Résultats de la recherche

550 résultats correspondent à INERIS
Lundi 22 octobre 2018
Rapport
Intercomparaison de moyens mobiles - Lyon 2017
Dans l’objectif de vérifier le respect des exigences de la directive européenne 2008/50/CE, le LCSQA propose annuellement aux AASQA une intercomparaison de moyens mobiles pour les polluants SO2, O3, NO, NO2 et CO à différents niveaux de concentration et tout particulièrement au voisinage des seuils horaires d’information ou d’alerte pour les polluants NOx, O3, SO2, et de la valeur limite sur 8h pour le CO. Un exercice d’intercomparaison de moyens de mesures mobiles a été réalisé en mars 2017 en collaboration avec Atmo Auvergne Rhône Alpes. Il a réuni 8 participants (7 AASQA et le LCSQA/INERIS) et moyens mobiles, constituant un parc de 43 analyseurs. Durant cette intercomparaison, l’ensemble des analyseurs présents caractérise le même échantillon d’air via la tête de prélèvement de chaque moyen mobile connectée à des boîtiers de distribution. Le temps de résidence inférieur à 3 secondes (pour les NOx et l’ozone) dans les lignes d’échantillonnage n’a pas totalement été respecté pour un laboratoire (analyseur de NOx à faible débit). Le non-respect de ce critère n’a toutefois pas eu d’influence significative sur la dispersion des mesures du participant concerné. Le déroulement de l’exercice a comporté une phase préliminaire à la réalisation de paliers de dopages pour l’ensemble des polluants, consistant en une circulation de gaz étalon en aveugle visant à évaluer la cohérence des raccordements entre les niveaux 2 et 3 de la chaîne nationale d’étalonnage et les éventuels défauts de linéarité des appareils.  Un dysfonctionnement a été observé au cours de l’exercice sur un analyseur de CO. Le laboratoire concerné a décidé de ne pas valider les données ayant suivi cet incident (problème suite au zéro automatique de l’analyseur). Lors de la circulation de gaz pour étalonnage en aveugle, on observe peu d’écarts par rapport à la tolérance de 4 % (5% dans le cas du NO2) sur la lecture de concentrations étalons mais certains de ces écarts peuvent être élevés : ils sont de l’ordre de -9% à +3,9%. Les causes ont été identifiées (dérive, temps de chauffe insuffisant). On rappellera que cette phase est désormais réalisée en une seule étape, sans étape de rattrapage. Ces écarts ont été observés immédiatement après l’étalonnage des analyseurs par les AASQA avec leurs propres gaz d’étalonnages de niveau 2 ou 3. Pour l’exercice d’intercomparaison en propre, les intervalles de confiance de répétabilité et de reproductibilité ont été déterminés pour chaque polluant et les différents paliers de dopage, en application de la norme NF ISO 5725-2. On signalera que le nombre de valeurs aberrantes détectées lors de l’application des tests de Cochran et Grubbs est compris entre 0% et 3,9% des données éliminées : Laboratoire 1 dans le cas du CO (1% de valeurs exclues), Laboratoire 6 dans le cas du NO2 (3,4% de valeurs exclues). L’élimination de données sur avis d’expert a été nécessaire dans le cas du SO2 pour le Laboratoire 7. L’examen des intervalles de confiance de reproductibilité, pour les méthodes utilisées, déterminés expérimentalement et hors valeurs aberrantes, a conduit à des résultats satisfaisants en termes de respect des recommandations des Directives Européennes (15% d’incertitude de mesures aux valeurs limites réglementaires) : pour