Résultats de la recherche

208 résultats correspondent à LNE
Mercredi 4 mai 2011
Rapport
Maintien et amélioration des chaînes nationales d'étalonnage
Au sein du LCSQA, le LCSQA-LNE maintient des chaînes nationales d’étalonnage pour que les mesures de polluants gazeux effectués en stations de mesure soient raccordées aux étalons de référence  par  l'intermédiaire  d'une  chaîne  ininterrompue  de  comparaisons, ce  qui  permet d’assurer la traçabilité des mesures aux étalons de référence.  Ces chaînes nationales d’étalonnage sont constituées de 3 niveaux : le LCSQA-LNE en tant que Niveau 1, des laboratoires d’étalonnage inter-régionaux (au nombre de 7) en tant que Niveau 2 et les stations de mesures en tant que Niveau 3.Ces chaînes nationales d’étalonnage concernent le dioxyde de soufre (SO 2 ), les oxydes d'azote (NO/NO x ), l'ozone (O 3 ) et le monoxyde de carbone (CO).Dans  ce  cadre,  les  étalons  de  transfert  1-2  de  chaque  laboratoire  d’étalonnage  sont raccordés par le LCSQA-LNE tous les 3 mois. De  plus,  le  LCSQA-LNE  est  également  mandaté  pour  réaliser  le  raccordement  direct  des étalons  BTX  utilisés  par  les  Associations  Agréées  de  Surveillance  de  la Qualité  de  l'Air (AASQA), car vu le nombre de bouteilles de BTX utilisées par les AASQA qui reste relativement faible, il a été décidé en concertation avec le MEDDTL et l’ADEME qu’il n’était pas nécessaire de créer une chaîne d’étalonnage à 3 niveaux.  Cette étude a donc pour objectifs : - De  faire  le  point  sur  les  étalonnages  effectués  par  le  LCSQA-LNE  pour  les  différents acteurs du dispositif de surveillance de la qualité de l’air (AASQA, LCSQA- INERIS et LCSQA-EMD), tous polluants confondus (NO/NOx, NO2 , SO2 , O3 , CO, BTX et Air zéro) en 2010. - De faire une synthèse des problèmes techniques rencontrés en 2010 par le LCSQA-LNE lors des raccordements. - D'exposer  les  différentes  phases  de  l’automatisation  des  étalonnages  pour  le  SO2, cette automatisation ayant pour objectif de s’affranchir  de  certaines  étapes  des  procédures actuellement mises en oeuvre pouvant être à l’origine de sources d’erreurs.   - De faire le bilan sur les mises à disposition de moyens de contrôle d’étalonnage d’appareils effectués par le LCSQA-EMD dans le cas des particules. En effet, étant donné que la chaîne d’étalonnage nationale ne concerne que les polluants atmosphériques gazeux (SO2, NO, NO2, CO et O3), une mise à disposition de moyens de contrôle de l'étalonnage des analyseurs PM10  et PM 2.5  sur site est assurée dans l’attente de l’intégration de ces polluants dans la chaîne.Ces dispositifs de transfert consistent en des cales étalon pour les analyseurs automatiques de particules (microbalances à variation de fréquence et jauges radiométriques) permettant aux AASQA de vérifier l’étalonnage, la linéarité et le débit de prélèvement de leurs appareils directement  en  station  de  mesure.  Pour  l’année  2010,  15  mises  à  disposition  ont  été effectuées. Le  respect  de  la  consigne  pour  le  débit  de  prélèvement  est  globalement  constaté  pour  51 appareils  vérifiés  dont  6  FDMS  (soit  environ  10  %  du  parc  d’analyseurs  automatiques actuellement  en  station  de  mesure)  et  les  essais  montrent  un  comportement  correct  de l’ensemble des appareils contrôlés.   Concernant le contrôle de la constante d’étalonnage de la microbalance, la moyenne de la valeur absolue de l’écart observée en AASQA varie entre 0,34 et 1,22% (soit pour l’ensemble des AASQA contrôlées une moyenne ± écart-type de 0,9 ± 0,32%). L’étendue de l’écart réel constaté  sur  le  terrain  est  restreinte  car  comprise  entre  0,04  et  +3,26  %  pour  56  appareils contrôlés dont 11 FDMS (soit environ 12% du parc de microbalances TEOM actuellement en station de mesure). Le  contrôle  de  la  linéarité  montre  l’excellent  comportement  des  appareils  sur  ce  paramètre sachant  que  52  appareils  (dont  6  FDMS)  ont  été  contrôlés  soit  environ  11%  du  parc  de microbalances TEOM actuellement en station de mesure. Concernant les jauges radiométriques MP101M de marque Environnement SA, un contrôle de cale étalon d’AASQA (vérification par le LCSQA-EMD des valeurs de cales étalon fournies par le constructeur) ainsi qu’une mise à disposition de cales étalon permettant le contrôle sur site de l’étalonnage de jauges ainsi que leur linéarité ont été assurés. Comme pour la microbalance, le contrôle de la linéarité montre l’excellent comportement des jauges sur ce paramètre sachant que 6 appareils ont été contrôlés soit environ 9% du parc de jauges actuellement en station de mesure. Enfin un bilan de la « chaîne de contrôle pour la mesure des particules » mise en place par le LCSQA-EMD a été effectué aux Journées Techniques des AASQA les 12 au 14 octobre 2010 à Orléans dans le cadre de l’atelier sur la thématique « Chaîne nationale d’étalonnage : bilan &  perspectives ».  Cet  outil  simple  à  mettre  en  œuvre  est  globalement  apprécié  par  les usagers. Le comportement de cette « chaîne de contrôle pour la mesure des particules » mise en place par  le  LCSQA-EMD  peut  être  qualifié  de  satisfaisant.  Les  résultats  obtenus  pour  les microbalances  TEOM  (concernant  les  paramètres  débit  de  prélèvement,  étalonnage  et linéarité)  et  pour  les  radiomètres  bêta  MP101M  (concernant  le  contrôle  de  moyens d’étalonnage) sont des éléments probants de l’Assurance Qualité / Contrôle Qualité (QA/QC) appliquée  aux  analyseurs  automatiques  de  particules  en  suspension  et  sont  des  sources d’information  nécessaires  dans  le  cadre  du  calcul  de  l’incertitude  de  mesure  sur  ce  type d’appareil. Le maintien et l’extension du programme QA/QC pour les analyseurs automatiques de particules rentrent dans les missions pérennes du LCSQA.
