Résultats de la recherche

588 résultats correspondent à INERIS
Mardi 1 mars 2016
Rapport
Surveillance du benzène - Organisation d’une comparaison interlaboratoires BTEX
L'objectif de cette étude était d’organiser une comparaison interlaboratoires afin de tester l’aptitude des laboratoires à analyser différents types de tubes (passifs et actifs) susceptibles d’être utilisés par les AASQA pour effectuer leurs prélèvements, à partir de leur propre méthode d’analyse. Cette comparaison interlaboratoires était constituée de trois parties : Analyse de tubes (Carbopack X, Carbograph 4) chargés en actif par le LNE en benzène, toluène, éthylbenzène, m-xylène et o-xylène par voie gazeuse à partir d’un mélange gazeux de référence du LNE, Analyse de tubes Radiello (Carbograph 4) chargés par l’INERIS sur site par prélèvement passif, Analyse de tubes (Carbopack X) chargés par l’INERIS par prélèvement actif sur site à l’aide d’un système de dopage « pieuvre ». Les résultats de la comparaison interlaboratoires portant sur l’analyse des tubes chargés par le LNE montrent que sur les sept laboratoires participants, cinq d’entre eux (A, C, E, F et G) obtiennent des résultats satisfaisants pour tous les composés sur les deux adsorbants (Carbograph 4 et Carbopack X). Les deux autres laboratoires (B et D) présentent des résultats souvent sous-estimés et dispersés. Le laboratoire B sous-estime les masses chargées de l’ordre de 20 % en m-xylène, de 10 % pour les autres composés, et présente des résultats très dispersés en toluène (écarts relatifs compris entre – 13 et 62 %), et ce quel que soit l’adsorbant (Carbopack X ou Carbograph 4). Selon le calcul des écarts normalisés, les résultats sont satisfaisants pour l’analyse du benzène, de l’éthylbenzène et de l’o-xylène, un peu plus nuancés pour le toluène et le m-xylène.  Le laboratoire D montre des résultats dispersés (écarts relatifs aussi bien positifs que négatifs) et globalement sous-estimés pour la majorité des composés sur les deux adsorbants. Le composé m-xylène est particulièrement sous-estimé avec un écart relatif d’environ – 70  % et un écart normalisé de – 12. A partir du calcul des écarts normalisés, l’analyse du benzène peut être jugée comme juste, de même que l’o-xylène. Cela n’est pas le cas pour le toluène, l’éthylbenzène et le m-xylène. Les résultats de la comparaison interlaboratoires portant sur l’analyse des tubes chargés par l’INERISmontrent que sur les septlaboratoires participants, cinq d’entre eux (A, C, E, F et G) obtiennent des résultats satisfaisants pour tous les composés sur les deux adsorbants (Radiello 145 et Carbopack X). Quelques tubes ont cependant des résultats discutables. Etant donné que ces mêmes laboratoires ont fourni des résultats justes lors de la comparaison avec les tubes chargés par le LNE, cela nous laisse penser que ces erreurs ne proviennent pas d’un problème analytique mais sont liées au chargement du tube en lui-même. En effet, le chargement sur site est une méthode de chargement moins reproductible que le chargement actif par voie gazeuse mis en place par le LNE. Le laboratoire B présente des résultats globalement satisfaisants sur l’adsorbant Radiello 145 chargés sur site en passif, mais non satisfaisants pour ceux prélevés en actif sur l’adsorbant Carbopack X. Une forte sous-estimation des masses est constatée pour tous les composés. Le laboratoire D obtient des résultats plus contrastés selon les composés et l’adsorbant. Par exemple le toluène est analysé de façon juste uniquement sur l’adsorbant Carbopack X ; le benzène et l’éthylbenzène sont analysés de façon juste uniquement sur l’adsorbant Radiello 145 ; l’o-xylène quant à lui est bien estimé sur les deux adsorbants. De plus, une très forte sous-estimation est toujours rencontrée pour le m+p-xylène. Cela laisse penser à un problème d’identification du pic ou un mauvais étalonnage.
Lundi 4 mars 2024
Rapport
Performances Prev'air en 2022
Ce rapport présente les performances des prévisions nationales opérées dans le cadre de la plateforme Prev’Air (www.prevair.org) pour l’année 2022. L’objectif est de montrer des éléments d’appréciation de la qualité de la production Prev’air. Ce rapport traite successivement de l’évaluation des prévisions des concentrations des quatre polluants O3, NO2, PM10 et PM2.5, fournis quotidiennement par le système Prev’Air, du jour courant J jusqu’au J+3. L’estimation du comportement des outils est réalisée grâce à des indicateurs statistiques qui permettent de comparer les résultats de modélisation avec les observations validées de la base de données nationale GEOD’air, elle-même alimentée par les AASQA (associations agréées de surveillance de la qualité de l’air) et développée par le LCSQA. Une attention particulière est portée à l’évaluation des performances de Prev’Air concernant la détection des seuils réglementaires. Cet exercice a pour objectif d’estimer l’aptitude des modèles à prévoir spécifiquement les épisodes de pollution. L’ozone est évalué sur les mois de l’été 2022 (avril à septembre). Les autres polluants (PM10, PM2.5, NO2) sont évalués sur l’ensemble de l’année 2022. L’année 2022 a connu peu d’épisodes de pollution persistants d’ampleur nationale. L’évaluation de ces épisodes est effectuée à la fois sur les prévisions brutes de Prev’Air et sur les prévisions avec adaptation statistique, qui visent à corriger les biais systématiques du modèle brut par un processus d’apprentissage historique. Cette prévision corrigée statistiquement sert généralement de référence à l’expertise de l’équipe Prev’air pour la communication en cas d’épisode de pollution de l’air, et sert également de base aux calculs du module AMU, qui vérifie les critères de l’arrêté mesure d’urgence[1]. Les prévisions Prev’Air pour les DROM des caraïbes ont également été évaluées. Les prévisions sur les DROM de l’océan Indien, produites à partir de mai 2022, seront évaluées à compter de 2024 (rapport de performances portant sur l’année 2023). Dans l’ensemble, le comportement de Prev’Air est satisfaisant avec une bonne aptitude à respecter les objectifs de qualité définis dans le référentiel technique national[2], qui a établi ces valeurs cibles pour les différents scores concernant l’ozone et les PM10 ainsi que le contenu à faire figurer dans les rapports annuels d’évaluation des plateformes de prévisions constituant le référentiel technique national. Les prévisions avec adaptation statistique disponibles sur la métropole respectent les objectifs de performance et ont permis la plupart du temps d’anticiper l’occurrence des épisodes de pollution et d’identifier les principales zones affectées. Les prévisions brutes rencontrent plus de difficultés à satisfaire les objectifs de qualité, notamment dans les DROM. La composition chimique des particules (PM1) prévue par Prev’air a été évaluée avec l’aide des données CARA[3].  