le CO, l’intervalle de confiance de reproductibilité est de 5,2% à la valeur limite sur 8 heures ; pour le SO2, cet intervalle est de 13,2% à la valeur limite horaire ; mais cet intervalle de confiance tombe à 9% si l’analyseur du laboratoire 7 est éliminé du panel (élimination des données de cet analyseur sur avis d’expert); pour l’O3, l’intervalle de confiance de reproductibilité est de 5,7% à la valeur limite horaire de 180 ppb. On notera que les incertitudes estimées aux autres seuils de concentration disponibles pour l’ozone, à savoir 90 ppb (seuil d’information) et 120 ppb (seuil d’alerte horaire sur 3 heures), respectent également les exigences de la Directive Européenne avec des valeurs respectives de 5,8% et 5,7% ; pour le NO, l’intervalle de confiance de reproductibilité est de 4,7% et il est de 7,3% pour le NO2 aux valeurs limites horaires correspondantes D’une manière générale, les résultats du traitement statistique suivant la norme NF ISO 13 528 et permettant la détermination des z-scores, sont homogènes et très satisfaisants pour une majorité de participants. Une très large majorité des z-scores est comprise entre ±2. Les z-scores plus élevés (compris entre 2 et 3), imposant des actions correctives, sont concentrés sur deux participants, le laboratoire n°6 pour lequel on relève un z-score supérieur à 2 sur le palier 7 du NO (pas d’exclusion de données) et deux z-score inférieurs à 2 sur les paliers 2 et 3 (exclusion de 3,4% de données) dans le cas du NO2 et sur le Laboratoire 7, lors de la mesure du SO2 et avant son exclusion sur avis d’expert, qui présentait des Z scores calculés supérieurs à 2 pour les paliers 5 et 6. Les résultats de cette intercomparaison permettent d’évaluer la qualité de mise en œuvre des méthodes de mesures par les AASQA en conditions réelles. On notera que depuis 2008, les résultats obtenus en terme d’incertitude de mesure sont conformes aux exigences de la Directive Européenne et confirment dans la durée la fiabilité du système de mesure national. Ceci est à rapprocher du fait que le parc d’analyseurs, lors de l’exercice d’intercomparaison, dispose d’un temps de chauffe et de stabilisation important (>2 jours), ce qui tend à réduire les écarts entre appareils en début de campagne et conditionne l’obtention d’intervalles de confiance réduits.
Jeudi 4 février 2021
Rapport
Etat des évaluations préliminaires sur le territoire national à fin 2019
Aux fins des rapportages réglementaires de septembre 2019, un état d’avancement des évaluations en cours et restant à faire a été réalisé sur la base d’informations recueillies auprès des AASQA à l’occasion de demandes de précisions sur leur dispositif de surveillance. 15 ZAS sont concernées par des évaluations préliminaires en cours. Il s’agit des ZR Réunion, Mayotte, Guyane, Guadeloupe, Martinique, Hauts de France et Bretagne ainsi que les ZAR Ile de Cayenne, Réunion-Volcan, Creil, Arras, Blois, Chartres-Dreux et Laval. Enfin, la ZAG de Rennes est également concernée par une évaluation préliminaire pour l’ozone végétation car elle ne dispose pas de station éligible pour ce type de surveillance. Les 3 tableaux présentés dans cette note : résume l’aboutissement des évaluations préliminaires entre 2016 et 2019 pour le premier, indique les ZAS en évaluation préliminaire en 2019 pour le second, décline ce qu’il reste à évaluer à partir de 2020 pour le troisième.  