Jeudi 14 avril 2022
Rapport
Bilan des niveaux de concentrations particulaires en nombre au sein du dispositif national en comparaison à l'échelle européenne
De nombreux travaux scientifiques indiquent que la concentration en nombre des particules atmosphériques (PNC, pour Particle Number Concentration), majoritairement constituées de particules ultrafines (PUF), semble être un mesurande adapté à l’évaluation de l’impact sanitaire de la pollution atmosphérique et donc complémentaire aux mesures de concentration massique. Le suivi de ce paramètre apparait donc aujourd’hui comme un enjeu majeur d’évolution de surveillance de la qualité de l’air. L’avis relatif à « l’identification, la catégorisation et la hiérarchisation de polluants actuellement non réglementés pour la surveillance de la qualité de l’air » publié par l’ANSES (Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail) en 2018, prend en compte les résultats de ces études et indique que les particules ultrafines (PUF) doivent être considérées de façon prioritaire pour une éventuelle future surveillance de l’air ambiant en France. Dans ce contexte, le ministère en charge de l’environnement a demandé au LCSQA d’étudier les besoins d’évolution du réseau de surveillance national actuel pour une meilleure prise en compte de la PNC. En réponse à cette demande, une stratégie concertée avec les AASQA et différents acteurs sanitaires a été initiée, avec la publication en septembre 2020 d’éléments d’orientation pour la surveillance nationale de la concentration en nombre total des particules ultrafines (LCSQA, 2020). Etant donné l’absence actuelle de valeurs de référence pour ce paramètre dans l’air ambiant, une recherche bibliographique de la PNC mesurée à l’échelle nationale et à l’échelle européenne a été menée afin d’identifier des mesures de PNC « repères » en fonction des typologies de site. Ainsi, cette recherche s’est focalisée sur trois typologies de site identifiées, à savoir « Fond rural », « Fond urbain » et « Trafic » au niveau européen et deux typologies de site, à savoir « Fond urbain » et « Trafic » au niveau national. La comparaison des mesures de PNC réalisées aux niveaux national et européen est présentée pour les typologies de site « Fond urbain » et « Trafic ». Des valeurs PNC moyennes de 7,7 x 103 particules/cm3 et 9,7 x 103 particules/cm3 ont été calculées pour les typologie « Fond urbain » et « Trafic » à l’échelle nationale et de 9,8 x 103 particules/cm3 et 19,5 x 103 particules/cm3 respectivement à l’échelle européenne. Il est important de préciser que les mesures de PNC à l’échelle nationale et comparée à l’échelle européenne sont susceptibles d’évoluer avec la consolidation du réseau de surveillance et donc de la robustesse du jeu de données français associée à l’évolution du parc instrumental. De nombreux travaux scientifiques indiquent que la concentration en nombre des particules atmosphériques (PNC, pour Particle Number Concentration), majoritairement constituées de particules ultrafines (PUF), semble être un mesurande adapté à l’évaluation de l’impact sanitaire de la pollution atmosphérique et donc complémentaire aux mesures de concentration massique. Le suivi de ce paramètre apparait donc aujourd’hui comme un enjeu majeur d’évolution de surveillance de la qualité de l’air. L’avis relatif à « l’identification, la catégorisation et la hiérarchisation de polluants actuellement non réglementés pour la surveillance de la qualité de l’air » publié par l’ANSES (Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail) en 2018, prend en compte les résultats de ces études et indique que les particules ultrafines (PUF) doivent être considérées de façon prioritaire pour une éventuelle future surveillance de l’air ambiant en France. Dans ce contexte, le ministère en charge de l’environnement a demandé au LCSQA d’étudier les besoins d’évolution du réseau de surveillance national actuel pour une meilleure prise en compte de la PNC. En réponse à cette demande, une stratégie concertée avec les AASQA et différents acteurs sanitaires a été initiée, avec la publication en septembre 2020 d’éléments d’orientation pour la surveillance nationale de la concentration en nombre total des particules ultrafines (LCSQA, 2020). Etant donné l’absence actuelle de valeurs de référence pour ce paramètre dans l’air ambiant, une recherche bibliographique de la PNC mesurée à l’échelle nationale et à l’échelle européenne a été menée afin d’identifier des mesures de PNC « repères » en fonction des typologies de site. Ainsi, cette recherche s’est focalisée sur trois typologies de site identifiées, à savoir « Fond rural », « Fond urbain » et « Trafic » au niveau européen et deux typologies de site, à savoir « Fond urbain » et « Trafic » au niveau national. La comparaison des mesures de PNC réalisées aux niveaux national et européen est présentée pour les typologies de site « Fond urbain » et « Trafic ». Des valeurs PNC moyennes de 7,7 x 103 particules/cm3 et 9,7 x 103 particules/cm3 ont été calculées pour les typologie « Fond urbain » et « Trafic » à l’échelle nationale et de 9,8 x 103 particules/cm3 et 19,5 x 103 particules/cm3 respectivement à l’échelle européenne. Il est important de préciser que les mesures de PNC à l’échelle nationale et comparée à l’échelle européenne sont susceptibles d’évoluer avec la consolidation du réseau de surveillance et donc de la robustesse du jeu de données français associée à l’évolution du parc instrumental.     Overview of particle number concentration levels in the national network compared to the European scale Many scientific studies indicate that the particle number concentration in ambient air (PNC, for Particle Number Concentration), mainly composed of ultrafine particles (PUF), seems to be a suitable measurand, complementary to mass concentration, for evaluating the health impact of atmospheric pollution. Therefore, the measurement of this parameter appears to be a major issue in the evolution of monitoring devices dedicated to air quality survey. The report concerning "the identification, categorization and prioritization of currently unregulated pollutants for air quality monitoring" published by ANSES (National Agency for Food Safety, environment and work) in 2018, takes into account the results of these studies and indicates that ultrafine particles (PUF) must be considered as a priority for a possible future ambient air monitoring in France. In this context, the ministry in charge of the environment asked to LCSQA to study the development needs of the current national monitoring network to take into account PNC. In response to this request, a concerted strategy with the national air quality monitoring networks (AASQA) and health actors was initiated, with the publication in September 2020 of a report dedicated to the national monitoring of the total number of ultrafine particle concentration. Given the fact that no reference values ​​for this parameter in ambient air are available, a bibliographic research of PNC measured at national and european levels was carried out in order to identify “benchmark” PNC measurements according to site typologies. This research was focused on three site typologies identified as « Rural background », « Urban background » and « Traffic » at european level and two site typologies identified as « Urban background » and « Traffic » at the national level. The comparison of PNC measurements carried out at national and european level is presented in this report for both site typologies, i.e. « Urban background » and « Traffic ». Average PNC values ​​of 7.7 x 103 particles/cm3 and 9.7 x 103 particles/cm3 were calculated for the « Urban background » and « Traffic » typologies at the national scale and of 9.8 x 103 particles/cm3 and 19.5 x 103 particles/cm3 respectively on a european scale. It is important to specify that the PNC measurements at the national level compared to the european level will evolve in a near futur with the consolidation of the monitoring network and therefore the robustness of the French dataset associated with the evolution of the instrumental parc.  
