEOM-FDMS ayant eu lieu en 2008 et 2009, et au cours desquelles l'ensemble des AASQA ont été consultées. Ce document est par définition évolutif, et toutes remarques, contributions, critiques… sont les bienvenues, et doivent être adressées directement au LCSQA (Aurélien Ustache, aurelien.ustache@ineris.fr) Nous observons, depuis 2007, une nette évolution dans la connaissance technique du fonctionnement du TEOM-FDMS, tant au niveau des solutions à apporter en cas de problème que des procédures à mettre en œuvre pour vérifier le fonctionnement de l'outil en routine : Concernant le premier point, le Tableau 1, présenté page 11, synthétise en grande partie l'état de notre connaissance. En particulier, une partie importante des premiers problèmes observés, qui sont notamment les fuites et les performances de la microbalance, sont désormais bien identifiés, et les solutions trouvées par chacun sont regroupées dans la partie 3 "Guide en cas de panne" de ce document. Ensuite, afin d'assurer la qualité des données produites par le TEOM-FDMS, il est essentiel de mettre en place un suivi du fonctionnement des appareils, basé sur la vérification à réception et périodique de différents critères de fonctionnement. L'ensemble des opérations QC/QA pouvant être mises en œuvre est présenté dans la quatrième partie de ce document "Contrôle qualité à réception et en routine". Le format est identique à celui des tableaux de "Fréquence requises pour l'étalonnage, les contrôles et la maintenance" des normes en vigueur pour la mesure des gaz "classiques" (cf tableau 6 de la norme EN14211 pour les NOx, par exemple). L'objectif est de créer un outil directement compatible et intégrable dans les projets de normes en cours d'élaboration au niveau du CEN.Nous recommandons de mettre en place le suivi de l'ensemble des paramètres du tableau  2. En particulier, nous recommandons très fortement de mettre en place le suivi des paramètres marqués en rouge et en gras dans ce tableau. Enfin, ce document a été élaboré  en tenant compte de l’expérience de chacune des  AASQA. Ce document a donc vocation à évoluer, afin d'être remis à jour. Les modalités d'évolution de ce document sont à définir collectivement, et pourront être discutées en Commission de Suivi "Mesure des particules en suspension".
Jeudi 19 juillet 2018
Rapport
Interlaboratory comparison for the analysis of PAHs in ambient air (2018)
Dans le cadre de la mise en œuvre des exigences qualité fixées par le ministère chargé de l’environnement, un essai de comparaison inter laboratoires (CIL) analytique a été organisé par le LCSQA (INERIS en collaboration avec le LNE) au premier semestre 2018, pour les laboratoires d’analyse sous-traitants des AASQA (Association Agréée pour la Surveillance de la Qualité de l’Air). Les inscriptions ont été également ouvertes à des laboratoires européens appliquant les prescriptions des textes normatifs relatifs à l’analyse du Benzo[a]pyrène (B[a]P) et des autres HAP (Hydrocarbures Aromatiques Polycycliques) concernés par la Directive 2004/107/CE ainsi que sur le phénanthrène, le fluoranthène et le benzo[g,h,i]pérylène. Cet exercice comprenait des matrices de concentrations différentes en HAP afin de prendre en compte les gammes de travail habituelles des laboratoires réalisant l’analyse de filtres issus de prélèvements haut débit ou bas débit. Chaque participant a donc reçu les matériaux suivants : 3 poinçons de filtre issus de prélèvements d’air ambiant pour deux d’entre eux, le troisième étant un blanc de laboratoire. Les prélèvements ont été effectués sur filtre en quartz à l'aide d'un préleveur grand volume de type Graseby-Andersen, équipé d'une tête PM10, à un débit de 70 m3/h. Chaque filtre était découpé avec un emporte-pièce en 20 morceaux de 37 mm de diamètre. Trois filtres notés 18/172774_F1, F2 et F-blanc ont ainsi été envoyés aux participants ; 1 matériau de référence certifié (MRC) par l’IRMM (ERM®-CZ100, fine dust PM10 like) envoyé en double mais identifiés comme 2 matériaux distincts pour les participants et donc notés 18/172224_MRC1 et MRC2. 