Résultats de la recherche

2627 résultats correspondent à PM10
Vendredi 5 février 2010
Rapport
Etude des épisodes de pollution 2008 – 2009 dans le cadre du dispositif CARA
Ce rapport présente la mise en œuvre de la modélisation sur des épisodes identifiés dans le rapport DRC-09-103337-10781A afin de mieux comprendre les aptitudes et lacunes des modèles. Les épisodes de l’année 2008 et janvier 2009 ont été simulés avec le modèle de qualité de l’air CHIMERE. Ainsi, les analyses du dispositif CARA ont permis de montrer que : a) Les concentrations en sulfates sont globalement sous-estimées par le modèle CHIMERE surtout durant l’été, b) Les concentrations en nitrate et l’ammonium sont correctement simulées mais semblent parfois surestimées, c) Les concentrations en matière organique sont nettement sous-estimées essentiellement l’hiver d) Les concentrations en carbone élémentaire sont légèrement sous-estimées e) Les « autres » espèces sont largement sous-estimées par le modèle La sous-estimation de la production de sulfate provient essentiellement d’une sous-production par chimie gazeuse l’été. Concernant le point c), la sous-estimation chronique du modèle pourrait être liée à une source manquante ou mal redistribuée temporellement comme la combustion du bois. Les « autres » espèces pourraient être mal représentées dans les inventaires utilisées, il s’agirait de particules primaires non carbonées émises par les activités humaines. En 2010 certains des épisodes de 2009 seront à nouveau étudiés en considérant les aspects météorologie et émissions. Avant de régler le problème des émissions, un travail sur les simulations météorologiques sera réalisé et seulement ensuite, un travail sur les émissions sera effectué pour mieux caler les émissions de combustion de bois et suivre la part de ces émissions dans le bilan des particules prélevées et analysées. Un travail particulier sur les profils temporels d’émission sera réalisé en collaboration avec les AASQA. Bien que l’essentiel du travail soit réalisé sur des échantillons typiques de certaines régions, ce travail devra être extrapolable au plan national. Une évolution du système de mesure et d’analyse CARA sera envisagée dans le sens suivant: - Mesures des couples Nitrate/Acide nitrique et Ammonium/Ammoniaque en gardant une veille sur les mesures de concentrations de ces espèces ; - Avoir un ou deux points de mesures avec à la fois des analyses sur filtre des PM2,5 et des PM10 en privilégiant un site de fond suburbain voire rural, ceci permettant de voir si la sous-estimation des composés « autres » existe aussi dans la fraction fine des PM ; - Avoir un site de mesures permettant d’évaluer les concentrations de fond de poussières naturelles, ce site devrait être situé près des zones de terres arables.
Mercredi 4 décembre 2013
Rapport
Guide pour l'utilisation des jauges radiométriques bêta MP101M Environnement SA (OBSOLETE)
Ce guide a pour objectif de fournir une aide aux utilisateurs des jauges radiométriques MP101M d’Environnement SA en leur fournissant une première liste de procédures à mettre en oeuvre ainsi qu’un échéancier à respecter pour permettre le bon fonctionnement de l'outil en routine. L’absorption de rayonnement bêta et la mesure par variation de fréquence constituent à ce jour les 2 techniques usuelles en AASQA pour la mesure automatique de la concentration massique des particules en suspension dans l’air ambiant. Ceci est la conséquence de la démonstration d’équivalence obtenue en 2006, confirmée en 2008,  2010 et 2011 par les exercices d’intercomparaison sur site menés par le LCSQA. Concernant la jauge bêta, le système centralisé de gestion administrative des sources radioactives mis en place depuis 2010 a facilité les démarches administratives pour  les AASQA. Compte tenu du redéploiement technique en vue de respecter l’échéance de 2013 fixée par la Directive n°2008/50/CE sur la conformité des techniques de mesure, des AASQA ont adopté cette technique ou envisagent de le faire.   