Résultats de la recherche

219 résultats correspondent à LNE
Actualité
Nouvelle directive européenne sur la surveillance de la qualité de l'air : une mobilisation de tous les instants pour les experts du LCSQA
La nouvelle directive européenne relative à la qualité de l’a
Jeudi 1 mars 2018
Rapport
Contrôle qualité de la chaîne nationale d’étalonnage
  L'objectif de cette étude est d’effectuer des comparaisons interlaboratoires entre le LCSQA-LNE et les AASQA pour s’assurer du bon fonctionnement de la chaîne nationale d’étalonnage et pouvoir détecter d’éventuelles anomalies auxquelles il conviendra d’apporter des actions correctives. Contrôle qualité du bon fonctionnement de la chaîne d’étalonnage en NO/NOx, NO2, CO et SO2 : Le but est de faire circuler des mélanges gazeux de fraction molaire inconnue (NO/NOx de l’ordre de 200 nmol/mol, CO de l’ordre de 9 µmol/mol, NO2 de l’ordre de 200 nmol/mol et SO2 de l’ordre de 100 nmol/mol) dans les niveaux 3 pour valider les différents raccordements effectués dans le cadre de la chaîne nationale d’étalonnage. Ces mélanges gazeux ont été titrés par le LCSQA-LNE puis envoyés à des niveaux 3. Ces niveaux 3 ont ensuite déterminé la fraction molaire de ces mélanges gazeux avant et après réglage de l’analyseur de station avec l’étalon de transfert 2-3, puis les ont renvoyés au LCSQA-LNE qui les a titrés de nouveau. Des comparaisons interlaboratoires ont été réalisées de mars à décembre 2017 avec les réseaux de mesure ATMO Hauts de France, ORA REUNION, MADININAIR, LIG’AIR, Qualitair Corse, ATMO Occitanie, AIR BREIZH, ORA GUYANE et AIR PL. En règle générale, les AASQA communiquent au LCSQA-LNE les fractions molaires mesurées soit sans les incertitudes élargies associées, soit avec des incertitudes de mesure inexploitables (inférieures à celles du LCSQA-LNE, valeurs très élevées…). Dans ces conditions, il n'est pas possible de traiter les résultats par des méthodes statistiques. Par conséquent, dans le présent document, le traitement des données est effectué en s'appuyant sur l'ensemble des résultats obtenus depuis 2002 lors des campagnes précédentes qui ont conduit à définir des intervalles maximums dans lesquels doivent se trouver les écarts relatifs entre les fractions molaires déterminées par le LCSQA-LNE et celles déterminées par les niveaux 3 après élimination des valeurs jugées aberrantes. Les résultats montrent que : Globalement la chaîne nationale d'étalonnage mise en place pour assurer la traçabilité des mesures de SO2, de NO/NOx, de NO2 et de CO aux étalons de référence fonctionne correctement ; Le fait de régler l’analyseur avec l’étalon de transfert 2-3 améliore les écarts relatifs, ce qui met en évidence une dérive de la réponse des analyseurs au cours du temps.   Contrôle qualité du bon fonctionnement de la chaîne d’étalonnage en O3 : Comme pour les composés SO2, NO/NOx, CO et NO2, le but est de faire circuler, dans les niveaux 3, un générateur d’ozone portable délivrant un mélange gazeux à une fraction molaire voisine de 100 nmol/mol pour valider les différents raccordements effectués dans le cadre de la chaîne nationale d’étalonnage. La présente comparaison interlaboratoires a été effectuée avec 9 niveaux 3 en 2017, à savoir : ATMO NORMANDIE, AIR PACA, ATMO Haut de France, ORA Réunion, ATMO Grand Est, ATMO Occitanie, ATMO Nouvelle-Aquitaine, Qualitair Corse et ORA GUYANE. En 2016, une comparaison avec GWAD’AIR avait été menée ; néanmoins, l’étalonnage retour du générateur n’avait pu être effectué par le LCSQA-LNE qu’en mars 2017, vu les problèmes de renvoi du générateur vers la métropole. Par conséquent, les résultats n’ayant pu être intégrés dans le rapport de 2016, ils ont été rajoutés dans le présent rapport. Les résultats obtenus en 2017 montrent que les écarts relatifs entre les fractions molaires en O3 déterminées par les 10 réseaux de mesure et celles déterminées par le LCSQA-LNE sont compris entre +4% et -6% si on ne prend pas en compte la 5ème mesure (-8,3 %) et la 7ème mesure (-6,5 %) du réseau 6, ainsi que la 3ème mesure (-7,4 %) du réseau 8.   De plus, les écarts relatifs observés entre les valeurs des AASQA et du LCSQA-LNE sont aléatoirement répartis de part et d’autre de zéro.
Mercredi 21 avril 2021
Rapport
Développement d’un protocole pour l’évaluation en laboratoire des systèmes de capteurs de PM
Le LCSQA-LNE développe une plateforme expérimentale et des protocoles d’évaluation des performances métrologiques des systèmes capteurs dans un environnement contrôlé en température et humidité relative. Cette étude présente les résultats expérimentaux obtenus par le LCSQA-LNE en comparant des systèmes capteurs avec des instruments de référence dans cet environnement contrôlé. Les systèmes capteurs testés (SPS030 de la société Sensirion et OPC-R1 de la société AlphaSense) sont basés sur une technologie optique pour la surveillance de qualité de l’air. L’avantage de ces instruments de mesure concerne l’amélioration de la couverture spatio-temporelle. Cependant, la justesse et la fiabilité de ces technologies doivent être évaluées. Ainsi, les expérimentations menées au sein du LCSQA-LNE ont permis de mettre en évidence l’influence de l’environnement atmosphérique sur la réponse des systèmes capteurs pour un aérosol d’essai donné à différentes concentrations massiques associées à la fraction PM10 et pour quatre conditions d’humidité relative à 20°C. Development of protocol for laboratory evaluation of PM sensor systems The LCSQA-LNE is developing an experimental platform and protocols for evaluating the metrological performance of sensor systems in an environment controlled in temperature and relative humidity. This study presents the experimental results obtained at LCSQA-LNE by comparing sensor systems with reference instruments in this controlled environment. The sensor systems tested (SPS030 from Sensirion and OPC-R1 from AlphaSense) are based on promising technology (optical) for air quality monitoring. The advantage of these measuring instruments concerns the improvement of the spatio-temporal coverage. However, the accuracy and reliability of these technologies have to be evaluated. Thus, the experiments carried out within the LCSQA-LNE demonstrate the influence of the atmospheric environment on the response of the sensor systems for one type of aerosol at different PM10 mass concentrations for four relative humidity conditions at 20 ° C.  