3 matériaux liquides de référence certifiés (MRC) préparés par le LNE, constitués de trois solutions étalons notées : 18/172774_S1, S2 et S3. Les solutions S1 et S2 étaient identiques. Finalement, 17 laboratoires européens (dont 13 français) ont participé à cette CIL. Une grande amélioration des résultats a pu être observée par comparaison à ceux obtenus lors des CIL organisées en 2014 et 2015 (Verlhac, 2014, Verlhac and Albinet, 2015). Les dernières recommandations et la rencontre organisée avec les laboratoires sous-traitants des AASQA pour l’analyse des HAP (04/07/2016, https://www.lcsqa.org/system/files/commission/Web_CS-cr-lcsqa_rex_hap_aal_2016-vf.pdf) ont été certainement bénéfiques. Mis à part pour le MRC solide, les incertitudes obtenues, notamment pour le B[a]P, respectent celles qui sont admises par la Directive et la TS XP/CEN 16645 montrant que la dispersion des laboratoires est bien meilleure. Néanmoins, quelques laboratoires doivent encore améliorer leurs procédures analytiques car ils ont obtenu des mauvais résultats (majoritairement non acceptables c’est-à-dire ayant un |score z| ≥ 3) pour la plupart des matériaux et HAP testés (180430, 180458 et dans une moindre mesure, 18096, pour les solutions certifiées). De plus, les laboratoires 180458 and 180481 n’ont fourni aucun résultat pour le MRC solide et le laboratoire 180429 a seulement fourni des résultats pour le B[a]P pour tous les matériaux de l’essai. Enfin, sur la base des zêta -scores, les incertitudes de mesure ne sont toujours pas correctement évaluées par la plupart des participants. Les laboratoires français sont donc invités à suivre les recommandations fournies par le LCSQA (Albinet, 2015) afin d’estimer les incertitudes sur l’analyse des HAP.   Rapport intermédiaire (juillet 2018) et annexes This document is a synthesis of the results submitted by the participants during the interlaboratory comparison (ILC) for the analysis of polycyclic aromatic hydrocarbons (PAH) in ambient air organized in 2018 by the LCSQA. This report does not contain any comment or discussion on the submitted data (values higher or lower than a factor of 10 from the participant average results were excluded). It can be subject to modification especially in the calculations of the reference values and z-scores. The data is thus temporary. The final results and discussions will be available in the final version of the report and sent to all participants. Il s'agit d'un rapport intermédiaire (résultats préliminaires).
Vendredi 24 août 2012
Rapport
Bilan du parc de stations de mesure d'AASQA impliquées dans la modélisation
L’intégration croissante de l’outil de modélisation dans les dispositifs locaux etnationaux de surveillance et de gestion de la pollution atmosphérique, au travers denombreux produits issus de la recherche ou du secteur privé, nous impose uneréflexion sur la cohérence des besoins en modélisation et la répartition des mesuressur le territoire. Les Directives 2004/107/CE et 2008/50/CE encouragent d’ailleursl’usage des modèles en combinaison avec la mesure dans de nombreux cas de figure : rapportage des dépassements, optimisation de l’échantillonnage, évaluation des sources (naturelles, anthropiques) à différentes échelles de distance, prévision, justification des plans d’action, communication… Tout comme la mesure, lamodélisation est soumise à des objectifs de qualité de données, nécessitant unprocessus QA/QC dans les opérations de validation et de vérification. Cependant, iln’existe pas à l’heure actuelle de « technique de référence » pour la modélisation et les référentiels réglementaires orientent vers la combinaison « mesure –modélisation » pour l’évaluation de la qualité de l'air lorsque les niveaux de pollutionsont en dessous de seuil spécifique, soulignant ainsi la complémentarité de ces outilsdans ce cas de figure.Afin de répondre aux exigences et recommandations apportées par les directives et de leur évolution future, nous proposons un état des lieux du parc actuel de stationsd’AASQA impliquées dans les outils de modélisation. Le bilan réalisé sur l’année 2011 fait état d’une utilisation partielle par les plateformesnationale et régionales des 666 stations de mesures répertoriées. La plateforme nationale Prev’Air s’appuie sur 452 stations (67,8%) pour le calcul del’ozone et 288 stations (43,2%) pour le calcul des PM. Les plateformes régionales sedéclinent sur un nombre plus restreint de stations. Elles couvrent l’ensemble duterritoire métropolitain en s’articulant sur cinq outils majeurs :  AIRES,  ESMERALDA,  IRIS, PREV EST et PRE VALP,  SYRSO. Cet état des lieux a ensuite été comparé avec les besoins des modélisateurs français et les orientations des instances européennes (Directives, recommandations émises par le groupe d’expertise européen Forum for AIR quality MODElling – FAIRMODE –mis en place à la demande de la Commission Européenne).