L'objectif sera d'élaborer à court terme un guide similaire pour l'autre jauge radiométrique homologuée en France, le BAM 1020 de la marque Met One. Note : Ce guide a été rédigé sur la base des documents et échanges avec le constructeur ainsi qu’à partir du retour d’expérience du personnel des AASQA (journées techniques des AASQA, journées utilisateurs, etc.). Ce guide d’utilisation de la MP101M pourra évoluer et devra être remis à jour régulièrement en fonction des remarques et propositions des utilisateurs. Les modalités d'évolution de ce document sont à définir collectivement, et pourront être discutées en Commission de Suivi "Mesure des particules en suspension". Toute remarque peut être adressée directement par email à Sabine Crunaire (sabine.crunaire@mines-douai.fr), François Mathé (francois.mathe@mines-douai.fr) ou Benoît Herbin (benoit.herbin@mines-douai.fr)  
Vendredi 20 septembre 2013
Rapport
Cartographie du NO2 à l’échelle locale, Représentativité des stations, Dépassements de seuils
Cette note faite suite au rapport de 2010 intitulé "Application de méthodes géostatistiques pour la détermination de zones de représentativité en concentration et la cartographie des dépassements de seuils"
Vendredi 9 novembre 2012
Rapport
Evaluation de la contribution des embruns marins aux dépassements des valeurs limites fixées pour les PM10 à Saint-Pierre de La Réunion
La présente étude a été menée conjointement par l’INERIS et l’Observatoire Réunionnais de l’Air (ORA) dans le cadre du programme CARA du LCSQA (cf. Annexe A). Dans la ville de Saint-Pierre, l’Observatoire Réunionnais de l’Air (ORA) dispose de deux stations urbaines de surveillance de la qualité de l’air situées respectivement dans l’enceinte de la crèche de « Bons Enfants » (désignée BON ci-après) et de l’école élémentaire « Luther King » (désignée LUT ci-après). Chacune de ces stations a été équipée d’un analyseur automatique de PM10 de type TEOM-FDMS en cours d’année 2007. Depuis cette date, l’ORA observe des dépassements systématiques des valeurs limites de PM10 fixées par la Directive européenne 2008/50/CE sur la station BON, à l’inverse de la station LUT (alors que ces deux stations de fond urbain ne sont distantes que d’environ 1km). Après avoir vérifié les aspects métrologiques en fin d’année 2007, l’ORA a recherché les facteurs environnementaux susceptibles d’influencer de manière distincte ces deux stations. Il s’avère que la station BON est située plus près du littoral que la station LUT, et en aval d’une barrière de corail. Sur la base d’observations in situ et d’analyses chimiques ponctuelles, l’ORA a mis en avant dès 2008 le rôle probablement majeur joué par les embruns marins dans la survenue des dépassements de valeurs limites à BON. Ces arguments ont été fournis à la Commission Européenne, mais cette dernière les a jugés insuffisants. C’est dans ce contexte que le ministère en charge de l’environnement a sollicité le LCSQA/INERIS en 2011. Le présent rapport rend compte des résultats de spéciation chimique réalisée sur des échantillons journaliers de PM10 prélevés sur filtres en 2011 et 2012. Les dépassements du seuil journalier de 50µg/m3 en PM10 ayant pu être étudiés entre fin juillet 2011 et début juin 2012 sur la station BON (soit 32 dépassements sur 45 durant cette période) sont attribuables, sans ambigüité, aux embruns marins. Par ailleurs, les résultats obtenus mettent en évidence une bonne homogénéité des niveaux de particules d’origine anthropique entre les stations BON et LUT, ainsi que  le rôle majeur joué par les sels de mer sur la différence des concentrations de PM10 enregistrés sur ces deux stations. Sur cette base, une méthode empirique simple de « rétro-estimation » de la contribution des embruns marins à BON a pu être proposée. L’application de cette méthodologie à l’ensemble de la période 2008-2011 suggère la conformité de la station BON vis-à-vis des valeurs limites définies par la Directive 2008/50/CE au cours de ces quatre dernières années, après retranchement d’une contribution minimale de la source marine lors des dépassements du seuil journalier.