Lundi 22 février 2010
Rapport
Maintien et amélioration des chaînes nationales d’étalonnage
Au sein du LCSQA, le LCSQA-LNE maintient des chaînes nationales d’étalonnage pour que les mesures de polluants gazeux effectués en stations de mesure soient raccordées aux étalons de référence par l'intermédiaire d'une chaîne ininterrompue de comparaisons, ce qui permet d’assurer la traçabilité des mesures aux étalons de référence. Ces chaînes nationales d’étalonnage sont constituées de 3 niveaux : le LCSQA-LNE en tant que Niveau 1, des laboratoires d’étalonnage inter-régionaux (au nombre de 7) en tant que Niveau 2 et les stations de mesures en tant que Niveau 3. Ces chaînes nationales d’étalonnage concernent le dioxyde de soufre (SO2), les oxydes d'azote (NO/NOx), l'ozone (O3) et le monoxyde de carbone (CO). Dans ce cadre, les étalons de transfert 1-2 de chaque laboratoire d’étalonnage sont raccordés par le LCSQA-LNE tous les 3 mois. De plus, le LCSQA-LNE est également mandaté pour réaliser le raccordement direct des étalons BTX utilisés par les réseaux de mesure, car vu le nombre de bouteilles de BTX utilisées en réseaux qui reste relativement faible, il a été décidé en concertation avec le MEEDDM et l’ADEME qu’il n’était pas nécessaire de créer une chaîne d’étalonnage à 3 niveaux. Cette étude a donc pour objectifs : De faire le point sur les étalonnages effectués par le LCSQA-LNE pour les différents acteurs du dispositif de surveillance de la qualité de l’air (AASQA, LCSQA-INERIS et LCSQA-EMD), tous polluants confondus (NO/NOx, NO2, SO2, O3, CO, BTX et Air zéro) en 2009. De faire une synthèse des problèmes techniques rencontrés en 2009 par le LCSQA-LNE lors des raccordements. D'exposer les différentes phases de l’automatisation des étalonnages, cette automatisation ayant pour objectif de s’affranchir de certaines étapes des procédures actuellement mises en oeuvre pouvant être à l’origine de sources d’erreurs. De faire le bilan sur les mises à disposition de moyens de contrôle d’étalonnage d’appareils effectués par le LCSQA-EMD dans le cas des particules. En effet, étant donné que la chaîne d’étalonnage nationale ne concerne que les polluants atmosphériques gazeux (SO2, NO, NO2, CO et O3), une mise à disposition de moyens de contrôle de l'étalonnage des analyseurs sur site est assurée dans l’attente de l’intégration des polluants PM10 et PM2.5 dans la chaîne. Ces dispositifs de transfert consistent en des cales étalons pour les microbalances à variation de fréquence permettant aux AASQA de vérifier l’étalonnage, la linéarité et le débit de prélèvement de leurs appareils directement en station de mesure. Pour l’année 2009, 15 mises à disposition ont été effectuées. Les essais montrent un comportement correct de l’ensemble des appareils contrôlés. Concernant le contrôle de la constante d’étalonnage de la microbalance, la moyenne de la valeur absolue de l’écart observée en AASQA (MVAE) varie entre 0,02 et 3,91% (soit pour l’ensemble des AASQA contrôlées une moyenne ± écart-type de 1,05 ± 0,36%). L’étendue de l’écart réel constaté sur le terrain est restreinte car comprise entre –3,91 et +2,55 % pour 85 appareils contrôlés dont 18 FDMS (soit environ 18% du parc de microbalances TEOM actuellement en station de mesure). Le respect de la consigne pour le débit de prélèvement est également constaté (moyenne de valeur absolue d’écart de 1,40 ± 1,10% pour 34 appareils vérifiés dont 9 FDMS (soit environ 7 % du parc de microbalances TEOM actuellement en station de mesure). Le contrôle de la linéarité montre l’excellent comportement de la microbalance sur ce paramètre : le coefficient de régression moyen R2 varie de 0,9998 à 1, la pente et l’ordonnée à l’origine moyennes de la droite de régression varient respectivement de 0,979 à 1,007 et de – 173 à + 30, sachant que 37 appareils (dont 6 FDMS) ont été contrôlés sur ce paramètre (soit environ 8% du parc de microbalances TEOM actuellement en station de mesure). Enfin, cette année a débuté le contrôle des cales étalons pour jauges radiométriques MP101M de marque Environnement SA. Ce contrôle a consisté en la vérification par le LCSQA-EMD des valeurs de cales étalons fournies par le constructeur. Cette évaluation faite sur l’appareil de référence du LCSQA-EMD, préalablement étalonné et contrôlé par un couple de cales spécifiques a donné des résultats satisfaisants : l’écart constaté a été respectivement de –1,4% et + 3% sur les 2 cales contrôlées. Cette procédure de contrôle des étalons d‘AASQA sera complétée l’année prochaine par une mise à disposition de cales étalons permettant le contrôle sur site de l’étalonnage de jauges ainsi que leur linéarité. Le comportement de la « chaîne de contrôle » mise en place par le LCSQA-EMD peut être qualifié de satisfaisant. Les résultats obtenus pour les microbalances TEOM (concernant les paramètres débit de prélèvement, étalonnage et linéarité) et pour les radiomètres bêta MP101M (concernant le contrôle de moyens d’étalonnage) sont des éléments probants de l’Assurance Qualité / Contrôle Qualité (QA/QC) appliquée aux analyseurs automatiques de particules en suspension et sont des sources d’information nécessaires dans le cadre du calcul de l’incertitude de mesure sur ce type d’appareil. Le maintien et l’extension du programme QA/QC pour les analyseurs automatiques de particules sont dans le programme des activités LCSQA de 2010.