La part d’ammonium, de nitrates, de sulfates et de matière organique est un peu moins bien représentée dans la spéciation des PM1 qu’en 2021.   1] Arrêté du 7 avril 2016 relatif au déclenchement des procédures préfectorales en cas d'épisodes de pollution de l'air ambiant [2] https://www.lcsqa.org/fr/referentiel-technique-national [3] Favez et al. (Atmosphere, 2021) CARA program   Performances of Prev’air in 2022   This report presents the performances in 2022 of the national forecasts carried out within the Prev'Air platform (www.prevair.org). The objective is to assess the quality of Prev'air production. This report deals successively with the evaluation of the O3, NO2, PM10 and PM2.5 concentrations forecasts, daily provided by the Prev'Air system, from day D to D+3. The behavior of this system is estimated using conventional statistical indicators, which allow the modelling results to be compared with validated observations from the national GEOD'air database, itself fed by the AASQA (accredited air quality monitoring associations) and developed by the LCSQA. Particular attention is paid to the evaluation of Prev’Air’s forecasts regarding the detection of regulatory thresholds. The objective of this exercise is to estimate the capacity of the models to specifically anticipate pollution episodes. Ozone is evaluated over the summer months of 2022 (April to September). The other pollutants (PM10, PM2.5, NO2) are assessed over the whole year 2022. Few persistent episodes of national scope were noted during 2022. The evaluation of these episodes is carried out both on Prev’Air’s raw forecasts and on the statistical adaptation of CHIMERE which aims at correcting the systematic biases of the raw model through a historical learning process. This statistically corrected forecast generally serves as a reference to the expertise of the Prev’air team for communication in the event of an air pollution episode. It is also a base for the calculations of the AMU module, which checks the criteria of the emergency measure decree[4]. The Prev'air forecasts for the Caribbean DROMs have been assessed as well. The forecasts for the Indian Ocean overseas territories, produced from May 2022, will be evaluated from 2024 (performance report covering the year 2023). On the whole, the performance of Prev’Air is satisfactory with a good ability to meet the quality objectives defined in the national technical reference document[5] which established these target values for the different scores for ozone and PM10 as well as the content to be included in the annual evaluation reports of the forecasting platforms involved in the national air quality monitoring system. The forecasts with statistical adaptation match the performance objectives and have mostly allowed to anticipate the occurrence of pollution episodes and to identify the main affected areas. Raw forecasts are less satisfactory to comply with the quality objective, particularly in the DROM. The composition of PM1 predicted by Prev’air was assessed using CARA[6] data. Ammonium, nitrates, sulphates, and organic part are predicted less accurately than in 2021.   [4] Decree of 7 April 2016 relating to the triggering of prefectural procedures in the event of episodes of ambient air pollution [5] https://www.lcsqa.org/fr/referentiel-technique-national [6] Favez et al. (Atmosphere, 2021) CARA program   .
Mercredi 3 juin 2020
Rapport
Résultats du premier Essai national d’Aptitude des micro-Capteurs (EAµC) pour la surveillance de la qualité de l’air
L’émergence sur le marché de micro-capteurs connectés a conduit le dispositif national de surveillance de la qualité de l’air à s’intéresser à la fiabilité de ces nouveaux dispositifs. Il n’existe à l’heure actuelle aucun cadre normatif national ou européen permettant de comparer les performances de ces différents appareils commercialisés aux appareils de mesures de référence. Le premier essai d’aptitude national sur le terrain de micro-capteurs de gaz et de particules installés en site fixe, coordonné par le Laboratoire Central de Surveillance de la Qualité de l’Air (LCSQA), s’inscrit dans la continuité des travaux amorcés ces deux dernières années en laboratoire pour déterminer les caractéristiques de performance des micro-capteurs[1]. Ces travaux ont notamment permis de comprendre les effets de différents paramètres de mesures sur les systèmes capteurs mais il est cependant difficile en laboratoire de reproduire l’ensemble des facteurs d’influences sur la mesure. C’est pourquoi, les essais sur le terrain utilisant une comparaison directe avec des mesures de référence permettent d’obtenir une meilleure représentativité de ces effets. Cet essai, conduit de début janvier à mi-février 2018, avait pour objectif de placer en conditions réelles sur un site de typologie urbaine, un grand nombre de systèmes différents afin d’évaluer leur aptitude à suivre les principaux polluants d’intérêt pour l’air ambiant : le dioxyde d’azote (NO2), l’ozone (O3) et les particules (PM2,5 et PM10). Organisé par le LCSQA/IMT Lille Douai sur la station de mesure de la qualité de l’air de son Centre de Recherche, cet essai a regroupé 16 participants qui ont mis en œuvre 44 dispositifs au total, réplicas inclus. 