Mercredi 12 mai 2010
Rapport
Evaluation de modèles pour la simulation de la pollution à proximité des axes routiers
La présente étude, planifiée sur trois ans (2007-2009) porte sur la modélisation de la pollution atmosphérique à proximité des axes routiers. Elle a pour objet la mise à disposition de données, d’informations techniques et de méthodologies de référence qui permettent d’apprécier la qualité des modèles disponibles et d’optimiser leur usage. Depuis 2007, un fond d’informations comprenant un recensement de campagnes de mesure réalisées en France ou à l’étranger, des informations techniques sur les modèles, des résultats de modélisation et un outil Excel de comparaison modèle-mesure a été progressivement constitué. Il est accessible sur le site du LCSQA (/fr/pollution-de-proximite). Des jeux de données relatifs à quelques unes des campagnes référencées ont pu être récupérés sur Internet (données du programme européen TRAPOS) ou auprès des AASQA. Depuis 2008, une part importante du travail a été consacrée à l’application de modèles de proximité à certains de ces jeux, afin de s’assurer que les données et méthodologies fournies étaient cohérentes et aisément exploitables, d’offrir des résultats de comparaison entre simulations et mesures et de mieux caractériser le fonctionnement des modèles. Des modèles d’usage courant ont été sélectionnés : ADMS-Urban, CALINE4, OSPM, SIRANE et STREET. Le modèle CALINE4, testé en 2008 sur les données TRAPOS, n’a pas été conservé pour la suite des évaluations : conçu pour simuler la dispersion autour d’axes interurbains, il s’est révélé inadapté à la modélisation en milieu construit. En 2009, trois rues de Nantes ont été étudiées : une rue canyon très encaissée (rue de Crébillon), une rue canyon classique (rue de Strasbourg) et une rue semi-ouverte (quai de la Fosse). Ces nouveaux calculs ont bénéficié de données d’entrée plus complètes (données d’émissions et de concentrations fournies par AIR Pays-de-Loire) et d’une meilleure connaissance du terrain. Les résultats obtenus, enrichis par des tests de sensibilité, confirment et précisent les remarques émises à l’issue des simulations TRAPOS (Wroblewski et al., LCSQA 2008). Ils mettent en évidence quelques traits récurrents des modèles : Quel que soit le modèle, les résultats sont sensiblement meilleurs pour le NO2 que pour les NOx : le biais est plus faible et la dispersion entre modèle et mesure est moindre. La moyenne annuelle modélisée de NO2 s’écarte d’au minimum 3,7% et d’au maximum 35% de la valeur mesurée. La qualité des résultats (notamment la corrélation) est meilleure pour les configurations incluses rigoureusement dans le champ d’application des modèles : rues canyons classiques pour ADMS-Urban, OSPM, SIRANE et STREET, axes ouverts pour ADMS-Urban et SIRANE. Pour ce second type de rue, ADMS-Urban et SIRANE, qui recourent tous deux à une formulation gaussienne, produisent des résultats concordants. Quel que soit le polluant, ADMS-Urban sous-estime les concentrations, ce qui pourrait s’expliquer par une dispersion accrue liée au couplage modèle de rue-modèle gaussien. OSPM est étroitement lié aux données d’émissions ; cela reste vrai pour ADMS-Urban et SIRANE, mais de façon moins sensible. Pour ces deux modèles, l’influence de la météorologie et de la pollution de fond est plus grande, ce qui peut expliquer une meilleure restitution des variations horaires de concentrations et en conséquence, une corrélation modèle-mesure plus élevée. Les statistiques sur les périodes de campagnes ne suffisent pas à caractériser les modèles et leur capacité de suivre l’évolution temporelle des concentrations. Les séries temporelles modélisées et mesurées s’écartent parfois l’une de l’autre de façon notable. Seule une analyse approfondie en fonction de la météorologie et des concentrations de fond pourrait permettre d’évaluer le comportement des modèles sur de courts pas de temps. En ce qui concerne les PM10, les résultats sont plus contrastés. La modélisation demeure satisfaisante pour ADMS-Urban et SIRANE, en dépit d’un biais plus élevé : l’écart entre les moyennes annuelles modélisées et mesurées est inférieur à 40% ; la corrélation, assez faible avec SIRANE pour la rue de Crébillon, est supérieure à 0,7 partout ailleurs. De façon étonnante et pour l’instant inexpliquée, la qualité des résultats d’OSPM chute sensiblement. En 2010, cette évaluation des modèles sera complétée par l’étude de deux situations complexes (axes avec intersections, situés à Poitiers) à partir de données fournies par ATMO Poitou-Charentes. Une note de synthèse reprenant les principaux résultats de ces travaux sera rédigée et étayée d’éléments bibliographiques.  