Lundi 27 janvier 2025
Rapport
Comparaison métrologique d’analyseurs, capteurs et préleveurs passifs de polluants gazeux atmosphériques – Application à l’ammoniac et à l’hydrogène sulfuré
La mesure sélective des polluants atmosphériques, gazeux et particulaires, est essentielle pour comprendre la chimie de l'atmosphère et les mécanismes de transfert des polluants. L'ammoniac (NH3) est le troisième composé azoté gazeux le plus abondant dans l'atmosphère, après le diazote (N2) et le monoxyde d'azote (NO). Il joue un rôle clé dans les processus physico-chimiques atmosphériques et, une fois déposé, dans les processus biogéochimiques avec des impacts sur les écosystèmes tels que l'acidification des sols et l'eutrophisation. De plus, l'ammoniac réagit rapidement avec les composés acides présents dans l’atmosphère comme l’acide sulfurique ou les acides nitrique ou nitreux, contribuant ainsi à la formation de particules fines. La nécessité de mieux comprendre le rôle de l’ammoniac relève d’une grande importance, alors que les émissions de ce composé provenant majoritairement du secteur agricole sont relativement constantes depuis ces dernières années et que le pays s'efforce d'élaborer des stratégies de gestion efficaces pour les particules fines, dans le but d'atténuer les préoccupations liées aux impacts sur la santé publique et sur l'environnement. Les émissions de sulfure d'hydrogène (H2S) proviennent de sources d'origine humaine telles que la production de gaz naturel ou le traitement des déchets, ou de sources naturelles telles que les émissions volcaniques ou la décomposition des algues dans les zones d'échouement. La présence de ce gaz dans l'atmosphère a des conséquences sur la santé humaine et les écosystèmes en participant notamment aux processus d'acidification des sols et des eaux. Afin d’étudier les phénomènes physico-chimiques dans lesquels interviennent le H2S et le NH3 dans l'atmosphère et de rendre compte de l'efficacité des mesures d'atténuation mises en place, une détermination fiable et traçable des concentrations dans l’air pour ces composés est nécessaire. Un étalon d’ammoniac dans l’air basé sur la méthode de génération dynamique par perméation en phase gazeuse sur une gamme de fractions molaires allant de 1 à 400 nmol/mol (1 à 400 ppb) permet le raccordement et l’étalonnage des analyseurs automatiques dans les laboratoires du LCSQA-LNE, avec des incertitudes élargies relatives inférieures à 2 % (k=2). De plus, le LNE travaille également sur le développement d’étalon de référence pour le H2S afin de répondre aux différents besoins exprimés par les AASQA. Cette référence pourrait dans un premier temps être basée sur la méthode de génération dynamique par perméation gazeuse, comme dans le cas de l’ammoniac. Cependant, ces raccordements ne peuvent être délocalisés jusqu’à la station de mesure ce qui pose la question de l’impact du déploiement sur le terrain des instruments de mesure. Par ailleurs, l’article 16 de l’arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air ambiant exige des AASQA qu’elles participent aux comparaisons interlaboratoires (CIL) préconisées par le LCSQA dans le but de de garantir l’exactitude et la qualité des données produites par le dispositif national de surveillance mais aussi d’améliorer les pratiques et d’identifier les axes des progrès à mettre en œuvre. Ces deux derniers objectifs étant encore plus importants pour la surveillance des polluants émergents ou d’intérêt national pour lesquels les méthodologies de surveillance ne font pas nécessairement l’objet d’un référentiel normatif. Dans ce contexte, le LCSQA-IMT Nord Europe a organisé deux CIL pour évaluer la mesure spécifique du H2S et de l'ammoniac. Ces CIL ont été réalisées du 28 novembre au 8 décembre 2022 au Centre d'Enseignement, de Recherche et d'Innovation Energie Environnement (CERI EE) de l'IMT Nord Europe à Douai. Les objectifs principaux de ces comparaisons étaient les suivants : (i) Valider la capacité technique de l'IMT Nord Europe à générer des mélanges gazeux de H2S et NH3 dans des matrices sèches et humides (Hr » 55%) en utilisant une ligne spécifique à haut débit revêtue en SilcoNert®2000 ; (ii) Estimer les éventuels biais entre les différents types d'analyseurs, capteurs et préleveurs passifs utilisés par les AASQA, les industriels et les laboratoires de recherche nationaux, basés sur des technologies de mesure différentes ; (iii) Tester la faisabilité de l'utilisation d'une chambre d'exposition pour accueillir des systèmes capteurs ou des préleveurs passifs pour les CIL à venir. Pour la CIL dédiée à la mesure du H2S, il s’agit d’un premier exercice regroupant six AASQA et l’IMT Nord Europe en tant que représentant du LCSQA, avec un total de sept analyseurs et deux capteurs électrochimiques. Les résultats de la comparaison dans une plage de mesure allant de 0 et 100 ppb ont permis d’évaluer la linéarité des dispositifs. Les réponses des analyseurs Teledyne API-T101 et des capteurs électrochimiques ont été fortement influencées par l'humidité, avec un écart relatif entre les pentes déterminées en air humide par rapport à celles déterminées en air sec pouvant atteindre +64%. Il est apparu que les performances de la majorité des analyseurs TAPI-T101 ont été influencées par la matrice sèche. En témoigne (i) une dispersion plus importante des données obtenues en air sec par rapport aux mesures en matrice humide (air humide et ambiant), et (ii) des z’-score plus satisfaisants (< 2) pour les mesures en air humide par rapport à l’air sec. Les mesures en air ambiant montrent des résultats satisfaisant pour tous les participants. La CIL pour l'ammoniac a impliqué huit AASQA, un industriel, deux laboratoires de recherche et l’IMT Nord Europe en tant que représentant du LCSQA. Cette étude a révélé une bonne cohérence des mesures pour la majorité des instruments, que ce soit dans une matrice synthétique (air sec ou humide) ou dans les mesures réalisées en air ambiant dopé avec des z’-score satisfaisants (< 2) pour la majorité des participants. Globalement, une grande homogénéité des données a été observée lors des mesures en air sec par rapport à celles en air humide. Cela est probablement dû au fait que les analyseurs équipés d’un filtre PM en entrée non chauffé semblent être davantage impactés par l’humidité, ce qui se traduit également par des temps de réponses nettement plus longs pour ces appareils. Les mesures en air ambiant dopé à 60 ppb d’ammoniac ont révélé des sous-estimations au regard de la concentration théorique générée d’ammoniac. Des travaux futurs seront axés sur l’amélioration de la génération de concentrations ciblées, stables dans le temps et reproductibles de polluants en air ambiant dopé. L’exploitation des données des deux CIL a permis de déterminer les variances de répétabilité et de reproductibilité associées aux mesures fournies par l’ensemble des participants. Les CIL dédiées au H2S et au NH3 ont également permis de confirmer l’opérationnalité de la chambre d’exposition en SilcoNert®2000 utilisée pour accueillir les systèmes capteurs et les préleveurs passifs. La comparaison entre les résultats obtenus par l’ensemble des analyseurs et les préleveurs Radiello® code 168 a montré une différence significative en matrice air sec et air ambiant dopé, contrairement à un bon accord en air humide.  