17 systèmes étaient de conception et d’origines différentes (France, Pays-Bas, Royaume-Uni, Espagne, Italie, Pologne, États-Unis). Les systèmes mis à disposition ont été fournis par des fabricants, des distributeurs ou des utilisateurs volontaires œuvrant dans le cadre du dispositif national de surveillance (Associations Agréées de surveillance de la qualité de l’air, AASQA, et membres du LCSQA). Les systèmes mis à disposition présentaient ainsi des historiques d’utilisation différents. Cet essai ayant été réalisé conformément aux pratiques en vigueur pour l’organisation des comparaisons inter-laboratoires ou des essais d’aptitude, chaque système testé est identifié à l’aide d’un code alphanumérique unique. Les résultats ainsi obtenus ont tout d'abord fait l'objet d'une synthèse[2] en 2018 se concentrant sur les données NO2, O3 et PM2,5. Ce premier travail a ensuite été complété par l’exploitation des données PM1 et PM10 ainsi que la levée de confidentialité d'une partie des participants permettant de dresser une liste de correspondance entre code alphanumérique et participant. Ce document présente donc la méthodologie mise en œuvre avec un comparatif des notations qualitatives et les résultats pour l’ensemble des polluants étudiés. Il inclut également l’intégralité des fiches individuelles d’évaluation produites, avec l’ensemble des données chiffrées comme décrites ci-dessous. Ainsi, les données ont été exploitées par le LCSQA/Ineris par comparaison aux mesures d’instruments de référence ou équivalents à la méthode de référence. Un volume de plus de 70 millions de données minutes a dû être traité par des méthodes élaborées spécifiquement. Outre les performances métrologiques de ces instruments, une attention particulière a été portée à d’autres paramètres tels que la simplicité de mise en œuvre, l’autonomie, la portabilité, la fiabilité de communication (GSM, Wifi, Bluetooth, filaire, …), la convivialité des applications de récupération des données en tenant compte de l’objectif recherché. Chaque système a fait l’objet d’une fiche d’évaluation par polluant mesuré. Cette fiche inclut un descriptif technique succinct, un tableau récapitulatif des performances métrologiques, un radar « papillon » affichant des notations de 0 à 5 pour 8 critères qualitatifs ou quantitatifs, les relevés des séries temporelles de chacun des réplicas testés comparés aux données de l’instrument pris en référence, les graphiques de corrélation, et enfin un avis général. Il est important de rappeler que les systèmes micro-capteurs ont été testés en conditions fixes. Ainsi, les résultats obtenus ne peuvent pas être extrapolés à une mise en œuvre en mobilité. Par ailleurs, les radars d’évaluation construits pour cette évaluation donnent une vision de l’ensemble des critères de performance à prendre en compte qui ont un poids plus ou moins important selon l’usage auquel les micro-capteurs sont destinés. En termes de perspectives de ces travaux et afin de compléter cette première évaluation, un second essai d’aptitude a été réalisé durant l’été 2018 afin de tenir compte d’un potentiel effet de saisonnalité, notamment dans la composition de la matrice d’air (concentrations plus élevées en O3 et moins élevées en NO2 et PM). Ces résultats seront disponibles courant 2020. Néanmoins, la dépendance des conditions environnementales ne permet d’évaluer les systèmes capteurs que dans des situations très précises. Il semble donc nécessaire pour une évaluation complète des systèmes de mesures de pouvoir combiner la complexité d’une matrice réelle aux spécificités de concentrations contrôlées. Ainsi, une étude sur la faisabilité d’un dopage de matrice réelle par des mélanges gazeux et particulaires est en cours de réalisation par le LCSQA/Ineris   Results of the 1st French Intercomparison Exercise for Air Quality Monitoring sensors (EAµC) The emergence of connected sensors on the market led the French national air quality monitoring network to focus on the reliability of these new devices. Currently, no national or European normative framework is able to establish a comparison between the performances of the commercially available devices and the reference measurement systems. This first national intercomparison campaign of fixed site gas and particulate sensors coordinated by the French Central Laboratory of Air Quality Monitoring (Laboratoire Central de Surveillance de la Qualité de l’Air LCSQA) follow the works initiated two years ago in laboratory to determine the performance characteristics of sensors[1]. These works gave a better understanding of the effects of different measurement parameters on the sensors’ systems, though it is still difficult to reproduce all the measurement interferent in laboratory. That’s the reason why the field tests using a direct comparison with reference measurements help to get a better representativeness of these effects. The purpose of this test, carried out from early January to mid-February 2018, was to test numerous sensor systems under real conditions, on an urban typology site, in order to evaluate their ability to monitor the main pollutants of interest for ambient air: nitrogen dioxide (NO2), ozone (O3) and particulate matter (PM2.5 and PM10). Led by the LCSQA/IMT Lille Douai on the air quality monitoring station of its research centre, this test gathered 16 participants who in total implemented 44 systems in total, including replicas. 17 systems coming from different origin and with different design (France, Netherlands, United-Kingdom, Spain, Italy, Poland, United States). The available systems were provided by manufacturers, distributors or volunteer users working in the national monitoring network (Approved Air Quality Monitoring Association, AASQA and members of the LCSQA). They presented different usage hystory. This test has been made in accordance with the established practice for the organization of inter-laboratory comparisons or proficiency test. Each system is thus identified through a unique alphanumeric code. The results obtained were first summarized[2] in 2018 with a focus on the NO2, O3 and PM2.5 data. This first work has then been completed by the evaluation of PM1 et PM10 data and the waiver of confidentiality for a part of the participants in order to establish a correlation list between alphanumeric code and participant. This document presents the implemented methodology including a comparison between the qualitative ratings and the results for all pollutants studied. It also includes all the individual evaluation sheets produced, with all the figures as described below. The entire data set have been then processed by the LCSQA/Ineris in comparison with the reference measurement instruments or equivalent methods. More than 70 million of minute data had to be processed using methods specifically developed. Besides the metrological performances of these systems, a careful attention was paid to other parameters such as an easy implementation, autonomy, portability, reliability of the communication (GSM, Wi-Fi, Bluetooth, wired connexion, ...), data recovery friendliness taking into account the target objective. An evaluation sheet for each system and each individual pollutant has been produced. Each sheet includes a brief technical description, a summary table of the metrological performances, a “butterfly” radar presenting ratings from 0 to 5 for 8 qualitative or quantitative criteria, time