Mardi 1 mars 2016
Rapport
Surveillance du benzène - Organisation d’une comparaison interlaboratoires BTEX
L'objectif de cette étude était d’organiser une comparaison interlaboratoires afin de tester l’aptitude des laboratoires à analyser différents types de tubes (passifs et actifs) susceptibles d’être utilisés par les AASQA pour effectuer leurs prélèvements, à partir de leur propre méthode d’analyse. Cette comparaison interlaboratoires était constituée de trois parties : Analyse de tubes (Carbopack X, Carbograph 4) chargés en actif par le LNE en benzène, toluène, éthylbenzène, m-xylène et o-xylène par voie gazeuse à partir d’un mélange gazeux de référence du LNE, Analyse de tubes Radiello (Carbograph 4) chargés par l’INERIS sur site par prélèvement passif, Analyse de tubes (Carbopack X) chargés par l’INERIS par prélèvement actif sur site à l’aide d’un système de dopage « pieuvre ». Les résultats de la comparaison interlaboratoires portant sur l’analyse des tubes chargés par le LNE montrent que sur les sept laboratoires participants, cinq d’entre eux (A, C, E, F et G) obtiennent des résultats satisfaisants pour tous les composés sur les deux adsorbants (Carbograph 4 et Carbopack X). Les deux autres laboratoires (B et D) présentent des résultats souvent sous-estimés et dispersés. Le laboratoire B sous-estime les masses chargées de l’ordre de 20 % en m-xylène, de 10 % pour les autres composés, et présente des résultats très dispersés en toluène (écarts relatifs compris entre – 13 et 62 %), et ce quel que soit l’adsorbant (Carbopack X ou Carbograph 4). Selon le calcul des écarts normalisés, les résultats sont satisfaisants pour l’analyse du benzène, de l’éthylbenzène et de l’o-xylène, un peu plus nuancés pour le toluène et le m-xylène.  Le laboratoire D montre des résultats dispersés (écarts relatifs aussi bien positifs que négatifs) et globalement sous-estimés pour la majorité des composés sur les deux adsorbants. Le composé m-xylène est particulièrement sous-estimé avec un écart relatif d’environ – 70  % et un écart normalisé de – 12. A partir du calcul des écarts normalisés, l’analyse du benzène peut être jugée comme juste, de même que l’o-xylène. Cela n’est pas le cas pour le toluène, l’éthylbenzène et le m-xylène. Les résultats de la comparaison interlaboratoires portant sur l’analyse des tubes chargés par l’INERISmontrent que sur les septlaboratoires participants, cinq d’entre eux (A, C, E, F et G) obtiennent des résultats satisfaisants pour tous les composés sur les deux adsorbants (Radiello 145 et Carbopack X). Quelques tubes ont cependant des résultats discutables. Etant donné que ces mêmes laboratoires ont fourni des résultats justes lors de la comparaison avec les tubes chargés par le LNE, cela nous laisse penser que ces erreurs ne proviennent pas d’un problème analytique mais sont liées au chargement du tube en lui-même. En effet, le chargement sur site est une méthode de chargement moins reproductible que le chargement actif par voie gazeuse mis en place par le LNE. Le laboratoire B présente des résultats globalement satisfaisants sur l’adsorbant Radiello 145 chargés sur site en passif, mais non satisfaisants pour ceux prélevés en actif sur l’adsorbant Carbopack X. Une forte sous-estimation des masses est constatée pour tous les composés. Le laboratoire D obtient des résultats plus contrastés selon les composés et l’adsorbant. Par exemple le toluène est analysé de façon juste uniquement sur l’adsorbant Carbopack X ; le benzène et l’éthylbenzène sont analysés de façon juste uniquement sur l’adsorbant Radiello 145 ; l’o-xylène quant à lui est bien estimé sur les deux adsorbants. De plus, une très forte sous-estimation est toujours rencontrée pour le m+p-xylène. Cela laisse penser à un problème d’identification du pic ou un mauvais étalonnage.
Lundi 13 mars 2017
Rapport
Maintien et amélioration des chaînes nationales d’étalonnage
En 1996, sous l’impulsion du Ministère chargé de l'Environnement (MEEM), un dispositif appelé « chaîne nationale d’étalonnage » a été conçu et mis en place afin de garantir, sur le long terme, la cohérence des mesures réalisées dans le cadre de la surveillance de la qualité de l’air pour les principaux polluants atmosphériques gazeux réglementés. Ce dispositif a pour objectif d’assurer la traçabilité des mesures de la pollution atmosphérique en raccordant les mesures effectuées dans les stations de surveillance à des étalons de référence spécifiques par le biais d’une chaîne ininterrompue de comparaisons appelée « chaîne d’étalonnage ». Compte tenu du nombre élevé d’Associations Agréées de Surveillance de la Qualité de l'Air (AASQA), il était peu raisonnable d’envisager un raccordement direct de l'ensemble des analyseurs de gaz des stations de mesure aux étalons de référence nationaux, malgré les avantages métrologiques évidents de cette procédure. Pour pallier cette difficulté, il a été décidé de mettre en place des procédures de raccordement intermédiaires gérées par un nombre restreint de laboratoires d’étalonnage régionaux ou pluri-régionaux (appelés également niveaux 2) choisis parmi les acteurs du dispositif de surveillance de la qualité de l'air (AASQA et LCSQA-MD). Par conséquent, ces chaînes nationales d’étalonnage sont constituées de 3 niveaux : le LCSQA-LNE en tant que Niveau 1, des laboratoires d’étalonnage inter-régionaux (au nombre de 8) en tant que Niveau 2 et les stations de mesures en tant que Niveau 3. Dans le cadre de ces chaînes nationales d’étalonnage, le LCSQA-LNE raccorde tous les 3 mois les étalons de dioxyde de soufre (SO2), d’oxydes d'azote (NO/NOx), d'ozone (O3), de monoxyde de carbone (CO) et de dioxyde d’azote (NO2) de chaque laboratoire d’étalonnage. De plus, depuis plusieurs années, le LCSQA-LNE raccorde directement les étalons de benzène, toluène, éthylbenzène et o,m,p-xylène (BTEX) de l’ensemble des AASQA, car au vu du nombre relativement faible de bouteilles de BTEX utilisées par les AASQA, il a été décidé en concertation avec le MEEM qu’il n’était pas nécessaire de créer une chaîne d’étalonnage à 3 niveaux. Un tableau de synthèse résume en page 7 du rapport les étalonnages effectués depuis 2006 par le LCSQA-LNE pour les différents acteurs du dispositif de surveillance de la qualité de l’air (AASQA, LCSQA-INERIS et LCSQA-MD), tous polluants confondus (NO/NOx, NO2, SO2, O3, CO, BTEX et Air zéro). Ce rapport fait également la synthèse des problèmes techniques rencontrés en 2016 par le LCSQA-LNE lors des raccordements des polluants gazeux.