Cependant, des travaux sont en cours afin de mieux caractériser cette chambre avant l’organisation de futurs CIL. Les résultats préliminaires ont montré une adsorption de l’ammoniac sur les ventilateurs utilisés pour l’homogénéisation dans la chambre, ce qui pourrait expliquer les sous-estimations des préleveurs Radiello® code 168 par rapport à la concentration moyenne déterminée par l’ensemble des analyseurs en air sec. Pour finir, la ligne spécifique à haut débit d’une longueur de 16 m, traitée en SilcoNert®2000 a démontré son applicabilité pour générer des concentrations stables et reproductibles de H2S et NH3 pour des concentrations allant jusqu’à 100 ppb, avec une humidité relative d’environ 55 % et à température de 23 °C ± 1 °C.   Inter-Laboratory Comparison – Ammonia and hydrogen sulphide in ambient air The selective measurement of atmospheric pollutants, both gaseous and particulate, is essential for understanding atmospheric chemistry and pollutant transfer mechanisms. Ammonia (NH3) is the third most abundant gaseous nitrogen compound in the atmosphere, after nitrogen (N2) and nitric oxide (NO). It has long played a crucial role in atmospheric chemical processes and, upon deposition, in biogeochemical processes such as soil acidification and eutrophication, impacting ecosystems. Moreover, ammonia rapidly reacts with atmospherically-formed sulfuric and nitric acids, contributing to fine particle formation. The need for a better understanding of its role has become evident in recent years, with increasing ammonia emissions from intensive livestock facilities are on the increase and the Nation works to craft effective management strategies for fine particles to address concerns about public health and environmental impacts. Hydrogen sulfide (H2S) emissions, whether from anthropogenic sources such as natural gas production or natural sources like volcanic emissions or algae decomposition in coastal areas, contribute to the presence of this gas in trace amounts in the atmosphere. H2S is concerning due to its detrimental effects on health. Moreover, it significantly contributes to the formation of atmospheric aerosols and participates in soil and water acidification processes. These H2S emissions have consequences for ecosystems and require accurate monitoring and measurement to assess their environmental impact. To study the physicochemical phenomena involving H2S and NH3 in the atmosphere and to assess the effectiveness of mitigation measures, a reliable and traceable determination of air concentrations for these compounds is necessary. In this context, LCSQA-IMT Nord Europe organized two interlaboratory comparisons (ILCs) to evaluate measurements of H2S and ammonia. These ILCs were conducted from November 28 to December 8, 2022, at the Centre for Education, Research and Innovation in Energy Environment (CERI EE) of IMT Nord Europe in Douai. The main objectives of these comparisons were to: validate the technical capability of IMT Nord Europe to generate H2S and NH3 gas mixtures in dry and humid matrices (Hr ≈ 55%) using a high-flow SilcoNert®2000 coated specific line. estimate potential biases between different types of analyzers, sensors, and passive samplers used by AASQAs, industries, and national research laboratories, based on different measurement technologies. test the feasibility of using an exposure chamber to accommodate sensor systems or passive samplers for future ILCs. For the H2S measurement ILC, it involved six AASQAs and IMT Nord Europe as a representative of LCSQA, with a total of seven analyzers and two electrochemical sensors. The comparison results in a measurement range from 0 to 100 ppb allowed for evaluating the linearity of the devices. The responses of Teledyne API-T101 analyzers and electrochemical sensors were strongly influenced by humidity, with a relative difference in humid-air to dry-air slopes reaching up to "+64%" compared to dry-air measurements. It was evident that the majority of TAPI-T101 analyzer performances were influenced by the dry matrix. This was evidenced by (i) a larger dispersion of data obtained in dry air compared to measurements in humid matrix (humid and ambient air), and (ii) more satisfactory z'-scores (< 2) for measurements in humid air compared to dry air. Ambient air measurements showed satisfactory results for all participants. The ammonia ILC involved eight AASQAs, one industry, two research laboratories, and LCSQA. This study revealed good measurement consistency for most instruments, both in synthetic matrices (dry or humid air) and in measurements taken in doped ambient air, with satisfactory z'-scores (< 2) for the majority of participants. Overall, a high level of data consistency was observed in dry air measurements compared to humid air. This is likely due to the fact that analyzers equipped with non-heated inlet PM filters appear to be more affected by humidity, leading to significantly longer response times for these devices. Measurements in doped ambient air at 60 ppb of ammonia revealed underestimations compared to the theoretically generated ammonia concentration. Future work will focus on improving the generation of targeted, stable, and reproducible pollutant concentrations in doped ambient air. The exploitation of data from the two ILCs allowed for determining the repeatability and reproducibility variances associated with measurements provided by the participants. The ILCs dedicated to H2S and NH3 also confirmed the operational effectiveness of the SilcoNert® 2000 coated exposure chamber used to accommodate sensor systems and passive samplers. The comparison between results obtained by all analyzers and Radiello® code 168 passive samplers showed a significant difference in dry air matrix and doped ambient air, while demonstrating good agreement in humid air. However, efforts are underway to better characterize this chamber before organizing future ILCs. Preliminary results indicated ammonia adsorption on the fans used for homogenization in the chamber, which might explain the underestimations of Radiello® code 168 passive samplers compared to the average concentration determined by all analyzers in dry air. Lastly, the high-flow specific line of 16 meters in length, treated with SilcoNert® 2000, demonstrated its applicability in generating stable and reproducible concentrations of H2S and NH3 for concentrations up to 100 ppb, with a relative humidity of approximately 55% and a temperature of 23 °C ± 1 °C.