series data for each of the tested replicas compared with the selected reference instrument’s data, correlation graphs and finally a general comment. It must be reminded that the sensors systems have been tested in fixed-conditions. The results obtained can’t be extrapolated to a mobile implementation. Moreover, the evaluation radars built for this exercise give a vision of all the performance criteria that must be taken into account, and which are more or less essential depending on the intended use of the sensors. In terms of work’s perspective, and in order to compete this first evaluation, a second intercomparison campaign has been made during summer 2018 in order to consider a potential seasonality effect, in particular within the air matrix composition (higher concentrations of O3 and lower concentrations of NO2 and PM). These results will be made available during 2020. Nevertheless, dependence on environmental conditions means that sensor systems can only be evaluated in very specific situations. In order to get a complete systems evaluation, it is then necessary to be able to combine the complexity of a real air matrix to the specifications of controlled concentrations. A study on the feasibility of enhanced ambient air matrix with gaseous and PM mixtures is being carried out by LCSQA/Ineris.   [1] N. REDON, F. DELCOURT, S. CRUNAIRE, N. LOCOGE, Protocole de détermination des caractéristiques de performance métrologique des micro-capteurs - étude comparative des performances en laboratoire de micro-capteurs de NO2, Rapport LCSQA, mars 2017. https://www.lcsqa.org/fr/rapport/2016/mines-douai/protocole-determination-caracteristiques-performance-metrologique-micro-cap N. REDON, S. CRUNAIRE, B. HERBIN, E. MORELLE, F. GAIE-LEVREL, T. AMODEO, Faisabilité de la mise en œuvre d'un protocole pour l'évaluation en laboratoire de micro-capteurs pour la mesure des concentrations massiques particulaires, Note technique LCSQA, juillet 2018. https://www.lcsqa.org/fr/rapport/faisabilite-de-la-mise-en-oeuvre-dun-protocole-pour-levaluation-en-laboratoire-de-micro [2] S. CRUNAIRE, N. REDON et L. SPINELLE, 1er Essai national d’Aptitude des micro-Capteurs (EAµC) pour la surveillance de la qualité de l’air : synthèse des résultats, Rapport LCSQA DRC_18_174307_09689A, novembre 2018. https://www.lcsqa.org/system/files/rapport/LCSQA2017-CILmicrocapteurs-synthese_resultats.pdf      
Lundi 28 mars 2022
Rapport
Programme CARA : Synthèse des principaux résultats (2008-2020)
Créé et coordonné depuis 2008 par le LCSQA/Ineris, le programme CARA a pour objectif de mieux connaître (au niveau national) la composition chimique des particules en suspension dans l'air ambiant (PM) et leurs diverses origines en milieu urbain. Il fonctionne en étroite collaboration avec les Associations de surveillance de la qualité de l’air (ASQAA) et des laboratoires académiques, permettant de mettre en œuvre des méthodologies novatrices, simples et robustes pour les acteurs de la surveillance de la qualité de l'air, dans une optique d’aide à la décision. Quelques-uns des principaux résultats produits par ce programme au cours des dix dernières années sont présentés dans ce rapport, notamment en ce qui concerne les techniques de mesure et procédures de traitement des données, ainsi que les connaissances acquises sur les principales sources de PM. Des méthodes off-line et on-line sont utilisées en respectant des procédures d'assurance et de contrôle qualité appropriées, comprenant notamment des exercices de comparaison inter-laboratoires (CIL). Des études de sources sont menées à l'aide de divers outils statistiques de type modèle récepteur. Les résultats présentés soulignent globalement le rôle prépondérant du chauffage au bois résidentiel (pendant la saison froide) et du transport routier (émissions à l’échappement et hors échappement, toute l'année), ainsi que la part importante des poussières minérales et des particules biogéniques primaires (principalement pendant la saison chaude). Les phénomènes de transport à longue distance, par exemple l'advection d’aérosols inorganiques secondaires du secteur continental européen et des poussières sahariennes dans les Antilles françaises, sont également présentés dans ce document. L'utilisation des mesures d'isotopes stables (δ15N) et de divers marqueurs moléculaires organiques, permettant de mieux comprendre respectivement les origines de l'ammonium et des différentes fractions d'aérosols organiques, est également abordée. NB : Le présent rapport correspond à la traduction française d’un article scientifique publié en janvier 2021 dans la revue Atmosphere et disponible au lien ci-dessous : https://www.mdpi.com/2073-4433/12/2/207     The CARA program has been developed since 2008 by the French reference laboratory for air quality monitoring (LCSQA) and the regional monitoring networks to gain a better knowledge at the national level on the particulate matter (PM) chemistry and its diverse origins in urban environments. It results of strong collaborations with international-level academic partners, allowing to bring state-of-the-art, straightforward and robust results and methodologies within operational air quality stakeholders (and subsequently, decision makers). Here, we illustrate some of the main outputs obtained over the last decade thanks to this program, regarding methodological aspects (both in terms of measurement techniques and data treatment procedures) as well as acquired knowledge on the predominant PM sources. Offline and online methods are used following well-suited quality assurance and quality control procedures, notably including inter-laboratory comparison exercises. Source apportionment studies are conducted using various receptor modeling approaches. Overall, the results presented herewith underline the major influences of residential wood burning (during the cold period) and road transport emissions (exhaust and non-exhaust ones, all along the year), as well as substantial contributions of mineral dust and primary biogenic particles (mostly during the warm period). Long-range transport phenomena, e.g., advection of secondary inorganic aerosols from the European continental sector and of Saharan dust into the French West Indies, are also discussed in this paper. Finally, we briefly address the use of stable isotope measurements (δ15N) and of various organic molecular markers for a better understanding of the origins of ammonium and of the different organic aerosol fractions, respectively.