Lundi 29 octobre 2007
Rapport
Activité de l’INERIS - Bilan 1996-200 et perspectives
Lundi 29 octobre 2007
Rapport
Synthèse des travaux LCSQA 2000 à l'INERIS
Vendredi 26 octobre 2007
Rapport
Synthèse des travaux 2002 de l'INERIS
Lundi 11 janvier 2021
Rapport
Programme CARA : bilan des travaux 2018-2019
Ce rapport synthétise les principaux travaux 2018 et 2019 du programme CARA (« CARActérisation chimique des particules ») du dispositif national de surveillance de la qualité de l’air. Fonctionnant en étroite collaboration avec les Associations agréées de surveillance de la qualité de l’air (AASQA) volontaires et des laboratoires universitaires, ce programme permet notamment de documenter, depuis une dizaine d’année, la composition chimique et les origines des particules atmosphériques affectant la qualité de l’air. Il intègre également la mise en œuvre d’outils statistiques et/ou de modélisation numérique, visant à l’amélioration des systèmes de prévision ainsi qu’à l’évaluation de possibles mesures de réduction des concentrations en air ambiant. Dans ce cadre, une étude spécifique a également été consacrée à l’ozone, polluant gazeux secondaire en interaction avec la phase particulaire.   Si des dépassements de valeurs limites journalières fixées pour les PM10 sont encore fréquemment observés sur le territoire, notamment en fin d’hiver-début de printemps sous l’effet de l’accumulation des émissions primaires (dont le chauffage résidentiel et le transport routier) et la formation de particules secondaires (nitrate d’ammonium et aérosols organiques secondaires), aucun épisode de longue durée (> 3 jours) et de large échelle spatiale (impliquant simultanément plusieurs régions voisines) n’a été observé en métropole sur la période 2018-2019. En revanche, la survenue de pics de concentration de courte durée en bordure littoral Manche et mer du Nord entre la fin de l’hiver et le début de l’été semble répondre à des processus complexes, qu’il s’agira d’explorer sur la période 2020-2021. Il est également à noter que 2018 et 2019 ont été marquées par de fortes intrusions de poussières sahariennes en zone Caraïbe ainsi que par d’importants épisodes estivaux de pollution à l’ozone. Pour ce dernier polluant, l’analyse des épisodes de l’été 2019 illustre l’effet bénéfique attendu d’une diminution des émissions des substances précurseurs (oxydes d’azote (NOx) et composés organiques volatils) sur quasiment l’ensemble du territoire, malgré la complexité des processus chimiques mis en jeu (avec de possibles augmentations localisées dans les grandes agglomérations et bassins industriels). Ces résultats confirment l’intérêt de la mise en place de plans de réduction ambitieux des émissions concernant toutes les activités humaines, en particulier en zone urbaine et fortement émettrice de NOx. Par ailleurs, l’étude sur le long-terme menée depuis 2008 au niveau de la station grenobloise Les Frênes (fond urbain) indique une baisse significative des concentrations de PM10, mais également du carbone élémentaire (EC) et des hydrocarbures aromatiques polycycliques (HAP). En revanche, les concentrations hivernales de PM issues de la combustion de biomasse ne présentent pas de tendance significative sur la période 2011-2017, conduisant à une augmentation de leur contribution relative aux PM10. Le chauffage au bois reste donc l’un des principaux leviers d’actions pour l’amélioration de la qualité de l’air à Grenoble, et il apparait nécessaire de poursuivre cette étude, afin notamment d’aider à la bonne évaluation de l’efficacité des politiques publiques mises en œuvre (dont les « fonds air bois ») en région Auvergne-Rhône-Alpes, comme sur d’autres territoires. De même, la baisse notable (env. 0,4 µg/m3 / an) des concentrations de matière organique au SIRTA (fond régional, Ile de France) ne peut être que très partiellement attribuée à une diminution des émissions par le chauffage au bois sur la période 2011-2018. Si l’on note une diminution de l’ordre de 80 ng/m3 / an de la fraction organique directement imputable à la combustion de biomasse, aucune tendance significative n’est observée à ce stade pour la fraction de carbone suie liée à cette même source ni pour la fraction organique primaire la moins oxydée (issue de la combustion d’hydrocarbures mais également au chauffage au bois). Dans le même temps, on note une diminution très légère (env. 20 ng/m3 / an) mais statistiquement significative de la part de carbone suie émise par la combustion d’énergie fossile (incluant les émissions automobiles à l’échappement). Cette tendance pourrait s’accompagner d’une réduction de l’influence de l’ensemble des composés organiques volatils d’origines anthropiques sur la formation d’aérosols organiques secondaires, dont la composante la plus oxydée explique globalement la moitié de la baisse observée des concentrations de matière organique totale. Enfin, les travaux réalisés en 2018 et 2019 ont également pris la forme de nombreuses collaborations scientifiques avec des acteurs académiques (inter-)nationaux, permettant notamment la révision du guide européen pour l’utilisation d’outils statistiques d’identification et de quantification des sources des polluants atmosphériques, ainsi que la publication dans des revues à comité de lecture d’une dizaine d’articles basés, en totalité ou pour partie, sur des résultats obtenus dans le cadre du programme CARA.