Jeudi 27 juillet 2023
Rapport
Développement de Matériaux de Référence (MR) sous forme de Filtres impactés en PM2,5 pour la quantification des métaux réglementés As, Ni, Cd, Pb et le suivi des métaux Cu, Mn, Co, V
Conformément aux recommandations des directives européennes 2008/50/CE et 2004/107/CE, les Associations Agréées de Surveillance de la Qualité de l'Air (AASQA) effectuent régulièrement des prélèvements de métaux dans l'air ambiant sur des filtres qui sont ensuite analysés par des laboratoires d’analyse. Tous les 3 ans, le LCSQA organise avec ces laboratoires d’analyse des campagnes d'inter comparaison en France au cours desquelles les laboratoires quantifient les quatre métaux réglementés, arsenic, cadmium, nickel et plomb directement sur des filtres impactés par des poussières atmosphériques. Aussi, afin d’assurer une traçabilité de l'ensemble du processus de mesure, à savoir la partie "prélèvement", la partie "minéralisation" et la partie "analytique" de l'analyse, le LNE a développé en 2010 un Matériau de Référence Certifié (MRC) sous forme de filtres impactés en PM10 pour les 4 métaux réglementés qui est arrivé à épuisement en 2019. Pour anticiper de potentielles évolutions suite à la publication de l’avis de l’Anses relatif à l’identification, la catégorisation et la hiérarchisation de polluants actuellement non réglementés pour la surveillance de la qualité de l’air (saisine n° « 2015_SA_0216 »), tout en garantissant la traçabilité métrologique des analyses, le LNE a proposé de fournir de nouveaux matériaux impactés en PM2,5. Le matériau candidat retenu est celui d’une cendre d’incinération de déchets industriels. Durant la période 2019-2021, une procédure simultanée de sélection des particules PM2,5 et de dépôt homogène de ces mêmes particules sur filtre a été mise au point à 2 niveaux de masse (1,5 mg et 2,5 mg de matériau déposé). Les essais conduits en 2021 et 2022 ont révélé une dispersion importante des résultats lors de la production d’une centaine de filtres.  Si les 2 lots de matériaux ne peuvent être strictement considérés comme des Matériaux de Références Certifiés du fait des incertitudes élevées, ils constituent néanmoins un matériau de référence (MR) très acceptable pour vérifier la qualité des analyses de routine (QA/QC) en As, Ni, Cd, Pb, Mn, Cu, Co et V des laboratoires de terrain à des niveaux compris entre 100 et 5 000 ng selon les éléments et pour des incertitudes élargies relatives d’environ 15 à 30%.   ABSTRACT Development of Reference Materials (RM) such as PM2.5 impacted filters for the quantification of regulated metals As, Ni, Cd, Pb and the monitoring of Cu, Mn, Co, V metals In accordance with the recommendations of European directives 2008/50/EC and 2004/107/EC, the French Air Quality Monitoring Networks (AASQA) regularly sample of metal in the ambient air on filters which are then analysed by analytical laboratories. Every three years, the French Central laboratory for monitoring air Quality (LCSQA) organises interlaboratories comparison with these analytical laboratories in France during which the laboratories quantify the four regulated metals (arsenic, cadmium, nickel and lead) directly on filters impacted with atmospheric dust. In order to ensure the traceability of all the measurement process, i.e. "sampling", "mineralisation" and "analytical" parts of the analysis, LNE developed in 2010 a Certified Reference Material (CRM) which were PM10 impacted filters for the four regulated metals, which will be exhausted in 2019. To anticipate potential developments following the publication of Anses opinion on the identification, categorisation and prioritisation of currently unregulated pollutants for air quality monitoring (opinion no. "2015_SA_0216 »), while guaranteeing the metrological traceability of analyses, LNE proposed to supply new PM2.5 impacted materials. The candidate material selected is an industrial waste incineration ash. During the 2019-2021 period, a simultaneous procedure for selecting PM2.5 particles and depositing them homogeneously on filters was developed at 2 mass levels (1,5 mg and 2,5 mg of deposited material). The tests carried out in 2021 and 2022 revealed a wide deviation of results for the production of around a hundred filters. If the 2 batches of materials cannot be strictly considered as Certified Reference Materials because of the high uncertainties, they nevertheless constitute a very acceptable reference material (RM) to check the quality of routine analyses (AQ/CQ) for As, Ni, Cd, Pb, Mn, Cu, Co and V in the field laboratories at levels between 100 and 5 000 ng depending on the elements and for relative expanded uncertainties of about 15 to 30%.