Jeudi 26 avril 2012
Rapport
Evaluation de la contribution des embruns marins aux dépassements des valeurs limites fixées pour les PM10 sur la station Bons Enfants de l'Ile de la Réunion
Dans la ville de Saint Pierre, l’observatoire réunionnais de l’air (ORA) dispose de deux stations urbaines de surveillance de la qualité de l’air situées respectivement dans l’enceinte de la crèche de « Bons Enfants » (désignée BON ci-après) et de l’école élémentaire « Luther King » (désignée LUT ci-après). Chacune de ces stations a été équipée d’un analyseur automatique de PM10 de type TEOM-FDMS en cours d’année 2007. Depuis cette date, l’ORA observe des dépassements systématiques des valeurs limites de PM10 fixée par la Directive européenne 2008/50/CE sur la station BON, à l’inverse de la station LUT (alors que ces deux stations de fond urbain ne sont distantes que d’environ 1km). Après avoir vérifié les aspects métrologiques en fin d’année 2007, l’ORA a recherché les facteurs environnementaux susceptibles d’influencer de manière distincte ces deux stations. Il s’avère que la station BON est située plus près du littoral que la station LUT, et en aval d’une barrière de corail. Sur la base d’observations in situ et d’analyses chimiques ponctuelles, l’ORA a mis en avant dès 2008 le rôle probablement majeur joué par les embruns marins dans la survenue des dépassements de valeurs limites à BON. Ces arguments ont été fournis à la Commission Européenne, mais cette dernière les a jugés insuffisants. C’est dans ce contexte que le ministère en charge de l’environnement a sollicité le LCSQA/INERIS en 2011. La présente note rend compte des premiers résultats de spéciation chimique réalisée sur des échantillons journaliers de PM10 prélevés sur filtres au deuxième semestre 2011. Les dépassements du seuil journalier de 50µg/m3 en PM10 ayant pu être étudiés entre septembre et novembre 2011 sur la station BON (soit 19 dépassements sur 41 durant l’année civile 2011) sont attribuables, sans aucune ambigüité, aux embruns marins. Par ailleurs, les résultats obtenus mettent en évidence une bonne homogénéité des niveaux de particules d’origine anthropique entre les stations BON et LUT, ainsi que  le rôle majeur joué par les sels de mer sur la différence des concentrations de PM10 enregistrés sur ces deux stations. Sur cette base, une méthode empirique simple de « rétro-estimation » de la contribution des embruns marins à BON a pu être proposée. L’application de cette méthodologie à l’ensemble de la période 2008-2011 suggère la conformité de la station BON vis-à-vis des valeurs limites définies par la Directive 2008/50/CE au cours de ces quatre dernières années, après retranchement de la contribution de la source marine. Cette analyse doit encore être validée, notamment à l’aide des prélèvements et mesures à réaliser au cours du premier semestre 2012
Lundi 25 février 2013
Rapport
Application de méthodes géostatistiques pour la détermination de zones de représentativité en concentration et la cartographie des dépassements de seuils
Conformément aux Directives européennes sur la qualité de l’air et à leur transposition en droit français, les AASQA doivent évaluer la représentativité spatiale de leurs sites de mesure. De plus, si un dépassement de seuil réglementaire est constaté en un ou plusieurs sites, elles doivent estimer la surface et la population exposée à ce dépassement dans toute la zone de surveillance. Ces exigences nécessitent de disposer d’une information sur la distribution spatiale des concentrations, selon un pas de temps adapté à l’échelle temporelle et au seuil considérés. Différents moyens d’obtenir une telle information, qui reposent sur la modélisation et/ou le traitement de données de campagnes, sont envisageables. La présente étude est