Lundi 10 octobre 2016
Page
A propos du LCSQA
Lundi 21 décembre 2020
Rapport
Stratégie de surveillance nationale de la concentration en nombre totale des particules (ultra)fines
  Référentiel technique national Ce document fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air ambiant. Il a été approuvé en CPS (comité de pilotage de la surveillance) du 15 décembre 2020. Mise en application : 1er janvier 2021         La note « Stratégie de surveillance nationale de la concentration en nombre totale des particules (ultra)fines » propose des éléments d’orientation de la stratégie de surveillance de la concentration en nombre des particules fines (PNC), majoritairement constituées de particules ultrafines (PUF), au sein du dispositif national. Il apparait primordial que les mesures issues de cette surveillance soient homogènes et comparables sur l’ensemble du dispositif national et, à plus long terme, avec les données recueillies par les autres Etats Membres. Une généralisation de la mesure de la distribution granulométrique en nombre des particules fines (dont les PUF) semble à ce jour prématurée, étant donné i) qu’aucun dispositif commercial disponible actuellement sur le marché ne permet de répondre strictement aux préconisations de la spécification technique CEN/TS 17434 (en cours de parution), qui détaille la configuration instrumentale optimale requise pour ce type de mesure ; et ii) que les discussions avec les acteurs sanitaires n’ont pas permis de statuer sur la pertinence avérée d’une surveillance de la concentration en nombre selon une gamme de taille précise et liée aux mesures de la distribution granulométrique en nombre. Ainsi, il est proposé à ce stade de privilégier la mesure de la concentration totale en nombre des particules fines à l’aide de CNC (compteurs à noyaux de condensation) répondant aux spécifications décrites dans la spécification technique CEN/TS 16976. Les sources primaires d’émission des PUF étant souvent similaires à celles des NOx, la stratégie proposée ici est tout d’abord inspirée de celle de la surveillance du NO2. Compte-tenu des équipements déjà disponibles, un premier objectif d’une vingtaine de sites équipés de CNC (conformes aux spécifications techniques de la CEN/TS 16976) semble un minimum requis à l’horizon fin 2021-début 2022 pour alimenter à court-terme les réflexions sur le volet sanitaire. A moyen terme, un parc instrumental d’environ 50 CNC répartis sur l’ensemble du territoire permettrait d’atteindre environ 10% du nombre total de stations actuellement équipées pour la mesure réglementaire du NO2. Afin d’alimenter les travaux sur les impacts sanitaires des PUF sur la base de jeux de données aussi complets que possible, il est notamment recommandé de combiner des mesures du PNC avec des mesures automatiques de carbone suie et/ou des composés chimiques majeurs au sein des particules fines sur l’ensemble des sites multi-instrumentés du programme CARA (https://www.lcsqa.org/fr/le-dispositif-cara). Ces éléments d’orientation stratégique pourront également être ajustés en fonction des développement métrologiques proposés par les constructeurs, ainsi que d’éventuelles futures recommandations de la part des autorités sanitaires.   National monitoring strategy for (Ultra)fine particles total number concentration This note proposes guiding elements for the monitoring strategy for the particles number concentration (PNC), mainly consisting of ultrafine particles (UFP), within the national system. It appears essential that the measures resulting from this monitoring be homogeneous and comparable across the entire national system and, in the longer term, with the data collected by other Member States. A generalization of the measurement of the particle size distribution in number of fine particles (including PUFs) seems to date premature, given i) that no commercial device currently available on the market makes it possible to strictly meet the recommendations of the technical specification CEN / TS 17434 (in press), which details the optimal instrumental configuration