Mardi 12 juillet 2011
Rapport
Développement de matériaux de référence pour les hydrocarbures aromatiques polycycliques (HAP)
Les   Hydrocarbures   Aromatiques   Polycycliques   (HAP)   sont   des   agents   carcinogènes génotoxiques  pour  l’homme  et  leurs  effets  sur  la  santé  sont  principalement  dus  aux concentrations retrouvées dans l’air ambiant, et en particulier sur les particules. C’est pourquoi la directive 2004/107/CE (4 ème directive fille) a établi la nécessité d’améliorer la surveillance et l’évaluation de la qualité de l’air, en introduisant le suivi des HAP et plus particulièrement du benzo(a)pyrène (B[a]P).  Cette surveillance des HAP implique deux étapes : des prélèvements d'air ambiant sur filtres effectués  par  les  Associations  Agréées  de  Surveillance  de  la  Qualité  de  l'Air  (AASQA)  et l'analyse de ces prélèvements en laboratoire afin de déterminer les concentrations de HAP. La pertinence d'un tel dispositif de surveillance de l'air repose sur la qualité des informations obtenues.  Elle  peut  être  garantie  de  façon  pérenne  en  développant  des  processus  de quantification impliquant un raccordement des mesures réalisées par les AASQA à un même étalon de référence détenu par un laboratoire de référence. Cette procédure permet d'assurer la  traçabilité  des  mesures  réalisées  sur  site  et  de  comparer  les  mesures  effectuées  par l’ensemble des AASQA dans le temps et dans 'espace.Dans le cas des analyses en laboratoire, le LCSQA-LNE a, entre autres, pour objectif d'établir la traçabilité métrologique des résultats d'analyse en développant des matériaux de référence certifiés (MRC) caractérisés avec des méthodes de référence primaires : l'utilisation de ces MRC lors des analyses en laboratoire permet de s'assurer de la justesse et de la fidélité des résultats, et de valider la méthode d’analyse. De plus, ces MRC peuvent également être pris comme  échantillons  lors  d'essais  inter  laboratoires  afin  de pouvoir  disposer  de  valeurs  de référence et non de valeurs consensuelles comme la moyenne des participants par exemple. Une  synthèse  bibliographique  sur  les  MRC  de  HAP  a  été  réalisée  en  2006  et  a  permis  de mettre en évidence que les références de certains MRC disparaissent des catalogues : ceci est  le  cas  des  MRC  de  particules  dans  l’air  qui  sont  rarement  renouvelés,  contrairement  à d'autres matrices comme les sédiments et les biotes. De  plus,  il  a  été  montré  que  seulement  deux  types  de  MRC  dans  les  particules  étaient disponibles :  un  pour  l’analyse  des  particules  diesel  et  l’autre  pour  l’analyse  de  poussières dans les habitations. Mais, ces matériaux proposés ne sont pas représentatifs des particules prélevées dans l’air ambiant.  C'est  pourquoi  le  LCSQA-LNE  a  proposé  de  développer  un  MRC  adapté  à  la problématique de la mesure des HAP dans l'air ambiant.   La production d'un tel MRC comprend plusieurs phases : Le  développement  de  la  méthode  d'analyse  permettant  de  caractériser  le  MRC.  Elle comprend  plusieurs  étapes :  une  extraction  des  HAP  de  la  matrice,  une  purification  de l’extrait, une séparation des composés et leur détection. L'étape la plus délicate et qui est source  prépondérante d’incertitudes est liée à  l’extraction. La mise au point de la méthode de dopage de particules avec les HAP. L’étude d’homogénéité et de stabilité du lot de particules. L’étude du mode d’impact des particules sur le filtre. L'étude  commencée  en  2009  et  poursuivie  en  2010  a  porté  sur  l'optimisation  de  l'étape d'extraction qui est une des étapes les plus délicates du processus d’analyse des HAP. Les  essais  ont  consisté  à  étudier  un  grand  nombre  de  paramètres  afin  d'obtenir  des rendements d’extraction maximaux. Les différents paramètres testés ont été les suivants : la température d’extraction, le type de solvant d’extraction, le type de matrice de remplissage… Mais également le type de composés marqués à utiliser pour la dilution isotopique : en effet, il a  été  montré  que  l’utilisation  de  composés  marqués 13 C  étaient  préférables  aux  composés marqués au deutérium.   Le LCSQA-LNE a souhaité analysé des extraits et des filtres lors de l’essai interlaboratoire organisé par le LCSQA-INERIS en 2010 afin de tester la méthode sur des échantillons réels préparés  par  le  LCSQA-INERIS.  Les  résultats  obtenus  par  le  LCSQA-LNE  sont  cohérents avec  ceux  obtenus  par  l'ensemble  des  participants  quelque  soit  le  HAP  et  le  niveau  de concentration, ce qui a permis de valider la méthode d’extraction et d'analyse des HAP dans les particules finalisées en 2010 par le LCSQA-LNE.   En conclusion, l'ensemble des essais réalisés par le LCSQA-LNE depuis 3 ans pour optimiser les  différents  processus  a  permis  au  LCSQA-LNE  de  développer  une  méthode  d’extraction ASE  et  une  méthode  d’analyse  CG/SM  fiables,  reproductibles  et  validées.  Une  grande importance a été portée sur le développement de la méthode d'analyse dans le but de réduire au maximum les incertitudes sur les concentrations des HAP dans le MRC.   Par   ailleurs,   des   recherches   ont   été   entreprises   concernant   la   deuxième   étape   du développement du MRC à savoir sur la nature des particules à doper. Après de nombreux contacts avec les fabricants et la réalisation d'une étude bibliographique, il a été décidé de travailler sur un mélange de particules synthétiques donc la composition se rapproche le plus de celle des particules réelles.   En 2011, le LCSQA-LNE propose de poursuivre le développement  des MRC pour les HAP de la façon suivante : Réalisation  d'un  système  modèle  constitué  de  particules  « réelles »  à  base  de  silice, carbone, alumine…, Finalisation des paramètres de dopage : solvant, durée de contact, homogénéisation, Dopage des particules avec des HAP, Impaction des particules dopées sur des filtres, Début de l’étude de stabilité.