Jeudi 19 novembre 2020
Rapport
Étude de faisabilité pour la construction d'un outil de synchronisation des données de systèmes capteurs
L'utilisation de systèmes capteurs pour la mesure de la qualité de l'air entraine généralement la production d'une grande quantité d'informations que ce soit des données de mesures de polluants atmosphériques, météorologiques ou encore des informations de fonctionnement du système testé souvent appelées méta-données ou metadata. Ces technologies de mesures donnent accès à des mesures en temps réel qu'il est souvent nécessaire de retraiter (moyennes minute, quart-horaire ou horaire) mais également de synchroniser entre elles. Cependant, cette synchronisation des données sur un pas de temps commun devient rapidement compliquée lorsqu'elle fait intervenir plusieurs systèmes autonomes de par la grande quantité de données recueillies, la multiplicité des systèmes ayant chacun un pas de temps différents ou des horloges internes désynchronisées ne pouvant être synchronisées en amont des essais. Ainsi, et pour répondre aux demandes des Associations agréées de surveillance de la qualité de l’air (AASQA) exprimées lors d'un atelier portant sur les capteurs durant les Journées Techniques des AASQA en 2018, le LCSQA-Ineris s'est proposé de conduire une étude de faisabilité pour construire un outil de synchronisation des données capteurs. À ce stade, une première version est disponible, nécessitant une mise en œuvre par les auteurs de la note Contact : Spinelle Laurent - laurent.spinelle@ineris.fr Feasibility study for the construction of a synchronisation tool for sensor systems data The use of sensors systems for air quality monitoring usually results in the generation of a large amount of information, such as measurement of atmospheric pollutants data, meteorological data or working information regarding the tested device often referred to as metadata. These measurement technologies give access to real-time measurement that should often be reprocessed (minute average, 15 minutes or hourly averages) but also synchronised with each other. However, this data synchronisation on a common time base can becomes complicated when it involves several autonomous systems with a large amount of collected data, a multiplicity of systems having each one a different time base or desynchronised internal clocks that can’t be synchronised before the experiments. Thus, and to bring an answer to the questions from the local French air quality network (AASQA) raised during a workshop on sensors at the annual technical meeting of the AASQA (JTA) in 2018, the LCSQA-Ineris proposed to conduct a feasibility study to build a sensor data synchronisation tool.
Lundi 23 mars 2020
Rapport
Intercomparaison de moyens mobiles 2019 – Site de Lyon
La directive européenne 2008/50/CE du 21 mai 2008 dédiée à la qualité de l’air appelle au respect de valeurs limites ou valeurs cibles, en leur associant une exigence en termes d’incertitude maximale sur la mesure. Les associations agréées de surveillance de la qualité de l'air (AASQA) sont tenues de participer régulièrement aux essais d'intercomparaison (destinées aux organismes agréés de surveillance de la qualité de l’air) mis en place dans le cadre du Laboratoire Central de Surveillance de la Qualité de l'Air (article 16 de l’arrêté modifié du 19 avril 2017). Dans l’objectif de vérifier le respect des exigences de la directive européenne 2008/50/CE, le LCSQA propose annuellement aux AASQA une intercomparaison de moyens mobiles pour les polluants SO2, O3, NO, NO2 et CO à différents niveaux de concentration et tout particulièrement au voisinage des seuils horaires d’information ou d’alerte pour les polluants NOx, O3, SO2, et de la valeur limite sur 8h pour le CO. Un exercice d’intercomparaison de moyens de mesures mobiles a été réalisé en mars 2019 sur l’hippodrome de Parilly à Lyon. Il a réuni 8 participants (7 AASQA et le LCSQA/INERIS) et 7 moyens mobiles (AirBreizh partageant le moyen mobile d’Air Pays de la Loire équipé de 2 têtes de prélèvement indépendantes) le tout constituant un parc de 39 analyseurs. L’exercice d’intercomparaison n’a pu être réalisé sur l’ozone, le générateur d’ozone haute concentration de l’INERIS étant tombé en panne lors de l’installation du matériel. Les résultats de cette intercomparaison permettent d’évaluer la qualité de mise en oeuvre des méthodes de mesures par les AASQA en conditions réelles. D’une manière générale, les résultats du traitement statistique suivant la norme NF ISO 13 528 et permettant la détermination des z-scores sont homogènes et très satisfaisants pour les participants. Les z-scores des participants sont compris entre ±2 sauf ceux du Laboratoire 8 concernant le CO pour qui le z-score est de -2,3 sur le palier 1 (1,5 ppm) et -2,4 sur le palier 2 (2 ppm). On notera que depuis 2008, les résultats obtenus en termes d’incertitude de mesure sont conformes aux exigences de la Directive Européenne et confirment dans la durée la fiabilité du système de mesure national.