required for this type of measurement; and ii) that the discussions with the health actors did not make it possible to rule on the proven relevance of monitoring the number concentration according to a precise size range and linked to the measurements of the particle size distribution in number. Thus, it is proposed at this stage to favor the measurement of the total number concentration of fine particles using CPC (condensation Particles counters) meeting the specifications described in technical specification CEN / TS 16976. Since the primary sources of UFP emissions are often similar to those of NOx, the strategy proposed here is first of all inspired by that of NO2 monitoring. Taking into account the equipment already available, an initial objective of around twenty sites equipped with CPC (in accordance with the technical specifications of CEN / TS 16976) seems a minimum required by the end of 2021-beginning of 2022 to supply short- end the reflections on the health component. In the medium term, an instrument park of around 50 CPCs distributed throughout the country would make it possible to reach around 10% of the total number of stations currently equipped for the regulatory measurement of NO2. In order to feed the work on the health impacts of UFPs on the basis of data sets as complete as possible, it is in particular recommended to combine measurements of the PNC with automatic measurements of carbon soot and / or major chemical compounds within fine particles on all the multi-instrumented sites of the CARA program (https://www.lcsqa.org/fr/le-dispositif-cara). These elements of strategic orientation may also be adjusted depending on the metrological developments proposed by the manufacturers, as well as any future recommendations from the health authorities.
Jeudi 19 juillet 2018
Rapport
Interlaboratory comparison for the analysis of PAHs in ambient air (2018)
Dans le cadre de la mise en œuvre des exigences qualité fixées par le ministère chargé de l’environnement, un essai de comparaison inter laboratoires (CIL) analytique a été organisé par le LCSQA (INERIS en collaboration avec le LNE) au premier semestre 2018, pour les laboratoires d’analyse sous-traitants des AASQA (Association Agréée pour la Surveillance de la Qualité de l’Air). Les inscriptions ont été également ouvertes à des laboratoires européens appliquant les prescriptions des textes normatifs relatifs à l’analyse du Benzo[a]pyrène (B[a]P) et des autres HAP (Hydrocarbures Aromatiques Polycycliques) concernés par la Directive 2004/107/CE ainsi que sur le phénanthrène, le fluoranthène et le benzo[g,h,i]pérylène. Cet exercice comprenait des matrices de concentrations différentes en HAP afin de prendre en compte les gammes de travail habituelles des laboratoires réalisant l’analyse de filtres issus de prélèvements haut débit ou bas débit. Chaque participant a donc reçu les matériaux suivants : 3 poinçons de filtre issus de prélèvements d’air ambiant pour deux d’entre eux, le troisième étant un blanc de laboratoire. Les prélèvements ont été effectués sur filtre en quartz à l'aide d'un préleveur grand volume de type Graseby-Andersen, équipé d'une tête PM10, à un débit de 70 m3/h. Chaque filtre était découpé avec un emporte-pièce en 20 morceaux de 37 mm de diamètre. Trois filtres notés 18/172774_F1, F2 et F-blanc ont ainsi été envoyés aux participants ; 1 matériau de référence certifié (MRC) par l’IRMM (ERM®-CZ100, fine dust PM10 like) envoyé en double mais identifiés comme 2 matériaux distincts pour les participants et donc notés 18/172224_MRC1 et MRC2. 