Jeudi 5 septembre 2019
Rapport
Performances PREV’AIR en 2016 et lors du premier trimestre 2017
Ce rapport synthétise l’ensemble des actions menées dans le cadre de la plateforme PREV’AIR (www.prevair.org) pour répondre aux besoins des utilisateurs. Cela concerne les développements visant aussi bien à étendre les capacités du système de prévision qu’à rendre ses performances plus élevées. La première partie du rapport fournit une estimation du comportement général des outils via des indicateurs statistiques classiques permettant de comparer les résultats de modélisation aux observations validées de la base de données nationale GEOD’air alimentée par les AASQA (associations de surveillance de la qualité de l’air) et développée par le LCSQA. Une attention particulière est portée à l’évaluation des performances de PREV’AIR concernant la détection des épisodes de pollution. Cet exercice a pour objectif de répondre à notre souci de transparence sur les aptitudes des modèles à prévoir et à estimer la qualité de l'air. Ce rapport traite de l’ozone pour l’été 2016 et des particules pour l’ensemble de l’année 2016 et pour le début de l’hiver 2017 en France métropolitaine. Pour l’ozone, l’année 2016 a connu un unique épisode de pollution en ozone d’ampleur nationale de courte durée, entre le 24 et le 27 août 2016. Pour les particules, le mois de décembre 2016 a été marqué par un épisode extrême par son intensité et sa durée. Les concentrations ont commencé à augmenter à la fin du mois de novembre. Les conditions météorologiques stagnantes sur l’Ile de France, le Nord Est de la France et Auvergne Rhône Alpes expliquent en grande partie l’intensité des concentrations observées. Les concentrations sont restées élevées jusqu’aux environs du 22 décembre 2016, avec des variations spatiales et journalières des zones affectées par des concentrations journalières au-dessus des seuils réglementaires. Cette situation fut suivie au début de l’année 2017 d’un fort épisode hivernal couvrant tout le pays. L’évaluation de ces épisodes est effectuée dans un premier temps sur les prévisions brutes de PREV’AIR et montre une continuité avec les années passées en relation notamment à la stabilité des versions des modèles. Ensuite, elle est réalisée sur les calculs de l’adaptation statistique qui vise à corriger les biais systématiques du modèle brut par un processus d’apprentissage historique. Ainsi, les gains résident dans la capacité du modèle statistique à corriger la surestimation des concentrations lors des épisodes d’ozone et la sous-estimation des concentrations lors des épisodes de particules. Dans l’ensemble, le comportement de PREV’AIR est satisfaisant et les prévisions statistiques ont permis la plupart du temps d’anticiper l’occurrence de ces épisodes de pollution et d’identifier les zones touchées. Les performances indiquent une stabilité par rapport aux années précédentes de façon assez généralisée. A noter que cette évaluation porte sur des calculs d’ancienne génération par rapport à ceux en place sur PREV’AIR depuis avril 2017. Plusieurs évolutions du système ont été portées en 2017 pour doter PREV’AIR de nouvelles prévisions sur la France incluant haute résolution et nouveaux modèles d’adaptation statistique.
Mardi 1 mars 2016
Rapport
Contrôle qualité de la chaîne nationale d’étalonnage
Résumé : L'objectif de cette étude est d’effectuer des comparaisons interlaboratoires entre le LCSQA et les AASQA pour s’assurer du bon fonctionnement de la chaîne nationale d’étalonnage et pouvoir détecter d’éventuelles anomalies auxquelles il conviendra d’apporter des actions correctives. Contrôle qualité du bon fonctionnement de la chaîne d’étalonnage en NO/NOx, NO2, CO et SO2 : Le but est de faire circuler des mélanges gazeux de concentration inconnue (NO/NOx de l’ordre de 200 nmol/mol, CO de l’ordre de 9 µmol/mol, NO2 de l’ordre de 200 nmol/mol et SO2 de l’ordre de 100 nmol/mol) dans les niveaux 3 pour valider les différents raccordements effectués dans le cadre de la chaîne nationale d’étalonnage. Ces mélanges gazeux ont été titrés par le LCSQA puis envoyés à des niveaux 3. Ces niveaux 3 ont ensuite déterminé la concentration de ces mélanges gazeux avant et après réglage de l’analyseur de station avec l’étalon de transfert 2-3, puis les ont renvoyés au LCSQA-LNE qui les a titrés de nouveau. En 2015, 3 comparaisons interlaboratoires ont été réalisées : Avec les