Jeudi 12 octobre 2017
Rapport
Intercomparaison des moyens de mesures mobiles (Amiens 2016)
Dans l’objectif de vérifier le respect des exigences de la directive européenne 2008/50/CE, le LCSQA propose annuellement aux AASQA une inter-comparaison de moyens mobiles pour les polluants SO2, O3, NO, NO2 et CO à différents niveaux de concentration et tout particulièrement au voisinage des seuils horaires d’information ou d’alerte pour les polluants NOx, O3, SO2, et de la valeur limite sur 8h pour le CO. Un exercice d’inter-comparaison de moyens de mesures mobiles a été réalisé en mars 2016 en collaboration avec ATMO PICARDIE. Il a réuni 5 participants (3 AASQA, l’ISSEP (Belgique) et le LCSQA/INERIS) et moyens mobiles, constituant un parc de 33 analyseurs. Vu le faible nombre de participants à cet exercice, l’estimation des incertitudes de mesure peut être sensiblement impactée en cas d’écart de l’un des participants. Durant cette inter-comparaison, le système de dopage du LCSQA/INERIS permettant une distribution homogène des gaz sur 4 axes a été mis en œuvre. Le temps de résidence inférieur à 3 secondes (pour les NOx et l’ozone) dans les lignes d’échantillonnage n’a pas totalement été respecté malgré la mise en place de lignes fluidiques courtes et d’un boitier de distribution de gaz individuel pour les participants ayant les analyseurs de plus faibles débits. Le non-respect de ce critère n’a toutefois pas eu d’influence significative sur la dispersion des mesures des participants concernés. Le déroulement de l’exercice a comporté une phase préliminaire à la réalisation de paliers de dopages pour l’ensemble des polluants, consistant en une circulation de gaz étalon en aveugle visant à évaluer la cohérence des raccordements entre les niveaux 2 et 3 de la chaîne nationale d’étalonnage et les éventuels défauts de linéarité des appareils.  Peu de dysfonctionnements d’appareils ont été observés en cours d’exercice sur les différents analyseurs, sans conséquences sur le déroulement de l’exercice. Lors de la circulation de gaz pour étalonnage en aveugle, les écarts par rapport à la tolérance de 4 % (5% dans le cas du NO2) sur la lecture de concentrations étalons sont peu nombreux et dans quelques cas limités, assez élevés.  Pour chaque polluant, on relève des écarts de mesure de l’ordre de -12 à +8 % sur au plus un des appareils du parc. Les causes ont été identifiées (dérive, temps de chauffe insuffisant, analyseur de référence non modifiable). On rappellera que cette phase est désormais réalisée en une seule étape, sans étape de rattrapage/correction en cas d’écart excessif, afin d’accéder à des incertitudes de mesures plus proches des conditions réelles de terrain. Ces écarts ont été observés immédiatement après le calibrage des analyseurs par les AASQA avec leurs propres gaz d’étalonnages de niveau 2 ou 3. On note également que les analyseurs de SO2 présentent depuis l’exercice 2014 un nombre d’écarts réduits par rapport aux années antérieures, avec cette année la particularité d’être du même ordre que ceux des autres polluants. Cette nette amélioration s’explique par les précautions particulières appliquées aux bouteilles étalons et sans doute au soin pris par les participants lors de la phase de lecture de ces bouteilles compte tenu de l’évolution des consignes de la circulation de gaz étalons en aveugle. Pour l’exercice d’inter-comparaison en propre, les intervalles de confiance de répétabilité et de reproductibilité ont été déterminés pour chaque polluant et les différents paliers de dopage, en application de la norme NF ISO 5725-2. On signalera que le nombre de valeurs aberrantes détectées lors de l’application des tests de Cochran et Grubbs reste faible avec moins de 2% de données éliminées et ces dernières reposent en général sur un seul participant. L’élimination de données sur avis d’expert n’a pas été nécessaire. L’examen des intervalles de confiance de reproductibilité, déterminés expérimentalement, a conduit à des résultats satisfaisants en termes de respect des recommandations des Directives Européennes (15% d’incertitude de mesures aux valeurs limites réglementaires) : •           pour le polluant CO, l’intervalle de confiance de reproductibilité est de 4,5% à la valeur limite horaire ; •           pour le polluant SO2, cet intervalle est de 8,9% à la valeur limite horaire ; •           pour le polluant O3, l’intervalle de confiance de reproductibilité est de 5,6% à la valeur limite horaire de 180 ppb. On notera que les incertitudes estimées aux autres seuils de concentration disponibles pour l’ozone, à savoir 90 ppb (seuil d’information) et 120 ppb (seuil d’alerte horaire sur 3 heures), respectent également les exigences de la Directive Européenne ; •           l’intervalle de confiance de reproductibilité est de 9,9% à pour le NO et de 6,6% pour le NO2 aux valeurs limites horaires correspondantes. D’une manière générale, les résultats du traitement statistique suivant la norme NF ISO 13 528 et permettant la détermination des z-scores sont homogènes et très satisfaisants pour une majorité de participants. Une très large majorité des z-scores est comprise entre ±1. Les z-scores plus élevés, imposant des actions préventives et correctives, sont anecdotiques et concentrés sur peu de participants. Ainsi on relève des z-scores supérieurs à 4 pour le laboratoire n°1 sur 2 paliers de CO,  un z-score supérieur à 2 pour le laboratoire n°4 sur 1 palier de CO, et un z-score supérieur à 2 pour le laboratoire n°2 sur 1 palier dans le cas de l’ozone. Les résultats de cette inter-comparaison permettent d’évaluer la qualité de mise en œuvre des méthodes de mesures par les AASQA en conditions réelles. On notera que depuis 2008, les résultats obtenus en termes d’incertitudes de mesure sont conformes aux exigences de la Directive Européenne et confirment dans la durée la fiabilité du système de mesure national.  Ceci est à rapprocher du fait que le parc d’analyseurs dispose d’un temps de chauffe et de stabilisation important (>2 jours), ce qui tend à réduire les écarts entre appareils en début de campagne et conditionne l’obtention d’intervalles de confiance réduits. Cet exercice a permis de renouveler pour la quatrième année le test in situ du dispositif de dopage au niveau des têtes de prélèvement, permettant d’intégrer celles-ci au calcul d’incertitude expérimental. Ce dispositif reprend le système de génération basé sur la dilution de gaz concentrés, dilués dans un flux d’air ambiant puis distribués par coiffage de la tête de prélèvement par un sac en Tedlar, inerte aux polluants classiques. Ce dispositif peut autoriser le coiffage et la distribution simultanée de gaz sur un maximum de 12 têtes de prélèvements. On aura pu constater pour l’ensemble des polluants, la bonne cohérence des mesures faites simultanément dans les sacs Tedlar soit via les têtes de prélèvements soit via des lignes individuelles, indiquant à une exception près l’influence négligeable des têtes de prélèvement dans la chaîne de mesure. Le traitement statistique des données, identique à celui de l’exercice classique présenté ci-dessus, a isolé de nombreuses données ciblées sur le participant n°2, confirmant les observations faites au travers des données brutes du comportement douteux de certains appareils qui s’est avéré lié à l’influence de grilles de filtration à l’entrée des lignes fluidiques des appareils. Dans ce cas de figure, les analyseurs concernés ont fait l’objet d’une élimination du jeu de données sur avis d’expert. Les intervalles de confiance expérimentaux calculés sont : •           pour le polluant CO : 5,4% à la valeur limite 8 heures ; •           purement indicatif, pour le polluant SO2 : 23% (repose sur 3 participants uniquement) à la valeur limite horaire ; •           pour le polluant O3 : 1,8% à la valeur limite horaire ; •           pour le polluant NO : 5,5% à la pseudo-valeur limite horaire ; •           pour le polluant NO2 : 6,2% à la valeur limite horaire. On note une bonne cohérence des valeurs d’incertitude entre les exercices avec et sans coiffage des têtes de prélèvement pour l’ensemble des polluants (hors SO2). Ces résultats confirment les observations faites lors des tests précédents de ce dispositif de dopage sur 4 années consécutives et conduisent le LCSQA à valider définitivement le dispositif de dopage des têtes de prélèvement qui englobe toutes les incertitudes de mesures en conditions réelles. Ainsi, dès 2017, ce dispositif se substituera au dispositif classique en boitiers. Ceci permettra de respecter de manière plus systématique le critère de temps de résidence inférieur à 3 secondes pour les polluants O3 et NOx, et de procéder à quelques tests approfondis sur l’influence de la ligne de prélèvement (injection en tête de ligne par exemple). La réalisation d’exercices réguliers d’inter-comparaison permet au dispositif de surveillance national d’enrichir les procédures de maintenance périodique et le transfert des bonnes pratiques de mesure (cas du laboratoire 2 par ex.). Elle permet également aux AASQA accréditées qui y participent d’alimenter la démonstration du maintien de leurs compétences auprès du COFRAC. Dans cet objectif, le maintien de cet exercice annuel reposera sur une nouvelle planification ne retenant alternativement que les sites d’Atmo-Rhône/Alpes et de l’INERIS.