Lundi 7 avril 2014
Rapport
Contrôle Qualité de la chaîne nationale d’étalonnage
L'objectif de cette étude est d’effectuer des comparaisons interlaboratoires entre le LCSQALNE et les AASQA pour s’assurer du bon fonctionnement de la chaîne nationale d’étalonnage et pouvoir détecter d’éventuelles anomalies auxquelles il conviendra d’apporter des actions correctives.Contrôle qualité du bon fonctionnement de la chaîne d’étalonnage en NO/NO x , NO 2 , CO et SO 2 : Le but est de faire circuler des mélanges gazeux de concentration inconnue (NO/NOx de l’ordre de 200 nmol/mol, CO de l’ordre de 9 μmol/mol et SO2 de l’ordre de 100 nmol/mol) dans les niveaux 3 pour valider les différents raccordements effectués dans le cadre de la chaîne nationale d’étalonnage. En 2010, des mélanges gazeux de NO2 de l’ordre de 200 nmol/mol ont été rajoutés.Ces mélanges gazeux ont été titrés par le LCSQA-LNE puis envoyés à des niveaux 3.Ces niveaux 3 ont ensuite déterminé la concentration de ces mélanges gazeux avant et après réglage de l’analyseur de station avec l’étalon de transfert 2-3, puis les ont renvoyés au LCSQA-LNE qui les atitrés de nouveau. En 2013, 3 comparaisons interlaboratoires ont été réalisées : - Avec les réseaux de mesure QUALITAIR CORSE, ATMO NPDC, AIR PL, AIRPARIF et AIR LR de mars à mai 2013, - Avec les réseaux de mesure ATMO PC, LIGAIR, ORA (Guyane) et ATMO Picardie d’avril àaoût 2013, - Avec les réseaux de mesure AIR LORRAINE, MADININAIR, AIR BREIZH et ORA (La Réunion) de septembre à janvier 2014. En règle générale, les AASQA communiquent au LCSQA-LNE les concentrations mesurées soit sans les incertitudes élargies associées, soit avec des incertitudes de mesure inexploitables (inférieures àcelles du LCSQA-LNE, valeurs très élevées…). Dans ces conditions, il n'est pas possible de traiter lesrésultats par des méthodes statistiques. Par conséquent, dans le présent document, le traitement des données est effectué en s'appuyant surl'ensemble des résultats obtenus depuis 2002 lors des campagnes précédentes qui ont conduit àdéfinir des intervalles maximums dans lesquels doivent se trouver les écarts relatifs entre les concentrations déterminées par le LCSQA-LNE et celles déterminées par les niveaux 3 aprèsélimination des valeurs jugées aberrantes.Globalement, en 2013, lorsque les concentrations aberrantes sont éliminées, les écarts relatifs entre le LCSQA-LNE et les niveaux 3 restent dans ces intervalles qui sont les suivants : - ± 7% avant et après réglage pour une concentration en SO2 voisine de 100 nmol/mol ; - ± 6% avant et après réglage pour des concentrations en NO/NOx et en NO2 voisines de 200 nmol/mol ; -  ± 6% avant réglage et ± 4% après réglage pour des concentrations en CO voisines de 9 μmol/mol. Les résultats montrent que : - Globalement la chaîne nationale d'étalonnage mise en place pour assurer la traçabilité desmesures de SO2, de NO/NOx et de CO aux étalons de référence fonctionne correctement. - Le fait de régler l’analyseur avec l’étalon de transfert 2-3 améliore de façon significative les écartsrelatifs, ce qui met en évidence une dérive de la réponse des analyseurs au cours du temps.Contrôle qualité du bon fonctionnement de la chaîne d’étalonnage en O 3 :Comme pour les composés SO2, NO/NOx, CO et NO2, le but est de faire circuler, dans lesniveaux 3, un générateur d’ozone portable délivrant un mélange gazeux à une concentration voisine de 100 nmol/mol pour valider les différents raccordements effectués dans le cadre de la chaînenationale d’étalonnage. La présente comparaison interlaboratoires a été effectuée avec 12 niveaux 3 en 2013, à savoir :AIRAQ, ORA (La Réunion), AIR LR, AIR RA, QUALITAIR CORSE, AIR NORMAND, ATMOSFAIR,ATMO FC, AIR LORRAINE, ORA (Guyane), ATMO PC et ATMO PICARDIE. Les résultats obtenus en 2013 montrent que les écarts relatifs entre les concentrations en O3déterminées par les 12 réseaux de mesure et celles déterminées par le LNE sont compris entre - 8 % et + 4%.Cependant, la première valeur du réseau 13 présente un écart relatif plus important (- 7,1%) avec la concentration moyenne du LNE. En enlevant la valeur de cet écart, les écarts relatifs entre les concentrations en O3 déterminées par les 12 réseaux de mesure et celles déterminées par le LNEsont compris dans un intervalle de ±4 %. De plus, les écarts relatifs observés entre les valeurs des AASQA et du LNE sont aléatoirementrépartis de part et d’autre de zéro.
Vendredi 4 juillet 2025
Rapport
Suivi du financement du dispositif national de surveillance de la qualité de l’air sur la période 2018-2022
L’article 27 de l’arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l’air ambiant dispose que le LCSQA est tenu d’« effectuer le suivi du coût de la mise en œuvre de la surveillance » de la qualité de l’air. Tel est l’objet de ce rapport qui analyse les évolutions budgétaires du dispositif, sur les années 2018-2022. En 2022, le financement total du dispositif national de surveillance de la qualité de l’air est de 86,2 M€, ce qui représente une augmentation de 22% sur 5 ans et de 1% par rapport à l’année 2021. En 2022, le dispositif national de surveillance de la qualité de l’air est financé par des subventions de l'Etat à hauteur de 38% , par des moindres recettes fiscales via des dons volontaires des industriels de la taxe générale sur les activités polluantes (TGAP air) à hauteur de 29% et par les collectivités à hauteur de 20%. La part du financement des AASQA représente en moyenne 92,8% du financement total de la surveillance de la qualité de l’air sur la période. Cette proportion est passée de 92,3% en 2018 à 93% du financement total en 2022. Sur ces 5 années, un renforcement des moyens nécessaires à la surveillance réglementaire de la qualité de l'air a pu être soutenu par notamment une partie des financements du plan de relance de 2021 (post pandémie de COVID 2019), et par des financements spécifiques de l'Etat pour prendre en compte les évolutions nécessaires concernant le suivi des polluants d'intérêt national. L'augmentation de la contribution des collectivités sur la période et des partenaires industriels s'explique, selon les AASQA, par un développement des partenariats locaux en lien avec les plans et programmes PCAET, PDM, ZFE-m... Enfin, certaines AASQA ont bénéficié d'une fraction de l'astreinte Conseil d'Etat, ainsi leurs recettes ont augmenté de 22,4% passant de 65,4 M€ en 2018 à 80,1 M€ en 2022. La part du financement du LCSQA représente en moyenne 6,9% du financement total de la surveillance de la qualité de l’air sur la période ; il est passé de 7,3% du financement total du dispositif en 2018 à 6,7% en 2022. Le financement du LCSQA a augmenté de 10% sur cette période, passant de 5,2M€ en 2018 à 5,7M€ en 2022. La part du financement de la mise en œuvre opérationnelle de Prev’Air représente en moyenne 0,3% du financement total de la surveillance de la qualité de l’air sur la période. Le financement de la mise en œuvre opérationnelle de la plateforme Prev’Air a augmenté de 0,44% sur 5 ans, passant de 284k€ en 2018 à 285k€ en 2022. 