consacrée au NO2 en moyenne annuelle. Elle propose une méthodologie probabiliste fondée sur la réalisation de campagnes d’échantillonnage par tubes à diffusion passive. L’usage complémentaire de résultats de modélisation fera l’objet d’une étape ultérieure. Les calculs s’organisent en trois parties. La première fait appel aux techniques d’estimation de la géostatistique. Elle consiste à cartographier les concentrations moyennes annuelles de NO2 sur le domaine considéré. Elle constitue un préalable indispensable aux deux parties suivantes, qui peuvent être mises en œuvre indépendamment : l’estimation des zones de représentativité en concentration des stations et la délimitation des zones de dépassement de la valeur limite annuelle (40 µg/m3). L’approche a été appliquée dans son ensemble à deux cas d’étude : Montpellier et Troyes, où Air Languedoc-Roussillon et ATMO Champagne-Ardenne ont réalisé des campagnes d’échantillonnage (respectivement en 2007 et 2009). Les concentrations moyennes annuelles de NO2 ont été cartographiées sur ces deux agglomérations en se limitant d’abord à la pollution de fond puis en intégrant l’influence des émissions routières. Les critères et paramètres définissant la représentativité ont été évalués et ajustés à l’aide de tests de sensibilité. Pour Montpellier comme pour Troyes, l’estimation de la représentativité spatiale des stations de fond montre une bonne couverture du domaine de surveillance. La disposition des zones diffère toutefois selon la ville. En ce qui concerne Montpellier, les deux zones de représentativité sont disjointes et se complètent : l’une correspond au centre de l’agglomération, l’autre forme une couronne autour de ce centre. En revanche, la représentativité de la station trafic de Montpellier n’a pu être établie, faute d’une précision d’estimation suffisante aux abords de ce site. Dans le cas de Troyes, les zones de représentativité associées aux deux stations de fond sont imbriquées. Dans les deux agglomérations, de multiples points situés le long des axes ont été classés en zone de dépassement. Il serait intéressant de contrôler ces estimations par des données complémentaires de mesure. Les méthodes présentées reprennent des développements antérieurs, issus de travaux cités en introduction. Elles ont été mises au point avec le logiciel R. Si elles offrent une réponse efficace aux questions de la représentativité et des dépassements, les exemples étudiés en indiquent aussi les limites, à savoir une sensibilité au plan d’échantillonnage et à certains paramètres de calcul (écart de concentration définissant la représentativité, risques statistiques). Les zones de représentativité et de dépassement seront délimitées d’autant plus finement que la stratégie de mesure permet une estimation plus fiable des concentrations de fond et une modélisation plus précise du surcroît de concentration aux abords des routes. Qu’il s’agisse de l’échantillonnage spatial ou temporel, de nombreuses préconisations ont déjà été émises (LCSQA, GT plans d’échantillonnage) ; il est recommandé de s’y référer. Une synthèse des méthodes utilisées et des résultats obtenus, assortie d’indications et de précautions d’usage, est fournie en conclusion. Des travaux complémentaires et approfondissements – réalisés ou en cours d’étude - y sont également mentionnés : analyse de la représentativité et des zones de dépassement pour les PM10 et le benzène, utilisation de la modélisation urbaine, quantification de la population exposée. --> Accès à la note de 2011 relative à la Cartographie du NO2 à l’échelle locale, Représentativité des stations, Dépassements de seuils
Lundi 4 février 2013
Rapport
Définition des zones sensibles dans les régions françaises. Bilan de la mise en oeuvre de la méthodologie nationale.