Jeudi 30 avril 2020
Rapport
Analyse du dicamba, piclorame et quinmérac dans les prélèvements d’air, phase particulaire
Le Dicamba, le Piclorame et le Quinmérac font partie de la liste des substances cibles de la campagne nationale exploratoire sur les pesticides (CNEP) réalisée par l’Anses, le réseau des AASQA et l’Ineris en tant que membre du LCSQA, entre juin 2018 et juin 2019. Le laboratoire prestataire (IANESCO) pour les analyses des échantillons de la CNEP ne disposant pas de méthode d’extraction et d’analyse de ces composés à rechercher sous forme de sel, l’objectif de ces travaux était de développer une technique d’extraction et d’analyse spécifique en s’appuyant si possible sur la méthode mise en œuvre pour le glyphosate basée classiquement sur une extraction en phase aqueuse. Les performances analytiques obtenues avec une extraction à l’eau acidifiée permettent d’atteindre des limites de quantification inférieures à 1 ng/m3 sans avoir à concentrer l’extrait. L’utilisation de l’eau comme solvant d’extraction permet également d’éviter de passer par une étape de changement de solvant avant l’analyse, ce qui minimise les pertes par évaporation et de gagner en temps d’analyse. La méthode d’extraction est identique à celle du glyphosate et permet donc de réaliser son dosage en parallèle sans avoir la nécessité de réaliser un prélèvement dédié. La stabilité des prélèvements est vérifiée jusqu’à J17 pour le piclorame et le quinmérac alors que le dicamba présente une légère perte lors des premiers jours, autour de 15%, pour se stabiliser jusqu’à J17. Les extraits d’échantillons de filtres restent stables jusqu’à J90.  Il est donc préconisé de réaliser l’extraction des filtres 24H après le prélèvement puis, le cas échéant, de stocker les extraits pendant jusqu’à 90 jours maximum pour analyse ultérieure.       Abstract: Analysis of glyphosate, glufosinate and AMPA by LC/MS/MS Dicamba, Picloram and Quinmerac are included in the list of targeted substances of the national exploratory campaign on pesticides (CNEP) carried out by Anses, the AASQA network and Ineris as a member of the LCSQA, between June 2018 and June 2019. The contractor laboratory (IANESCO) for the analyses of CNEP samples does not have an appropriate method for the extraction and the analysis of these compounds, searched in the form of salt. The objective of this work was to develop a specific extraction and analysis technique based, if possible, on the method used for glyphosate. The analytical performance obtained with an extraction using acidified water allows to attain a quantification limit lower than 1 ng/m3 without the need to concentrate the extract. Using water as an extraction solvent avoids going through a solvent change step before analysis, minimizes evaporative losses and saves analysis time. The extraction method is identical to that used for glyphosate and therefore allows to carry out its dosage in parallel without the need to carry out a dedicated sampling. The stability of the samples is checked until J17 for picloram and quinmerac while dicamba shows a slight loss in the first days, around 15%, then tend to stabilize until J17. Extracts from filter samples remain stable until J90. It is therefore recommended to extract the filters 24 hours after sampling and then store the extracts up to 90 days, if necessary, for further analysis.