réseaux de mesure AIR LR, ATMO NPDC, ATMO PC, AIRPARIF et AIR PL de mars à mai 2015, Avec les réseaux de mesure Observatoire Réunionnais de l’Air, ATMO Picardie, Qualit’air Corse et ORA de Guyane d’avril à août 2015, Avec les réseaux de mesure AIR Lorraine, Madininair, AIRBREIZH et LIG’Air de septembre à décembre 2015. En règle générale, les AASQA communiquent au LCSQA les concentrations mesurées soit sans les incertitudes élargies associées, soit avec des incertitudes de mesure inexploitables (inférieures à celles du LCSQA, valeurs très élevées…). Dans ces conditions, il n'est pas possible de traiter les résultats par des méthodes statistiques. Par conséquent, dans le présent document, le traitement des données est effectué en s'appuyant sur l'ensemble des résultats obtenus depuis 2002 lors des campagnes précédentes qui ont conduit à définir des intervalles maximums dans lesquels doivent se trouver les écarts relatifs entre les concentrations déterminées par le LCSQA et celles déterminées par les niveaux 3 après élimination des valeurs jugées aberrantes. Globalement, en 2013, lorsque les concentrations aberrantes sont éliminées, les écarts relatifs entre le LCSQA et les niveaux 3 restent dans ces intervalles qui sont les suivants : ±7% avant et après réglage pour une concentration en SO2 voisine de 100 nmol/mol ; ±6% avant et après réglage pour des concentrations en NO/NOx et en NO2 voisines de 200 nmol/mol ; ±6% avant réglage et ±4% après réglage pour des concentrations en CO voisines de 9 µmol/mol. Les résultats montrent que : Globalement la chaîne nationale d'étalonnage mise en place pour assurer la traçabilité des mesures de SO2, de NO/NOx, de NO2 et de CO aux étalons de référence fonctionne correctement. Le fait de régler l’analyseur avec l’étalon de transfert 2-3 améliore de façon significative les écarts relatifs, ce qui met en évidence une dérive de la réponse des analyseurs au cours du temps. Contrôle qualité du bon fonctionnement de la chaîne d’étalonnage en O3 : Comme pour les composés SO2, NO/NOx, CO et NO2, le but est de faire circuler, dans lesniveaux 3, un générateur d’ozone portable délivrant un mélange gazeux à une concentration voisine de 100 nmol/mol pour valider les différents raccordements effectués dans le cadre de la chaîne nationale d’étalonnage. La présente comparaison interlaboratoires a été effectuée avec 12 niveaux 3 en 2015, à savoir : Ora Réunion, ATMO Poitou-Charentes, AIR Languedoc-Roussillon, AIRAQ, AIR Rhône-Alpes, ATMO Franche Comté, AIR Normand, ATMO Picardie, QUALITAIR CORSE, AIR Lorraine, ATMOSF'AIR Bourgogne et ORA Guyane. Les résultats obtenus en 2015 montrent que les écarts relatifs entre les concentrations en O3 déterminées par les 12 réseaux de mesure et celles déterminées par le LNE sont de ±5%. De plus, les écarts relatifs observés entre les valeurs des AASQA et du LNE sont aléatoirement répartis de part et d’autre de zéro.
Mardi 16 septembre 2014
Rapport
Intercomparaisons des stations de mesures : Intercomparaison des moyens mobiles nationaux (Besançon 2013)
La directive européenne 2008/50/CE du 21 mai 2008 dédiée à la qualité de l’air appelle au respect de valeurs limites ou valeurs cibles, en leur associant une exigence en termes d’incertitude maximale sur la mesure. Les associations agréées de surveillance de la qualité de l'air sont tenues de participer aux essais d'intercomparaison destinées aux organismes agréés de surveillance de la qualité de l’air mis en place dans le cadre du Laboratoire Central de Surveillance de la Qualité de l'Air (article 9 de l’arrêté du 21 octobre 2010). Dans l’objectif de vérifier le respect des exigences de la directive européenne 2008/50/CE, le LCSQA propose annuellement aux AASQA une intercomparaison de moyens mobiles pour les polluants SO2, O3, NO, NO2 et CO à différents niveaux de concentration et tout particulièrement au voisinage des seuils horaires d’information ou d’alerte pour les polluants NOx, O3, SO2, et de la valeur limite sur 8h pour le CO. Un essai d’intercomparaison de moyens de mesures mobiles a été réalisé en mars 2013 en collaboration avec ATMO Franche Comté. Il a réuni 10 participants (8 AASQA, le LCSQA/INERIS et 1 partenaire étranger) et entités de mesures, constituant un parc de 59 analyseurs de NOx, O3, CO et SO2. Durant cette intercomparaison, le système de dopage permettant une distribution homogène des gaz sur 4 directions a été mis