Le décret du 16 juin 2010 relatif aux schémas régionaux du climat, de l’air et de l’énergie prévoit que dans les zones plus particulièrement sensibles à la dégradation de la qualité de l’air, les orientations destinées à prévenir ou réduire la pollution atmosphérique soient renforcées. Afin que ces zones soient délimitées de manière homogène sur l’ensemble de la France, une méthodologie nationale a été établie. Le LCSQA et des représentants d’AASQA (Air Rhône-Alpes, ASPA, Air Normand, Airparif) en ont assuré collectivement l’élaboration dans le cadre du groupe de travail « Zones sensibles » (2010). Deux grands types de variables définissent les zones sensibles : des critères liés à la qualité de l’air, et plus spécialement aux dépassements observés ou potentiels des valeurs limites ; des critères liés à la sensibilité propre des territoires, et plus précisément à la présence de population ou de zones naturelles protégées. De janvier 2011 à janvier 2012, conformément à la demande du ministère en charge de l’écologie et du développement durable et à la mission qui leur est confiée par l’arrêté du 21 octobre 2010 (article 10), les AASQA ont appliqué la méthodologie aux différentes régions françaises. Ce travail a été conduit en concertation avec les DREAL (DEAL, DRIEE) et avec le soutien du LCSQA. La définition des zones sensibles a fait ainsi l’objet de nombreux échanges entre les AASQA et le LCSQA qui, selon les sollicitations, a apporté son aide de la manière suivante : indications sur certains points de méthode, extraction de données par région, aide à l’utilisation des SIG; avis sur la mise en œuvre de la méthodologie, aide à l’interprétation des résultats. Le présent rapport dresse un bilan du travail effectué et des résultats obtenus. La méthodologie a reçu un accueil favorable et sa mise en œuvre n’a soulevé aucune difficulté majeure. Quelques limites ou artefacts ont été néanmoins constatés lors de l’identification des zones de dépassement et des zones habitées et de la sélection des mailles et des communes sensibles. Les AASQA en ont corrigé les effets par des ajustements fondés sur des données complémentaires et sur leur expertise. Ces limites ne mettent pas en question le principe et l’organisation de la méthodologie ni la pertinence des résultats qui en découlent. S’il est besoin, elles pourront donner lieu à une mise à jour de la méthodologie lors d’une réévaluation future des zones sensibles. Au total, 5558 communes ont été déclarées sensibles. Elles représentent un peu plus de 11% de la surface du territoire et 61% de la population. Le nombre de communes sensibles, la part de surface occupée par ces dernières et la proportion de population concernée varient notablement selon les régions (ou DOM) : entre 2 et 1519 communes sensibles, entre 0,1% et 98,9% de la surface régionale, entre 30,4% et 99,8% de la population régionale. La répartition spatiale de ces communes apparaît toutefois cohérente, sans discordance entre les régions. La densité de zones sensibles augmente dans les régions les plus touchées par des dépassements consécutifs à la pollution de fond régionale (dépassements liés aux PM10 dans le Nord-Pas-de-Calais, en Picardie, Rhône-Alpes et PACA ; au NO2 et aux PM10 en Île-de-France).
Vendredi 14 décembre 2012
Rapport
Retour d’expérience sur l’utilisation d’un indicateur optique de type FIDAS 200 - Campagne 2012 à Douai-Dorignies
Un analyseur en temps réel de poussières de type FIDAS 200 (constructeur PALAS®) pour la détermination granulométrique des poussières en suspension a été testé par le LCSQA d’abord à l’INERIS en 2011, puis en 2012, lors d’essais de comparaison multi-instruments de mesure PM à l’initiative d’ATMO-Nord-Pas de Calais dans la station de l’Ecole des Mines de Douai (EMD), sur le site d’observation de Dorignies, en parallèle d’un exercice de suivi de l’équivalence d’analyseurs automatiques homologués pour la mesure réglementaire. La présente note synthétise les résultats obtenus lors de cette dernière campagne. Le FIDAS 200 présente des résultats globalement satisfaisants par rapport à la méthode de référence, avec des coefficients de corrélation de 0,98 et 0,95 respectivement en PM10 et PM2.5. Cependant, une sous-estimation globale de l’ordre de 20% sur les PM10 et de 10% en PM2.5 est observée. Cette sous-estimation semble notamment résulter d’une déviation de calibration se traduisant par un décalage granulométrique. Par retour d’expérience et après échange avec le fournisseur, il est ainsi recommandé de procéder à une calibration mensuelle ou, a minima, avant toute nouvelle campagne de mesures, plutôt qu’à une calibration annuelle comme initialement préconisé par le constructeur. Il sera intéressant de compléter par d’autres essais ce retour d’expérience afin de statuer, à moyen terme, sur une éventuelle homologation par la Commission de suivi « particules » du dispositif national de surveillance pour la mesure automatique des PM, une fois la preuve faite par le constructeur de la démonstration d’équivalence par rapport à la méthode de référence (tests d’équivalence en cours au TüV, en PM10 & PM2.5). Les tests sur différentes typologies de site se déroulent en Allemagne et en Angleterre et l’ensemble des tests devraient se terminer fin juin 2013 pour approbation éventuelle en fin d’année 2013.