Lundi 7 avril 2014
Rapport
Surveillance du benzène Comparaison interlaboratoires
L'objectif de cette étude était d’organiser une comparaison interlaboratoires afin de tester l’aptitude des laboratoires à analyser différents types de tubes (passifs et actifs) susceptibles d’être utilisés par les AASQA pour effectuer leurs prélèvements, à partir de leur propre méthode d’analyse. Cette comparaison interlaboratoires était constituée de trois parties : Analyse de tubes (Carbopack X, Carbograph 4) chargés par le LNE en benzène, toluène, éthylbenzène, m-xylène et o-xylène par voie gazeuse à partir de matériaux de référence gazeux du LNE, Analyse de tubes Radiello (Carbograph 4) chargés en benzène, toluène, éthylbenzène, m-xylène, p-xylène et o-xylène par prélèvement passif dans la chambre d’exposition de l’INERIS, Analyse de tubes (Carbopack X) chargés par l’INERIS sur site à l’aide d’un préleveur automatique. Les résultats de la comparaison interlaboratoires portant sur l’analyse des tubes chargés par le LNEmontrent que sur les sept laboratoires ayant rendu des résultats, cinq d’entre eux (B, C, D, E, F) présentent des résultats satisfaisants pour tous les composés sur les deux adsorbants (Carbograph 4 et Carbopack X). Les deux autres laboratoires (A et H) présentent des résultats significativement différents des masses chargées. Des écarts relatifs jusqu’à  – 72 % ont été obtenus. Le laboratoire A présente des résultats dispersés quelque soit le type d’adsorbant et le composé. De plus, ils sont souvent sous-estimés, en particulier pour l’éthylbenzène, le m-xylène et l’o-xylène où les écarts normalisés peuvent atteindre – 12 (o-xylène sur Carbopack X). Il faut cependant noter que pour le benzène et le toluène sur Carbopack X, les résultats sont justes et non dispersés. Le laboratoire A a indiqué qu’il avait désorbé les tubes dans le mauvais sens ; ceci explique vraisemblablement la dispersion des résultats et les écarts obtenus. Le laboratoire H sous-estime les masses chargées de benzène, toluène, éthylbenzène et m-xylène jusqu’à 30 % quel que soit l’adsorbant (Carbopack X ou Carbograph 4). De meilleurs résultats sont obtenus pour l’o-xylène, permettant d’accepter quelques tubes. Les résultats de la comparaison interlaboratoires portant sur l’analyse des tubes chargés par l’INERISsont globalement satisfaisants pour les six laboratoires ayant rendu des résultats, et ce pour tous les composés sur les deux absorbants (Radiello et Carbopack X). Quelques tubes des laboratoires B, C, E et F présentent des z-scores supérieurs à |3|, mais étant donné que ces mêmes laboratoires ont fourni des résultats justes lors de la comparaison avec les tubes chargés par le LNE, cela nous laisse penser que ces erreurs ne proviennent pas d’un problème analytique mais plutôt d’un problème survenu lors du chargement de ces tubes. En effet, le chargement en chambre et sur site sont des méthodes de chargement moins reproductibles que le chargement actif par voie gazeuse mis en place par le LNE.
Jeudi 14 octobre 2021
Rapport
Suivi du financement du dispositif national de surveillance de la qualité de l’air sur la période 2015-2019
  L’article 27 de l’arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l’air ambiant dispose que le LCSQA effectue le suivi du coût total du dispositif national de surveillance de la qualité de l’air. Tel est l’objet de ce rapport qui analyse les évolutions budgétaires du dispositif depuis 2015. Le financement total du dispositif national de surveillance de la qualité de l’air s’élève en 2019 à 73,1 M€ (Tableau 1). Le financement du dispositif présente une hausse de 2,8% sur la période 2015-2019. En 2019, l’Etat finance le dispositif national de surveillance de la qualité de l’air par des subventions à hauteur de 33,9% et par des moindres recettes fiscales via la taxe générale sur les activités polluantes (TGAP) à hauteur de 34,1%. Le financement des AASQA représente 92,3% du financement total de la surveillance de la qualité de l’air en moyenne sur la période 2015-2019 et est en augmentation depuis 2015 (4,6%). Le financement du LCSQA représente 7,2% du total en moyenne sur la période 2015-2019 et est en baisse depuis 2015 (-14,1%) Le financement de la mise en œuvre opérationnelle du système Prev’Air est de 349 k€ en moyenne sur la période 2015-2019 et représente 0,5% du financement total de la surveillance de la qualité de l’air entre 2015 et 2019.     2015 (€) 2016 (€) 2017 (€) 2018 (€) 2019 (€)   Total Etat 25 200 455 23 566 875 24 162 990 23 870 740 24 714 520   Total dons TGAP 27 373 493 25 612 490 26 815 066 25 753 175 24 946 522   Total collectivités 14 421 871 13 747 972 15 053 252 15 519 739 15 496 878   Contribution entreprises 2 307 966 3 014 662 2 166 038 1 623 188 3 452 094   Total autres 1 367 130 2 001 262 15 372 530 3 349 905 3 482 426   Etudes et activités annexes 369 329 919 365 980 575 862 017 958 337   Total financement de la qualité de l'air 71 040 244 68 862 626 84 550 451 70 978 764 73 050 777 Financement total du dispositif national de surveillance de la qualité de l’air pour les 5 derniers exercices clos.