en oeuvre, dans l’objectif de respecter des temps de résidence inférieurs à 3 secondes pour les oxydes d’azote et l’ozone. Quelques erreurs de manipulation mineures ont été identifiés en cours d’exercice, sans répercutions sur le déroulement de l’exercice. Contrairement aux années précédentes, la circulation des étalons aveugles n’a pas comporté de « séance de rattrapage » lorsque les écarts des participants excédaient les 4 % tolérés. Pour rappel, l’exercice de circulation a pour seuls objectifs de vérifier la cohérence des étalons de transferts et d’expliquer a posteriori les éventuels décalages observés durant les séquences de dopage. Les écarts présentés par les participants étaient définitifs et non corrigés tout au long des essais d’intercomparaison, avec une possibilité d’impacter directement le calcul d’incertitude mené sur l’ensemble du groupe de participant. Cette manière de procéder permet d’accéder à des incertitudes de mesures plus représentatives des conditions réelles de terrain. Lors de cette circulation de gaz pour étalonnage en aveugle, la majorité des écarts constatés était nettement inférieure à l’incertitude tolérée sur la mesure des analyseurs (4%). On constate que les écarts importants sont peu fréquents pour l’ensemble des polluants, y compris pour le SO2 qui présente habituellement un nombre d’écarts nettement supérieur aux autres polluants. Le décompte des écarts significatifs se limite, en fin de campagne pour un niveau de concentration d’étalonnage habituel, à 1 analyseur de SO2, aucun analyseur de CO, 1 analyseur de NO, sur les 59 analyseurs présents sur le site. Le dysfonctionnement d’un générateur d’ozone étalon en cours d’exercice n’a pas permis de comptabiliser les écarts des analyseurs d’ozone en fin de campagne. L’application des tests statistiques de Cochran et Grubbs (norme NF ISO 5725-2) n’a éliminé aucune donnée quart-horaire sur un total de plus de 5200 mesures tous polluants confondus. L’avis d’expert n’a pas été utilisé pour écarter certaines données du calcul statistique. Les intervalles de confiance de reproductibilité (assimilables aux incertitudes de mesures) nettement inférieurs au seuil de 15 % ont été obtenus pour les polluants suivants : • CO : 6,1 %. • SO2 : 5,1 %. • O3 : 7,8 %. • NO : 3,7 %. • NO2 : 5,5 %. D’une manière générale, les résultats du traitement statistique suivant la norme NF ISO 13 528 et conduisant aux z-scores sont homogènes et très satisfaisants pour tous les participants. Une très large majorité des z-scores est comprise entre ±1. Les résultats de cette intercomparaison permettent d’évaluer la qualité de mise en oeuvre des méthodes de mesures par les AASQA. Depuis plusieurs années, les résultats obtenus en termes d’incertitude de mesure sont conformes aux exigences de la Directive Européenne et confirment dans la durée la fiabilité du système de mesure national. Jusqu’à présent les essais d’intercomparaison des moyens de mesures mobiles intégraient l’ensemble de la chaîne de mesure sans prendre en compte l’influence de la tête de prélèvement et des lignes éventuellement associées. L’exercice 2013 a permis de renouveler le test du dispositif de dopage au niveau des têtes de prélèvement de chaque moyen mobile mis en oeuvre pour la première fois en 2012. Ce dispositif, basé sur un coiffage des têtes avec un sac inerte en « Tedlar », avait montré la possibilité de réactions photochimiques à l’intérieur des sacs. Le dispositif testé cette année a été équipé d’occultants afin d’éviter ce phénomène. En dépit de perturbations extérieures au site de la campagne qui ont fortement influencé les dopages en SO2 et O3 de cette partie de l‘intercomparaison, on aura pu constater pour l’ensemble des polluants la bonne cohérence des mesures traduisant l’influence négligeable des têtes de prélèvement dans la chaîne de mesure. Quelques écarts ont pu être expliqués par des lignes neuves non passivées. Le traitement statistique des données, identique à celui de l’exercice classique, n’a éliminé aucune mesure quart-horaire. Les intervalles de confiance expérimentaux calculés sont : • Pour le polluant CO : 3 %. • Pour le polluant SO2 : 9,2 %. • Pour le polluant O3 : 10,6 %. • Pour le polluant NO : 4,4 %. • pour le polluant NO2 : 5,1 %. On note une bonne cohérence des valeurs d’incertitude entre les exercices avec et sans coiffage des têtes de prélèvement pour les polluants CO, NO, et NO2. Pour