Jeudi 26 avril 2012
Rapport
Suivi et optimisation de l’utilisation des TEOM-FDMS : Efficacité de séchage des modules FDMS
Depuis le 1er janvier 2007, les TEOM-FDMS sont très largement utilisés en routine par l’ensemble des associations agréées de surveillance de la qualité de l’air (AASQA) pour la surveillance des PM10 et des PM2.5.  Dans le cadre du déploiement et de la mise en œuvre de ces instruments, le LCSQA/INERIS est notamment chargé du suivi et de l’optimisation de leur utilisation au sein du dispositif national de surveillance de la qualité de l’air, ainsi que d'assurer la qualité des données produites en construisant une approche QA/QC basée sur celle décrite dans les normes utilisées pour la mesure des polluants gazeux inorganiques (O3, NOx, SO2, CO). Ce travail se concrétise notamment par la rédaction d’un guide pour l’utilisation du TEOM-FDMS, dont une nouvelle version a été élaborée en 2010, en partenariat avec les AASQA. En 2011, le LCSQA/INERIS a poursuivi son travail d’évaluation sur le terrain des TEOM-FDMSavec notamment pour objectif de vérifier la validité des critères définis par le guide d’utilisation dans le cas d’un environnement climatique « extrême » (i.e. chaud et humide). Le présent rapport restitue les principaux résultats de ces travaux, en portant l’accent sur les enseignements tirés de tests de terrain réalisés en Martinique en collaboration avec Madininair, permettant en outre d’étudier l’influence de l’humidité relative sur les performances du sécheur dans le cas d’un aérosol atmosphérique réel très humide (pour faire suite à des travaux réalisés en laboratoire en 2009). Ces résultats renforcent les recommandations préconisées par le guide d’utilisation de 2010. En particulier : -       Les oscillations des températures de point de rosée échantillon (en sortie de sécheur) sont corrélées aux oscillations constatées sur la température de la station (pour des températures de point de rosée ambiant stables). La température de fonctionnement des sécheurs FDMS a donc un impact direct sur l’efficacité de ces derniers et doit être surveillée/contrôlée attentivement, afin d’éviter un éventuel risque de surestimation de la concentration massique. -       L’utilisation de TEOM-FDMS présentant une dépression en amont de la pompe moins importante que -20 inHg (« pouces de mercure », unité utilisée par convention pour le TEOM-FDMS) peut conduire à une baisse rapide du rendement des sécheurs. Sur ce point, il est également à noter que différents retours d’expérience ont montré que le manomètre d’origine pouvait fortement dériver et, par ailleurs, présenter des fuites. Il est donc fortement conseillé de maintenir une dépression plus importante que -20 inHg, et de procéder à une vérification régulière du manomètre d’origine, voire de remplacer ce dernier (permettant en outre la mise en place d’un suivi de la dépression en routine). -       L’utilisation d’un TEOM-FDMS présentant une température de point de rosée échantillon autour de -5°C peut conduire à une légère surestimation de la concentration massique de PM (de l’ordre de 3 µg/m3dans le cas présent d’un environnement très humide). Il semble donc opportun de maintenir un seuil limite d’intervention de -4°C pour ce paramètre. Enfin, la surveillance de l’humidité relative en sortie de sécheur (non suivie jusqu’à présent) pourrait permettre d’identifier plus facilement une dégradation partielle de ce dernier