Mardi 31 juillet 2012
Rapport
Maintien et amélioration des chaînes nationales d’étalonnage Rédaction d’une plaquette synthétique relative à la qualité des mesures
En 1996, sous l’impulsion du Ministère chargé de l'Environnement, un dispositif appelé « chaîne nationale d’étalonnage » a été conçu et mis en place afin de garantir, sur le long terme, la cohérence des mesures réalisées dans le cadre de la surveillance de la qualité de l’air pour les principaux polluants atmosphériques gazeux réglementés. Ce dispositif a pour objectif d’assurer la traçabilité des mesures de la pollution atmosphérique en raccordant les mesures effectuées dans les stations de surveillance à des étalons de référence spécifiques par le biais d’une chaîne ininterrompue de comparaisons appelée « chaîne d’étalonnage ».   Compte tenu du nombre élevé d’Associations Agréées de Surveillance de la Qualité de l'Air (AASQA), il était peu raisonnable d’envisager un raccordement direct de l'ensemble des analyseurs de gaz des stations de mesure aux étalons de référence nationaux, malgré les avantages métrologiques évidents de cette procédure. Pour pallier cette difficulté, il a été décidé de mettre en place des procédures de raccordement intermédiaires gérées par un nombre restreint de laboratoires d’étalonnage régionaux ou pluri-régionaux (appelés également niveaux 2) choisis parmi les acteurs du dispositif de surveillance de la qualité de l'air (AASQA et LCSQA-EMD). Par conséquent, ces chaînes nationales d’étalonnage sont constituées de 3 niveaux : le LCSQA-LNE en tant que Niveau 1, des laboratoires d’étalonnage inter-régionaux (au nombre de 8) en tant que Niveau 2 et les stations de mesures en tant que Niveau 3.   Dans le cadre de ces chaînes nationales d’étalonnage, le LCSQA-LNE raccorde tous les 3 mois les étalons de dioxyde de soufre (SO2), d’oxydes d'azote (NO/NOx), d'ozone (O3), de monoxyde de carbone (CO) et de dioxyde d’azote (NO2) de chaque laboratoire d’étalonnage. De plus, depuis plusieurs années, le LCSQA-LNE raccorde directement les étalons debenzène, toluène et o-xylène (BTX) de l’ensemble des AASQA, car au vu dunombre relativement faible de bouteilles de BTX utilisées par les AASQA, il a été décidé en concertation avec le MEDDTL qu’il n’était pas nécessaire de créer une chaîne d’étalonnage à 3 niveaux. Depuis août 2011, le LNE certifie également les concentrations d’éthylbenzène, de m-xylène et de p-xylène en plus du benzène, du toluène et de l’o-xylène pour les mélanges gazeux de BTEX des AASQA. Le tableau ci-après résume les étalonnages effectués depuis 2006 par le LCSQA-LNE pour les différents acteurs du dispositif de surveillance de la qualité de l’air (AASQA, LCSQA- INERIS et LCSQA-EMD), tous polluants confondus (NO/NOx, NO2, SO2, O3, CO, BTEX et Air zéro).       Nombre   2006 2007 2008 2009 2010 2011 Raccordements Niveau 1/ Niveaux 2 146 180 180 180 180 180 Raccordements BTEX 38 42 37 40 38 33 Raccordements LCSQA-INERIS 12 21 18 20 36 39 Raccordements ORA 0 8 6 6 5 7 Raccordements Madininair 16 24 13 25 19 13 Vérification « Air zéro » (Airparif, Oramip, APL, ORA) 4 4 4 7 6 12   Somme totale des raccordements 216 279 258 278 284 284   Ce rapport fait également la synthèse des problèmes techniques rencontrés en 2011 par le LCSQA-LNE lors des raccordements, à savoir : - Les problèmes rencontrés sur les matériels du LCSQA-LNE, -  Les problèmes rencontrés au niveau des raccordements, -  Les problèmes rencontrés au niveau du transport des matériels. Concernant la mesure des particules, le bilan sur les mises à disposition de moyens de contrôle d’étalonnage d’appareils effectués par le LCSQA-EMD dans le cas des particules est donné dans le présent rapport. Il convient de rappeler que la chaîne d’étalonnage nationale ne concernant que les polluants atmosphériques gazeux (SO2, NO, NO2, CO, O3 et BTX), une mise à disposition de moyens de contrôle de l'étalonnage des analyseurs PM10 et PM2.5 sur site est assurée dans l’attente de l’intégration de ces polluants dans la chaîne. Ces dispositifs de transfert consistent en des cales étalon pour les analyseurs automatiques de particules (microbalances à variation de fréquence et jauges radiométriques) permettant aux AASQA de vérifier l’étalonnage et la linéarité de leurs appareils directement en station de mesure, en y associant le débit de prélèvement. Pour l’année 2011, 14 mises à disposition ont été effectuées. Le respect de la consigne pour le débit de prélèvement est globalement constaté pour 29 appareils vérifiés dont 10 FDMS (soit environ 6% du parc d’analyseurs automatiques actuellement en station de mesure) et les essais montrent un comportement correct de l’ensemble des appareils contrôlés. Concernant le contrôle de la constante d’étalonnage de la microbalance, la moyenne de la valeur absolue de l’écart observée en AASQA varie entre 0,64 et 1,54% (soit pour l’ensemble des AASQA contrôlées une moyenne ± écart-type de 0,97 ± 0,34%). L’étendue de l’écart réel constaté sur le terrain est restreinte car comprise entre -4,1 et +2,7 % pour 62 appareils contrôlés dont 20 FDMS (soit environ 12% du parc de microbalances TEOM actuellement en station de mesure). Le contrôle de la linéarité montre l’excellent comportement des appareils sur ce paramètre sachant que 26 appareils (dont 6 FDMS) ont été contrôlés soit environ 5% du parc de microbalances TEOM actuellement en station de mesure. Concernant les jauges radiométriques MP101M de marque Environnement SA, un contrôle de cale étalon d’AASQA (vérification par le LCSQA-EMD des valeurs de cales étalon fournies par le constructeur) ainsi qu’une mise à disposition de cales étalon permettant le contrôle sur site de l’étalonnage de jauges ainsi que leur linéarité ont été assurés. Comme pour la microbalance, le contrôle du moyen d’étalonnage et la linéarité montre l’excellent comportement des jauges sur ces paramètres sachant qu’a minima 4 appareils ont été contrôlés soit environ 8% du parc de jauges actuellement en station de mesure. Le comportement de cette « chaîne de contrôle pour la mesure des particules » assurée par le LCSQA-EMD peut être qualifié de satisfaisant. Les résultats obtenus pour les microbalances TEOM (concernant les paramètres débit de prélèvement, étalonnage et linéarité) et