3 matériaux liquides de référence certifiés (MRC) préparés par le LNE, constitués de trois solutions étalons notées : 18/172774_S1, S2 et S3. Les solutions S1 et S2 étaient identiques. Finalement, 17 laboratoires européens (dont 13 français) ont participé à cette CIL. Une grande amélioration des résultats a pu être observée par comparaison à ceux obtenus lors des CIL organisées en 2014 et 2015 (Verlhac, 2014, Verlhac and Albinet, 2015). Les dernières recommandations et la rencontre organisée avec les laboratoires sous-traitants des AASQA pour l’analyse des HAP (04/07/2016, https://www.lcsqa.org/system/files/commission/Web_CS-cr-lcsqa_rex_hap_aal_2016-vf.pdf) ont été certainement bénéfiques. Mis à part pour le MRC solide, les incertitudes obtenues, notamment pour le B[a]P, respectent celles qui sont admises par la Directive et la TS XP/CEN 16645 montrant que la dispersion des laboratoires est bien meilleure. Néanmoins, quelques laboratoires doivent encore améliorer leurs procédures analytiques car ils ont obtenu des mauvais résultats (majoritairement non acceptables c’est-à-dire ayant un |score z| ≥ 3) pour la plupart des matériaux et HAP testés (180430, 180458 et dans une moindre mesure, 18096, pour les solutions certifiées). De plus, les laboratoires 180458 and 180481 n’ont fourni aucun résultat pour le MRC solide et le laboratoire 180429 a seulement fourni des résultats pour le B[a]P pour tous les matériaux de l’essai. Enfin, sur la base des zêta -scores, les incertitudes de mesure ne sont toujours pas correctement évaluées par la plupart des participants. Les laboratoires français sont donc invités à suivre les recommandations fournies par le LCSQA (Albinet, 2015) afin d’estimer les incertitudes sur l’analyse des HAP.   Rapport intermédiaire (juillet 2018) et annexes This document is a synthesis of the results submitted by the participants during the interlaboratory comparison (ILC) for the analysis of polycyclic aromatic hydrocarbons (PAH) in ambient air organized in 2018 by the LCSQA. This report does not contain any comment or discussion on the submitted data (values higher or lower than a factor of 10 from the participant average results were excluded). It can be subject to modification especially in the calculations of the reference values and z-scores. The data is thus temporary. The final results and discussions will be available in the final version of the report and sent to all participants. Il s'agit d'un rapport intermédiaire (résultats préliminaires).
Vendredi 18 décembre 2020
Rapport
Guide méthodologique pour la mesure du « Black Carbon » par Aethalomètre multi longueur d’onde AE33 dans l’air ambiant (version2020)
  Référentiel technique national Ce document fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air ambiant. Il a été approuvé en CPS (comité de pilotage de la surveillance) du 15 décembre 2020. Mise en application : 15 décembre 2020     Ce document constitue la mise à jour du guide méthodologique LCSQA paru en 2018, relatif à l’utilisation de l’aéthalomètre multi-longueurs d’onde AE33 fabriqué par « Magee Scientific » en air ambiant. Cet instrument permet la mesure des concentrations de carbone suie (ou Black Carbon, BC), émis par les sources de combustion. Ce guide méthodologique ne constitue pas un mode opératoire ou un manuel d’utilisation. Le lecteur est invité à se reporter au manuel fourni par le distributeur pour les informations relatives au fonctionnement de l’instrument lui-même. Ce document s’attache à recenser les bonnes pratiques, les fréquences de maintenance, les différentes étapes inhérentes à la validation des données ainsi que les méthodes d’exploitation des données à travers notamment l’utilisation d’un modèle d’estimation des sources reliées aux combustions de biomasse ou de carburant fossile. Il a été rédigé sur la base des documents des constructeurs, des échanges avec le distributeur, de l’état de l’art scientifique. Il s’appuie aussi sur les retours d’expérience des utilisateurs des AASQA, émis notamment lors des réunions LCSQA du « Groupe Utilisateur AE33 » et du « Groupe de travail du programme CARA ». Enfin, il intègre les retours des séminaires techniques à destination des associations agrées pour la surveillance de la qualité de l’air (AASQA), organisées conjointement avec le constructeur, le distributeur français et le LCSQA. Ce guide pour l’utilisation des AE33 pourra être remis à jour en fonction des retours d’expériences des utilisateurs, des préconisations du constructeur ou des avancées de l’état de l’art scientifique.