ce qui est de l’ozone, le niveau d’incertitude est inférieur à celui de l’exercice 2012. Enfin, pour le SO2, le niveau d’incertitude expérimental (9,2%) est supérieur à celui de l’exercice classique (5,1%) et également à celui de l’exercice 2012 (5,8%). On rappellera cependant que, vues les fortes variations de concentrations mesurées, le calcul a été effectué sur peu de données, près de la moitié ayant été écartée du traitement statistique en raison des perturbations locales. De plus, on peut raisonnablement envisager que certains dispositifs de mesures (ligne + analyseur) ont pu être pollués et être toujours sous l’influence de l’épisode de perturbation nocturne. Compte tenu de ces résultats encourageants, de nouveaux tests seront donc programmés lors des prochains exercices d’intercomparaison de moyens mobiles afin de fiabiliser le dispositif et d’abandonner à court terme les dopages sous boitiers. La réalisation d’exercices réguliers d’intercomparaison doit permettre une amélioration globale du dispositif de surveillance national et notamment d’enrichir les procédures de maintenance périodique et de transfert. Dans cet objectif, une planification des exercices a été effectuée sur plusieurs années en intégrant les contraintes géographiques afin de permettre à chaque AASQA d’y participer périodiquement. Ce dispositif s’appuie désormais sur 5 sites identifiés grâce à la collaboration d’Atmo Franche-Comté, Atmo Poitou-Charentes, Airnormand, Air Rhône-Alpes et ORAMIP.
Lundi 22 février 2010
Rapport
Maintien et amélioration des chaînes nationales d’étalonnage
Au sein du LCSQA, le LCSQA-LNE maintient des chaînes nationales d’étalonnage pour que les mesures de polluants gazeux effectués en stations de mesure soient raccordées aux étalons de référence par l'intermédiaire d'une chaîne ininterrompue de comparaisons, ce qui permet d’assurer la traçabilité des mesures aux étalons de référence. Ces chaînes nationales d’étalonnage sont constituées de 3 niveaux : le LCSQA-LNE en tant que Niveau 1, des laboratoires d’étalonnage inter-régionaux (au nombre de 7) en tant que Niveau 2 et les stations de mesures en tant que Niveau 3. Ces chaînes nationales d’étalonnage concernent le dioxyde de soufre (SO2), les oxydes d'azote (NO/NOx), l'ozone (O3) et le monoxyde de carbone (CO). Dans ce cadre, les étalons de transfert 1-2 de chaque laboratoire d’étalonnage sont raccordés par le LCSQA-LNE tous les 3 mois. De plus, le LCSQA-LNE est également mandaté pour réaliser le raccordement direct des étalons BTX utilisés par les réseaux de mesure, car vu le nombre de bouteilles de BTX utilisées en réseaux qui reste relativement faible, il a été décidé en concertation avec le MEEDDM et l’ADEME qu’il n’était pas nécessaire de créer une chaîne d’étalonnage à 3 niveaux. Cette étude a donc pour objectifs : De faire le point sur les étalonnages effectués par le LCSQA-LNE pour les différents acteurs du dispositif de surveillance de la qualité de l’air (AASQA, LCSQA-INERIS et LCSQA-EMD), tous polluants confondus (NO/NOx, NO2, SO2, O3, CO, BTX et Air zéro) en 2009. De faire une synthèse des problèmes techniques rencontrés en 2009 par le LCSQA-LNE lors des raccordements. D'exposer les différentes phases de l’automatisation des étalonnages, cette automatisation ayant pour objectif de s’affranchir de certaines étapes des procédures actuellement mises en oeuvre pouvant être à l’origine de sources d’erreurs. De faire le bilan sur les mises à disposition de moyens de contrôle d’étalonnage d’appareils effectués par le LCSQA-EMD dans le cas des particules. En effet, étant donné que la chaîne d’étalonnage nationale ne concerne que les polluants atmosphériques gazeux (SO2, NO, NO2, CO et O3), une mise à disposition de moyens de contrôle de l'étalonnage des analyseurs sur site est assurée dans l’attente de l’intégration des polluants PM10 et PM2.5 dans la chaîne. Ces dispositifs de transfert consistent en des cales étalons pour les microbalances à variation de fréquence permettant aux AASQA de vérifier l’étalonnage, la linéarité et le débit de prélèvement de leurs appareils directement en station de mesure. Pour l’année 2009, 15 mises à disposition ont été effectuées. Les essais montrent un comportement correct de l’ensemble des appareils contrôlés. Concernant le contrôle de la constante d’étalonnage de la microbalance, la moyenne de la valeur absolue de l’écart observée en AASQA (MVAE) varie entre 0,02 et 3,91% (soit pour l’ensemble des AASQA contrôlées une moyenne ± écart-type de 1,05 ± 0,36%). L’étendue de l’écart réel constaté sur le terrain est restreinte car comprise entre –3,91 et +2,55 % pour 85 appareils contrôlés dont 18 FDMS (soit environ 18% du parc de microbalances TEOM actuellement en station de mesure). Le respect de la consigne pour le débit de prélèvement est également constaté (moyenne de valeur absolue d’écart de 1,40 ± 1,10% pour 34 appareils vérifiés dont 9 FDMS (soit environ 7 % du parc de microbalances TEOM actuellement en station de mesure). Le contrôle de la linéarité montre l’excellent comportement de la microbalance sur ce paramètre : le coefficient de régression moyen R2 varie de 0,9998 à 1, la pente et l’ordonnée à l’origine moyennes de la droite de régression varient respectivement de 0,979 à 1,007 et de – 173 à + 30, sachant que 37 appareils (dont 6 FDMS) ont été contrôlés sur ce paramètre (soit environ 8% du parc de microbalances TEOM actuellement en station de mesure). Enfin, cette année a débuté le contrôle des cales étalons pour jauges radiométriques MP101M de marque Environnement SA. Ce contrôle a consisté en la vérification par le LCSQA-EMD des valeurs de cales étalons fournies par le constructeur. Cette évaluation faite sur l’appareil de référence du LCSQA-EMD, préalablement étalonné et contrôlé par un couple de cales spécifiques a donné des résultats satisfaisants : l’écart constaté a été respectivement de –1,4% et + 3% sur les 2 cales contrôlées. Cette procédure de contrôle des étalons d‘AASQA sera complétée l’année prochaine par une mise à disposition de cales étalons permettant le contrôle sur site de l’étalonnage de jauges ainsi que leur linéarité. Le comportement de la « chaîne de contrôle » mise en place par le LCSQA-EMD peut être qualifié de satisfaisant. Les résultats obtenus pour les microbalances TEOM (concernant les paramètres débit de prélèvement, étalonnage et linéarité) et pour les radiomètres bêta MP101M (concernant le contrôle de moyens d’étalonnage) sont des éléments probants de l’Assurance Qualité / Contrôle Qualité (QA/QC) appliquée aux analyseurs automatiques de particules en suspension et sont des sources d’information nécessaires dans le cadre du calcul de l’incertitude de mesure sur ce type d’appareil. Le maintien et l’extension du programme QA/QC pour les analyseurs automatiques de particules sont dans le programme des activités LCSQA de 2010.
Jeudi 1 mars 2018
Rapport
Développement d’un dispositif de contrôle des appareils mesurant les concentrations massiques de particules
Le TEOM (Tapered Element Oscillating Microbalance) est un appareil de mesure très répandu au sein des Associations Agréées de Surveillance de la Qualité de l’Air (AASQA). Il est capable de mesurer en continu la concentration massique des particules en suspension dans l’air (en µg/m3), ce qui le rend préférable à la méthode gravimétrique qui nécessite des pesées postérieures au prélèvement. A l’heure actuelle, cet appareil est étalonné à l’aide de cales étalons raccordées au système international. Ces cales, ayant des masses de l’ordre de 80-100 mg, permettent de vérifier la constante d’étalonnage de la microbalance. Le contrôle de sa linéarité est effectué grâce à trois cales étalons ayant des différences de masses de l’ordre de la dizaine de mg. En considérant un débit volumique du TEOM-FDMS de 3 L/min, la valeur limite pour les PM10 (50 µg/m3 en moyenne journalière) représente une masse particulaire d’environ 2 µg sur 15 min de prélèvement. La différence de masse des cales étalons n’est donc pas représentative des masses particulaires atmosphériques prélevées sur un quart d’heure. De plus, l’utilisation de ces cales ne permet pas de prendre en compte un éventuel dysfonctionnement du système de prélèvement en amont de la mesure de la masse et du système de filtration intrinsèque à la microbalance. Par conséquent, le LCSQA/LNE a proposé de développer une méthode de contrôle en masse des TEOM-FDMS qui consiste à : Générer et prélever des particules ayant des concentrations connues et stables dans le temps (prélèvement de masses particulaires inférieures à 5 mg (gamme du « mg ») et à 100 µg (gamme du « µg ») sur une demi-heure de prélèvement), d'une part sur le filtre du TEOM-FDMS en passant par le système de prélèvement (hors tête de prélèvement), et d'autre part sur un filtre externe, Puis