Jeudi 17 décembre 2020
Rapport
Couplage drones/capteurs : étude de faisabilité pour une application à la surveillance de la qualité de l'air
Le développement de plus en plus rapide des technologies de vol autonome attire l'attention de nombreux secteurs économiques mais également de divers domaines scientifiques. La diversité des drones aériens associée au faible encombrement et faible poids des capteurs pour la mesure de qualité de l'air laisse envisager des applications comme par exemple la possibilité d'instrumenter des zones difficiles d'accès avec des instruments classiques et/ou de réaliser des profils verticaux de concentration des principaux polluants en zones urbaines et rurale dans les 200 premiers mètres d’altitudes où les régimes chimiques varient très fortement à cause des processus de dispersion (très influencés par la rugosité du terrain) et d’émissions. Cependant, l'utilisation de capteurs pour la mesure de qualité de l'air en mobilité, de plus soumis à des changements rapides de niveaux de concentrations et de conditions climatiques, mérite d'être évaluée sur le plan métrologique. Ainsi, l'Ineris a réalisé une première étude de faisabilité de ce type de couplage pour la mesure des particules, portant sur l’évaluation de l’impact d'un drone multirotor sur la mesure des capteurs PM, via l’influence de la distance entre le drone et les systèmes capteurs. Pour ce faire, le choix a été fait de prendre comme référence des mesures effectuées au moyen d'un compteur optique FIDAS. Ce dernier a été installé sur une Plateforme Elévatrice Mobile de Personnes (PEMP) de 18 mètres, en prenant soin d'installer les capteurs de PM à bas cout au même niveau que la tête de prélèvement du FIDAS. Le choix d'installer les capteurs et l'instrument de référence sur la même plateforme a été fait afin de faire varier, d’une part la distance entre une source de PM et les systèmes de mesure et d’autre part, la distance entre les systèmes de mesure et le drone. Les résultats obtenus lors de cette étude ont montré la possible influence du drone multirotor sur une mesure effectuée à l'aide de capteurs. Si la comparaison des concentrations mesurées par capteurs et par FIDAS sur des niveaux de concentrations faibles en PM (air ambiant, PM1 et PM2,5 3 et PM10 3) n’a pas mis en évidence d’impact du drone multirotor (ratio mesure capteur/FIDAS non affecté par la distance du drone), cette même comparaison à des concentrations plus élevées (50 µg/m3 en moyenne) a mis en évidence, un impact de la distance du drone multirotor par rapport aux capteurs. Ainsi, une distance minimale à respecter de 2 m entre les capteurs et le drone multirotor a été estimée sur la base des essais menés.     Coupling drones/sensors: feasibility study for an application to air quality monitoring   The fast development of autonomous flight technologies is attracting the attention of many economic sectors but also of various scientific fields. The diversity of unmanned aerial vehicles (UAV commonly named drone) associated with the small size and low weight of sensors for air quality monitoring suggests applications such as the possibility of instrumenting hard-to-reach areas with conventional instruments and/or of carrying out vertical concentration profiles of the main pollutants in urban and rural areas in the first 200 metres of altitude where chemical regimes vary very strongly due to dispersion processes (highly influenced by the roughness of the terrain) and emissions. However, the use of sensors to measure air quality in mobility, which are also subject to rapid changes in concentration levels and climatic conditions, need to be evaluated from a metrological point of view. Thus, Ineris carried out a first feasibility study of this type of coupling for PM measurement, focused on the evaluation of the impact of a multi-rotor UAV on the measurement of PM sensors, via the influence of the distance between the UAV and the sensor systems. To do this, the choice was made to use measurements taken using a FIDAS optical counter as a reference. The latter was installed on an 18-metre Mobile Elevating People Platform (MEWP), taking care to install the low-cost PM sensors at the same level as the FIDAS sampling head. The choice to install the sensors and the reference instrument on the same platform was made in order to vary the distance between a PM source and the measurement systems on one hand, and the distance between the measurement systems and the UAV on the other. The results of this study showed the possible influence of the multi-rotor UAV on a sensor-based measurement. While the comparison of concentrations measured by the sensors and by the FIDAS on low PM concentrations (ambient air, PM1 and PM2.5 3 and PM10 3) did not showed any significant impact of the multi-rotor UAV (sensor/FIDAS measurement ratio not affected by the distance of the UAV), this same comparison at higher concentrations (50 µg/m3 on average) revealed an impact of the distance of the multi-rotor UAV from the sensors. Thus, a minimum distance of 2 m between the sensors and the multi-rotor UAV was estimated based on this first feasibility study.
Lundi 7 avril 2014
Rapport
Surveillance du benzène Comparaison interlaboratoires
L'objectif de cette étude était d’organiser une comparaison interlaboratoires afin de tester l’aptitude des laboratoires à analyser différents types de tubes (passifs et actifs) susceptibles d’être utilisés par les AASQA pour effectuer leurs prélèvements, à partir de leur propre méthode d’analyse. Cette comparaison interlaboratoires était constituée de trois parties : Analyse de tubes (Carbopack X, Carbograph 4) chargés par le LNE en benzène, toluène, éthylbenzène, m-xylène et o-xylène par voie gazeuse à partir de matériaux de référence gazeux du LNE, Analyse de tubes Radiello (Carbograph 4) chargés en benzène, toluène, éthylbenzène, m-xylène, p-xylène et o-xylène par prélèvement passif dans la chambre d’exposition de l’INERIS, Analyse de tubes (Carbopack X) chargés par l’INERIS sur site à l’aide d’un préleveur automatique. Les résultats de la comparaison interlaboratoires portant sur l’analyse des tubes chargés par le LNEmontrent que sur les sept laboratoires ayant rendu des résultats, cinq d’entre eux (B, C, D, E, F) présentent des résultats satisfaisants pour tous les composés sur les deux adsorbants (Carbograph 4 et Carbopack X). Les deux autres laboratoires (A et H) présentent des résultats significativement différents des masses chargées. Des écarts relatifs jusqu’à  – 72 % ont été obtenus. Le laboratoire A présente des résultats dispersés quelque soit le type d’adsorbant et le composé. De plus, ils sont souvent sous-estimés, en particulier pour l’éthylbenzène, le m-xylène et l’o-xylène où les écarts normalisés peuvent atteindre – 12 (o-xylène sur Carbopack X). Il faut cependant noter que pour le benzène et le toluène sur Carbopack X, les résultats sont justes et non dispersés. Le laboratoire A a indiqué qu’il avait désorbé les tubes dans le mauvais sens ; ceci explique vraisemblablement la dispersion des résultats et les écarts obtenus. Le laboratoire H sous-estime les masses chargées de benzène, toluène, éthylbenzène et m-xylène jusqu’à 30 % quel que soit l’adsorbant (Carbopack X ou Carbograph 4). De meilleurs résultats sont obtenus pour l’o-xylène, permettant d’accepter quelques tubes. Les résultats de la comparaison interlaboratoires portant sur l’analyse des tubes chargés par l’INERISsont globalement satisfaisants pour les six laboratoires ayant rendu des résultats, et ce pour tous les composés sur les deux absorbants (Radiello et Carbopack X). Quelques tubes des laboratoires B, C, E et F présentent des z-scores supérieurs à |3|, mais étant donné que ces mêmes laboratoires ont fourni des résultats justes lors de la comparaison avec les tubes chargés par le LNE, cela nous laisse penser que ces erreurs ne proviennent pas d’un problème analytique mais plutôt d’un problème survenu lors du chargement de ces tubes. En effet, le chargement en chambre et sur site sont des méthodes de chargement moins reproductibles que le chargement actif par voie gazeuse mis en place par le LNE.