pour les radiomètres bêta MP101M (concernant le contrôle de moyens d’étalonnage) sont des éléments probants de l’Assurance Qualité / Contrôle Qualité (QA/QC) appliquée aux analyseurs automatiques de particules en suspension et sont des sources d’information nécessaires dans le cadre du calcul de l’incertitude de mesure sur ce type d’appareil. Le maintien et l’extension du programme QA/QC pour les analyseurs automatiques de particules rentrent dans les missions pérennes du LCSQA. L’extension à des modèles de jauges radiométriques autres que la MP101M d’Environnement SA est à envisager, sous réserve de leur homologation par le Dispositif National de Surveillance de la Qualité de l’Air. Par ailleurs, en 2010, le LNE a rédigé un document de synthèse dont l’objectif était de réaliser un bilan du dispositif d'assurance qualité actuellement mis en œuvre sur le territoire français (fonctionnement des chaînes d'étalonnage, bilan des exercices d'intercomparaison…) pour garantir la qualité des mesures effectuées par les AASQA dans l’air ambiant. En 2011, le LNE a rédigé un projet de plaquette de 4 pages résumant le document de synthèse. Le but de cette plaquette est de rendre plus visibles les actions entreprises par la France pour garantir la qualité des mesures effectuées par les AASQA dans l'air ambiant et pourra être distribué lors de réunions, de congrès, de séminaires…
Jeudi 27 juin 2024
Rapport
Comparaison interlaboratoire 2022 pour les polluants gazeux mesurés en laboratoires mobiles
Un exercice de comparaison de moyens de mesures mobiles a été organisé par le LCSQA en mai 2022 sur le site de l’Ineris à Verneuil en Halatte. Il a réuni 9 participants (7 Associations agréés de surveillance de la qualité de l'air (AASQA) et le LCSQA/Ineris) et 9 moyens mobiles, constituant un parc de 49 analyseurs (17 NO/NOx, 8 SO2, 9 CO et 15 O3). Le déroulement de l’exercice a comporté 2 phases : la première phase consistant en une circulation de gaz étalon en aveugle visant à déceler la cohérence des raccordements entre les niveaux 2 et 3 de la chaîne nationale d’étalonnage et les éventuels défauts de linéarité des appareils et une seconde phase consistant à la réalisation de paliers de dopages pour l’ensemble des polluants. Lors de la circulation de gaz en aveugle, des écarts, par rapport à la tolérance de 4 %, critère déduit des comparaisons interlaboratoires (CIL) organisées par le LNE, (5% dans le cas du NO2) sur la lecture de concentrations, ont été constatés pour chaque gaz ; ils sont compris entre -9,6% et +9,6%. Pour certains de ces écarts, les causes ont été identifiées (problème lié au générateur d’ozone ayant servi à l’étalonnage et dérive des analyseurs). Ces écarts ont été observés immédiatement après l’étalonnage des analyseurs par les AASQA avec leurs propres gaz d’étalonnage de niveau 2 ou 3 (Laboratoire 3 : écart de 5% sur la lecture de leur propre étalon d’oxydes d’azote ; Laboratoire 4 : décalage du zéro en NO sur le titulaire et décalage du zéro sur le doublon SO2 ; Laboratoire 7 : dérive de l’analyseur doublon ozone). Lors de cet exercice de comparaison, une coupure d’électricité a eu lieu, touchant certains laboratoires lors du passage des étalons en aveugle en fin d’exercice, et ne leur permettant pas de procéder à la lecture de ces deniers. Cette coupure d’électricité a aussi touché le générateur d’ozone 49iPS de l’Ineris, le rendant indisponible pour les laboratoires qui n’ont pu procéder à la lecture de contrôle sur leurs analyseurs. En application de la norme NF ISO 5725-2, les intervalles de confiance de répétabilité et de reproductibilité ont été déterminés pour chaque polluant et les différents niveaux de concentration. L’examen des intervalles de confiance a conduit à des résultats satisfaisants pour les méthodes utilisées en termes de respect des recommandations des Directives Européennes (15 % d’incertitude de mesure aux valeurs limites réglementaires) : pour le polluant CO, l’intervalle de confiance de reproductibilité est de 3,9 % à la valeur limite sur 8h ; pour le polluant O3, cet intervalle est de 9,0 % à la valeur limite horaire ; pour le polluant SO2, cet intervalle est de 9,3 % à la valeur limite horaire ; l’intervalle de confiance de reproductibilité est de 6,2 % à pour le NO et de 7,5 % pour le NO2 aux valeurs limites horaires correspondantes. Par ailleurs, les résultats du traitement statistique, suivant la norme NF ISO 13528 et permettant la détermination des z-scores, sont, d’une manière générale, homogènes et très satisfaisants pour les participants, même si 3 laboratoires affichent un Z-score compris entre 2 et 3. Le Laboratoire 3, quant à lui, se démarque par un total de 18 z-scores compris entre 2 et 3. Ainsi, les z-scores des participants sont donc ≤ l2l sauf pour :  Le Laboratoire 8 qui présente un dépassement en CO (z=2,16) ; Le Laboratoire 7 qui présente un dépassement en O3 (z=2,16) ; Le Laboratoire 5 qui présente un dépassement en NO2 (z=-2,51) ; Le laboratoire 3 qui présente au total 18 dépassements dont 3 en CO (z=2,7 ; z=2,3 ; z=2,1), 3 en O3 (z=-2,3 ; z=-2,6 ; z=2,4), 1 en SO2 (z= 2,2), 6 en NO (z= 2,1 ; z = 2,4 ; z=2,9 ; z=2,8 ; z=2,9 ; z=2,8), 5 en NO2 (z = 2,2 ; z=2,9 ; z=2,4 ; z=2,4 ; z= 2,7). Ce dernier devra mettre en place des actions préventives afin de résoudre tous les écarts constatés lors de cette comparaison. En effet, un laboratoire dont le score z est supérieur ou égal à 3,0 ou inférieur ou égal à -3,0 donne lieu à un « signal d’action », nécessitant une action corrective. Un score z supérieur à 2,0 ou inférieur à -2,0 donne lieu à un signal d’avertissement, nécessitant une surveillance ou une action préventive.   