Lundi 22 février 2010
Rapport
Contrôle Qualité de la chaîne nationale d’étalonnage
L'objectif de cette étude est d’effectuer des comparaisons interlaboratoires au niveau national pour s’assurer du bon fonctionnement de la chaîne nationale d’étalonnage et pouvoir détecter d’éventuelles anomalies auxquelles il conviendra d’apporter des actions correctives.   Contrôle qualité du bon fonctionnement de la chaîne d’étalonnage en NO/NO x, en CO et en SO 2 :Le but est de faire circuler des mélanges gazeux de concentration inconnue dans les niveaux 2 et 3 pour valider les différents raccordements effectués dans le cadre de la chaîne nationale d’étalonnage.Des mélanges gazeux de NO/NOx de l’ordre de 200 nmol/mol, de CO de l’ordre de 9 µmol/mol et de SO2 de l’ordre de 100 nmol/mol ont donc été titrés par le LNE puis envoyés à des niveaux 3.Les niveaux 3 ont ensuite déterminé la concentration de ces mélanges gazeux avant et après réglage de l’analyseur de station avec l’étalon de transfert 2-3, puis les ont renvoyés au LNE qui les a titrés de nouveau.En 2009, 3 campagnes d'intercomparaison ont été réalisées : Avec les réseaux de mesure AIRFOBEP, AIRLOR, ATMO Franche Comté, AIR APS et AIR PL d'avril à mai 2009, Avec les réseaux de mesure ATMO NPC, ORA (La Réunion), QUALITAIR Corse, ORA (Guyane), AIRPARIF et ASCOPARG de mai à août 2009, Avec les réseaux de mesure ATMO PICARDIE, AIR LR, AMPASEL, MADININAIR, SUPAIR et COPARLY de septembre à décembre 2009. En règle générale, les AASQA communiquent au LNE uniquement les concentrations mesurées sans les incertitudes élargies associées. Dans ces conditions, il n'est pas possible de traiter les résultats par des méthodes statistiques.Par conséquent, dans le présent document, le traitement des données est effectué en s'appuyant sur l'ensemble des résultats obtenus lors des campagnes précédentes qui ont conduit à définir des intervalles maximum dans lesquels doivent se trouver les écarts relatifsentre les concentrations déterminées par le LNE et celles déterminées par les niveaux 3 après élimination des valeurs jugées aberrantes.Globalement, en 2009, lorsque les concentrations aberrantes sont éliminées, les écarts relatifs entre le LNE et les niveaux 3 restent dans des intervalles définis et basés sur les résultats obtenus depuis 2002.Les valeurs de ces intervalles sont les suivantes :  ± 7 % avant et après réglage pour une concentration en SO2 voisine de 100 nmol/mol ; ± 6 % avant et après réglage pour des concentrations en NO/NOx voisines de 200 nmol/mol ; ± 6 % avant réglage et ± 4 % après réglage pour des concentrations en CO voisines de 9 µmol/mol. Les résultats montrent que : Globalement la chaîne nationale d'étalonnage mise en place pour assurer la traçabilité des mesures de SO2, de NO/NOx et de CO aux étalons de référence fonctionne correctement. Le fait de régler l’analyseur avec l’étalon de transfert 2-3 améliore de façon significative les écarts relatifs, ce qui met en évidence une dérive de la réponse des analyseurs au cours du temps. Les résultats détaillés de ces campagnes d'intercomparaison sont résumés aux paragraphes : 2.5. pour la 1ère campagne d'intercomparaison, 2.6. pour la 2ème campagne d'intercomparaison, 2.7. pour la 3ème campagne d'intercomparaison. Contrôle qualité du bon fonctionnement de la chaîne d’étalonnage en O 3 :Comme pour les composés SO2, NO/NOx et CO, le but est de faire circuler, dans les niveaux 3, un générateur d’ozone portable délivrant un mélange gazeux à une concentration voisine de 100 nmol/mol pour valider les différents raccordements effectués dans le cadre de la chaîne nationale d’étalonnage.La présente campagne d'intercomparaison a été effectuée avec 7 niveaux 3 en 2009, à savoir : AIR LR, ATMO PACA, AIR BREIZH, ORAMIP, GWADAIR, LIMAIR et ASPA.Les résultats montrent que les écarts relatifs entre les concentrations en O3 déterminées par les 7 réseaux de mesure et celles déterminées par le LNE sont de ± 7 % lorsque deux mesures ne sont pas prises en compte : leur prise en compte élargit de 4 % l’intervalle danslequel se situe l’ensemble des écarts relatifs.Comme précédemment, on peut en conclure que globalement, la chaîne nationale d'étalonnage mise en place pour assurer la traçabilité des mesures d'ozone aux étalons de référence fonctionne correctement.