comparer les masses mesurées par le TEOM-FDMS avec les masses « vraies » mesurées par la méthode gravimétrique sur le filtre externe. Au regard de l’ensemble des éléments précités, cette méthode a été développée pour contrôler les TEOM-FDMS (1) - pour une gamme de masse inférieure à celle des cales étalons et (2) - réalisable dans des conditions proches de leur fonctionnement « normal ». Le protocole d’utilisation du générateur, optimisé par les expériences menées sur le terrain entre 2013 et 2016, est également adapté au contrôle des jauges radiométriques, ce qui permet de rendre ce système versatile. En 2017, afin d’approfondir l’évaluation de ce dispositif lors d’application directes sur le terrain, le générateur a été envoyé successivement à 7 AASQA volontaires (Air PACA, Airparif, Air Pays de la Loire, Atmo Auvergne-Rhône-Alpes, Atmo Bourgogne Franche-Comté, Atmo Grand-Est et Atmo Hauts-de-France) entre juin et novembre pour des essais sur site réalisés sur des TEOM/TEOM-FDMS et des jauges radiométriques. Il a ainsi pu être observé que 67 % des masses mesurées par les TEOM/TEOM-FDMS et 65 % des mesures des jauges radiométriques étaient comprises dans les zones de référence définies par la méthode gravimétrique pour les temps de génération 12, 24 et 36 minutes. Ces instruments semblent donc présenter, dans la majorité, une bonne justesse de mesure. Les autres mesures en dehors des domaines de référence peuvent être liées soit à des problèmes techniques liés aux instruments considérés (problème de débit par exemple), soit à un problème de manipulation du générateur GARP. Ces essais ont ainsi pu montrer que le générateur de particules du LCSQA/LNE offre de nouvelles perspectives dans la compréhension du fonctionnement et des données des appareils mesurant en continu la concentration massique des particules en suspension dans l’air. Il permet une vérification complète de la chaîne de mesure, du prélèvement au système de mesure, renforçant ainsi la fiabilité des mesures. De plus, il permettra de répondre à des doutes sur des mesures obtenues pour certains sites.
Mardi 17 mars 2015
Rapport
Surveillance des particules en suspension PM10 et PM2.5 par absorption de rayonnement bêta (OBSOLETE)
Attention : ce guide est obsolète - Une version révisée est disponible dans l'espace documentaire (rubrique Guides méthodologiques)     Ce rapport représente la mise à jour 2014 du guide de recommandations pour la surveillance des particules PM10 et PM2.5 dans l’air ambiant au moyen d’une jauge radiométrique par atténuation de rayonnement Bêta. Les jauges radiométriques homologuées actuellement sur le sol français pour la surveillance réglementaire des particules dans l’air ambiant sont : - La BAM 1020 de Met One Instruments, Inc. ; - La MP101M d’Environnement SA. Ce guide a été rédigé sur la base des versions précédentes des guides techniques qui étaient diffusés au travers des rapports LCSQA concernant la surveillance des PM par mesure d’atténuation Bêta (2011 à 2013), des documents des constructeurs (MetOne, Environnement SA) et des échanges avec le distributeur (Envicontrol) ainsi qu’à partir du retour d’expérience et des commentaires émis par les membres utilisateurs des AASQA sur une version provisoire du guide (journées techniques des AASQA, rencontres utilisateurs, Commission de Suivi « Mesures Automatiques », etc.). Il s’articule en trois parties : Partie 1 : Synthèse des commentaires reçus sur la version provisoire du guide Partie 2 : Mise à jour du guide pour le MP101M d’Environnement SA Partie 3 : Mise à jour du guide pour la BAM 1020 de Met One   Il est à noter que les informations contenues dans ce document pourront être amenées à évoluer ou à être mises à jour et qu’à termes elles aboutiront à un document de référence qui sera validé tout d’abord par les membres de la CS « Mesures automatiques » puis les membres du Comité de Pilotage de la Surveillance acteront de sa diffusion aux AASQA sous la forme d’une guide méthodologique pour sa mise en application courant 2015. Les modalités d'évolution de ce document sont à définir collectivement, et pourront être discutées en Commission de Suivi "Mesures automatiques". En attendant, toutes les remarques peuvent être adressées directement par email à Sabine Crunaire (sabine.crunaire@mines-douai.fr), François Mathé (francois.mathe@mines-douai.fr) et Benoît Herbin (benoit.herbin@mines-douai.fr).