interlaboratory comparison 2022 for gaseous pollutants measured in mobile laboratories An exercise to compare mobile measuring equipment was organised by the LCSQA in May 2022 at the Ineris site in Verneuil en Halatte. It brought together 9 participants (7 Air Quality Monitoring Associations (AASQA) and the LCSQA/Ineris) and 9 mobile devices, making up a fleet of 49 analysers (17 NO/NOx, 8 SO2, 9 CO and 15 O3). The exercise was carried out in 2 phases: the first phase consisted of a blind circulation of standard gas aimed at detecting the consistency of the connections between levels 2 and 3 of the national calibration chain and any linearity faults in the equipment, and the second phase consisted of carrying out spiking stages for all the pollutants. During blind gas circulation, deviations from the tolerance of 4% (5% in the case of NO2) on concentration readings were observed for each gas, ranging from -9,6% to +9,6%, a criterion derived from interlaboratory comparison (ILC) organised by LNE. The causes of some of these discrepancies have been identified (problem with the ozone generator used for calibration and analyser drift). These deviations were observed immediately after the analysers had been calibrated by the AASQAs with their own level 2 or 3 calibration gases (Laboratory 3: 5% deviation in the reading of their own nitrogen oxide standard; Laboratory 4: zero shift in NO on the holder and zero shift on the SO2 duplicate; Laboratory 7: drift of the ozone duplicate analyser). During this comparison exercise, a power cut occurred, affecting some laboratories during the blind run of the standards at the end of the exercise, and preventing them from reading the standards. This power cut also affected the LCSQA/Ineris 49iPS ozone generator, making it unavailable to the laboratories, which were unable to read the controls on their analysers. In accordance with standard NF ISO 5725-2, repeatability and reproducibility confidence intervals were determined for each pollutant and the various concentration levels. Examination of the confidence intervals produced satisfactory results for the methods used in terms of compliance with the recommendations of the European Directives (15% measurement uncertainty at the regulatory limit values): - for the CO pollutant, the reproducibility confidence interval is 3,9% at the 8h limit value; - for the O3 pollutant, this interval is 9,0% at the hourly limit value; - for the SO2 pollutant, the interval is 9,3% at the hourly limit value; - the reproducibility confidence interval is 6,2% for NO and 7.5% for NO2 at the corresponding hourly limit values. The results of statistical processing, in accordance with standard NF ISO 13 528 and enabling z-scores to be determined, were globally homogeneous and very satisfactory for the participants, even though 3 laboratories had a z-score between 2 and 3. Laboratory 3 stood out with a total of 18 z-scores between 2 and 3. The participants' z-scores were therefore ≤ l2l except for : - Laboratory 8, which exceeded the CO limit (z=2,16); - Laboratory 7, which has an O3 exceedance (z=2,16); - Laboratory 5, which has an NO2 exceedance (z=-2,51); - Laboratory 3, with a total of 18 exceedances, including o 3 for CO (z=2,7; z=2,3; z=2,1), o 3 for O3 (z=-2,3; z=-2,6; z=2,4), o 1 in SO2 (z= 2,2), o 6 in NO (z= 2,1; z = 2,4; z=2,9; z=2,8; z=2,9; z=2,8), o 5 for NO2 (z = 2,2; z=2,9; z=2,4; z=2,4; z= 2,7). The laboratory will have to take preventive action to resolve any discrepancies identified during this comparison. A laboratory with a z-score greater than or equal to 3,0 or less than or equal to -3,0 generates an "action signal", requiring corrective action. A z-score greater than 2,0 or less than -2,0 gives rise to a warning signal, requiring monitoring or preventive action.
Jeudi 15 décembre 2022
Rapport
Cahier des charges dédié au développement d’un Générateur d’Aérosols de Référence Portable
La microbalance à variation de fréquence et la jauge radiométrique sont des appareils de mesure très répandus au sein des Associations Agréées de Surveillance de la Qualité de l’Air (AASQA). Ces instruments permettent de mesurer en continu la concentration massique des particules en suspension dans l’air (en µg.m-3) alors que la méthode gravimétrique nécessite des pesées postérieures au prélèvement. A l’heure actuelle, ces appareils sont contrôlés à l’aide de cales étalons au niveau d’un paramètre intermédiaire (fréquence, densité surfacique) mais sans tenir compte de la phase particulaire prélevée. C’est pourquoi le LCSQA-LNE a développé une méthode de contrôle en masse des microbalances à variation de fréquence et des jauges radiométriques. La méthode consiste à générer des particules à des concentrations connues et stables et à les faire prélever par les appareils dans des conditions proches de leur fonctionnement « normal ». Un système de génération d’aérosols, nommé GARP pour « Générateur d’Aérosol de Référence Portable », a ainsi été développé puis caractérisé (Gaie-Levrel et al., 2017). Son protocole d’utilisation a été optimisé par des expériences menées sur le terrain entre 2013 et 2017 (LCSQA, 2013-2017). A la suite de ces travaux, le LCSQA-LNE propose dans ce rapport un cahier des charges technique (CDC) permettant aux AASQA de fabriquer leur propre système GARP afin de vérifier le bon fonctionnement des appareils mesurant les concentrations massiques particulaires en temps réel.   Abstract Technical specification for the development of a Portable Reference Aerosol Generator The frequency-varying microbalance and radiometric gauge are widely used measuring devices within Approved Air Quality Monitoring Associations (AASQA). These instruments make it possible to continuously measure the mass concentration of particles suspended in the air (in µg.m-3) while the gravimetric method requires weighing after sampling. It is important to note that these devices are checked using calibration filter but without taking into account the particulate phase sampled. This is why the LCSQA-LNE has developed a method for mass control of frequency-varying microbalances and radiometric gauges. The method consists of generating particles at known and stable concentrations and sampling them by the instrument under conditions close to their “normal” operation. An aerosol generation system, named GARP for "Portable Reference Aerosol Generator", was thus developed and then characterized (Gaie-Levrel et al., 2017). Its protocol for use was optimized by experiments carried out in the field between 2013 and 2017 (LCSQA, 2013-2017). The LCSQA-LNE proposes in this report a technical specification allowing the AASQA to manufacture their own GARP system in order to verify the correct operation of instruments dedicated to the particulate mass concentrations measurements in real time.