Lundi 7 avril 2014
Rapport
Amélioration de la qualité des étalonnages
Les analyseurs de gaz utilisés par les Associations Agréées de Surveillance de la Qualité de l’Air (AASQA) dans les stations de mesure sont étalonnés au point zéro et au point échelle avec des gaz d’étalonnage, ce qui permet de garantir la justesse des mesures de pollution atmosphérique. Le LCSQA/LNE raccorde périodiquement les gaz d’étalonnage au point échelle des AASQA par comparaisons analytiques des concentrations à un étalon de référence en utilisant un moyen analytique. La qualité du moyen analytique utilisé est donc un élément « clé » pour réaliser ces raccordements, car il peut induire un biais ou des incertitudes élevées, s’il ne présente pas des performances métrologiques suffisantes.Dans le cas du polluant NO2, l'analyse actuelle est basée sur une méthode indirecte : en effet, le composé NO2 est d'abord converti en NO par l’intermédiaire d’un four de conversion contenant du molybdène, avant d'être analysé par chimiluminescence en présence d’ozone. Cette technique pose non seulement un problème de traçabilité du fait de son fonctionnement, mais peut également engendrer une erreur liée au rendement de conversion du four et à sa non-sélectivité, car d’autres molécules peuvent être converties et donc assimilées par erreur à du NO2. Sur cette thématique, le premier objectif de 2013 a consisté à effectuer une étude de faisabilité portant sur la réalisation d’étalonnages pour NO et NO2 avec le spectromètre DUAL QC-TILDAS-210 et lacomparaison entre les résultats obtenus par méthode optique et par chimiluminescence. Cette étude montre que pour NO et NO2, les résultats d’étalonnage obtenus par méthode optique avec le spectromètre DUAL QC-TILDAS-210 ne sont pas significativement différents de ceux obtenus par chimiluminescence, et que les incertitudes élargies sont du même ordre de grandeur. Concernant l’analyse du NO2, l’avantage d’utiliser une méthode optique permet de s’affranchir de possibles biais analytiques, puisque cette méthode permet d’analyser directement le NO2 sans mettre en oeuvre un convertisseur au molybdène susceptible de convertir d’autres molécules comme dans la méthode par chimiluminescence. Néanmoins, la technique optique utilisée dans cette étude met en oeuvre une cellule d’absorption multi-passages ayant un grand volume (5 litres), ce qui peut induire des problèmes d’adsorption/désorption, des temps de stabilisation élevés… Le second objectif de 2013 a donc porté sur la réalisation d’une étude bibliographique des autres méthodes optiques pour la mesure du NO2 qui fonctionnent notamment avec des cavités optiques ayant des volumes plus faibles en vu de remplacer les appareils basés sur la chimiluminescence utilisés actuellement par le LCSQA/LNE pour étalonner les mélanges gazeux des AASQA. Plusieurs appareils du commerce basés sur des techniques optiques sont disponibles sur le marché, à savoir l’analyseur optique QCL (Aerodyne Research), l’analyseur optique OA-ICOS (Los Gatos) et  l’analyseur optique CAPS (Aerodyne Research) ou CAPS (Environnement SA). L’étude technique montre que les récentes évolutions des techniques analytiques basées sur des mesures optiques permettent d’effectuer des mesures directes du NO2 avec des sensibilités très intéressantes et que les appareils proposés sur le marché semblent avoir de bonnes performances métrologiques.Néanmoins, ils ne nous permettent pas de maîtriser totalement les paramètres spectroscopiques nécessaires à une mesure absolue d’autant plus que leurs coûts sont relativement élevés. Le LCSQA/LNE a acquis une solide expérience dans le cadre d’un projet européen (Metrology for chemical pollutants in air) dont l’objectif était de développer une méthodologie pour réaliser des mesures absolues de concentration par méthode optique. Fort de ces compétences acquises et d’une collaboration avec le LNE-CNAM, il nous a semblé judicieux de développer un appareil spécifique pour la mesure du NO2 dont nous pourrons maîtriser l’ensemble des paramètres à un coût équivalent à celui des appareils actuellement commercialisés. Suite aux échanges techniques engagés avec l’Université de Grenoble (Laboratoire Interdisciplinaire de Physique), nous avons orienté notre choix vers une méthode optique « dérivée » de la méthode CRDS (Cavity Rings Down Spectroscopy) classique. Cette méthode appelée IBB-CEAS (Incoherent Broadband - Cavity Enhanced Absorption Spectroscopy) est relativement simple à mettre en oeuvre et présente une grande compacité, robustesse, sensibilité à un coût relativement faible. Elle permet également de calculer la concentration d’après les données spectroscopiques connues et d’obtenir des mesures absolues : en conséquence, il n’est pas nécessaire d’étalonner le système de mesure. Les différents éléments constitutifs du système ont été commandés courant novembre 2013 et devraient être réceptionnés au cours du 1er trimestre 2014. Le montage du système sera ensuite effectué au cours de l’année 2014 en assemblant les différents éléments et des premiers essais de caractérisation seront effectués.Concernant les gaz de zéro, ces derniers prennent de plus en plus d’importance dans le domaine de la qualité de l'air, notamment dans la mesure où, pour certains polluants les teneurs en air ambiant extérieur sont de plus en plus faibles, induisant un besoin de maîtrise et de qualité des gaz mis en oeuvre pour le réglage du zéro des analyseurs. Cela s’est d’ailleurs traduit par des spécifications techniques sur les gaz de zéro particulièrement strictes dans les normes EN récemment sorties fin 2012 / début 2013. Pour déterminer les concentrations de NO, NO2, SO2 et CO dans les gaz de zéro, le LCSQA/LNE a développé une méthode d’analyse mettant en oeuvre un spectromètre de type « Tunable Infrared Laser Absorption » de marque DUAL QC-TILDAS-210 (Aerodyne Research). La méthode étant opérationnelle, le LCSQA/LNE contrôle les gaz de zéro en bouteille des niveaux 2. Cependant, ce type de transfert n’est pas forcément celui qui est utilisé en station par un niveau 3, qui recherche une solution plus pragmatique et polyvalente telle que celles décrites dans la norme NF X43-055 (Air ambiant - Métrologie appliquée au mesurage des polluants atmosphériques gazeux - Prélèvement d'air ambiant et mise en oeuvre des gaz d'étalonnage - 2007). Ce sont par exemple des épurateurs chimiques en cartouches ou la génération de gaz de zéro intégrée aux dispositifs d’étalonnage portables. Des tests ont ainsi été menés en 2013 par le LCSQA/MD sur des systèmes de génération d’air de zéro utilisés sur le terrain en AASQA, principalement sur des dispositifs intégrés aux étalons de transfert tels que les diluteurs / générateurs portables. L’objectif a été de vérifier leurs caractéristiques dans le cadre d’un fonctionnement usuel et le respect par rapport aux spécifications techniques des normes CEN, par rapport à la chaîne de vérification mise en place par le LCSQA/LNE et selon uneméthodologie spécifique. Des systèmes portables dédiés à la génération de gaz de zéro ont été identifiés (modèles 751 et 751H de la marque américaine API, distribuée en France par le distributeur Envicontrol). Ils feront l’objet de tests dès leur commercialisation prévue pour 2014, en parallèle avec les dispositifs « faits maison » (cartouches d’épurateurs chimiques spécifiques mis en série).