Résultats de la recherche

550 résultats correspondent à INERIS
Lundi 28 février 2022
Rapport
Etat des évaluations préliminaires sur le territoire national à fin 2021
Aux fins des rapportages réglementaires de décembre 2021 pour les régimes prévisionnels de 2022, un état d’avancement des évaluations en cours et restant à faire a été réalisé sur la base d’informations recueillies auprès des AASQA à l’occasion de demandes de précisions sur leur dispositif de surveillance. 11 ZAS sont concernées par des évaluations préliminaires en cours. Il s’agit des ZR Réunion, Mayotte, Guyane, Guadeloupe, et Hauts de France, ainsi que les ZAR Ile de Cayenne, Réunion-Volcan, Arras, Blois, Chartres-Dreux et Laval.  Dans cette note : un premier tableau résume l’aboutissement des évaluations préliminaires en 2021, un second tableau indique les évaluations préliminaire en cours ou à venir en 2022. Celles-ci sont au nombre d'une dizaine pour 1 470 régimes de surveillance établis. Au 1er janvier 2022, un nouveau zonage sera appliqué modifiant les zones dans 5 régions : Normandie, Provence-Alpes-Côte d'Azur, Centre, Nouvelle-Aquitaine et Auvergne - Rhône-Alpes, faisant ainsi passer le nombre de ZAS de 76 à 70.  
Actualité
L’INERIS quantifie l’effet du changement climatique sur la pollution à l’ozone
L’INERIS a conduit, pour le compte de l’Agence européenne de l’Environnement, une étude pour déterminer l’ampleur de l’impact du changement climatique sur la pollution à l’ozone. Ce travail inédit s’est appuyé sur toutes les études effectuées depuis 2005 dans ce domaine. Les conclusions, publiées dans Environmental Research Letters, confirment et quantifient l’impact négatif de l’évolution du climat d’ici la fin du siècle sur les concentrations d’ozone atmosphérique.
Mardi 3 septembre 2013
Rapport
Mesure des composés organiques d’intérêt en air intérieur: composés carbonylés
Classé cancérogène probable par l’IARC, omniprésent dans les environnements clos, l’acétaldéhyde est l’un des polluants majeur de l’air intérieur et va faire à ce titre l’objet de l’établissement de valeurs guide par l’Agence Nationale de SEcurité Sanitaire (ANSES) dans le courant de l’année 2013.Depuis 2007, le LCSQA-INERIS travaille sur la métrologie du formaldéhyde en air intérieur et depuis 2009 à l’évaluation des performances des moyens de mesure sur la durée d’échantillonnage préconisée par les protocoles pour sa surveillance dans les écoles et dans les crèches basés sur des mesures par tube passifs. Ainsi, depuis plus de six ans, les travaux du LCSQA ont permis l’évaluation des tubes passifs Radiello® mais également de nombreuses méthodes de mesure en continu pour la surveillance du formaldéhyde en air intérieur.Depuis 2010, les travaux du LCSQA-INERIS ont eu pour objectif d’évaluer les protocoles établis pour la surveillance du formaldéhyde dans les écoles et dans les crèches. En 2013, ces protocoles ont été évalués pour la surveillance de l’acétaldéhyde. Les tubes à diffusion radiale Radiello® ont pour ce faire été testés en chambre d’exposition à deux niveaux de concentration différents. Les nouveaux tubes passifs (cartouches DSD-DNPH, Diffusive Sampling Device-Dinitrophenylhydazyne) commercialisés par Supelco ont été évalués dans trois environnements différents : chambre d’exposition, air intérieur et air extérieur pour la mesure du formaldéhyde et de l’acétaldéhyde.Ces travaux ont permis d’établir les conclusions suivantes :Evaluation de la mise en oeuvre des protocoles écoles et crèches pour la mesure de l’acétaldéhyde - Sur la base des essais réalisés en chambre d’exposition et compte tenu des écarts obtenus avec la méthode active et la concentration théoriquement générée dans la chambre, le tube Radiello® ne semble à ce jour pas adapté à la surveillance de l’acétaldéhyde en air intérieur. Des essais supplémentaires sont nécessaires pour identifier les paramètres perturbant la mesure (définition du débit de diffusion, présence d’interférent et en particulier de formaldéhyde…) et seront proposés en 2014. - La mesure de l’acétaldéhyde sur tube actif semble perturbée par des phénomènes de compétition vis-à-vis de la réaction avec la DNPH avec le formaldéhyde, souvent plus concentré et dont la réaction est plus rapide, le carbone portant la fonction carbonyle étant plus électropositif et donc plus réceptif à l’attaque nucléophile de l’azote de la DNPH. Afin de valider cette hypothèse, des essais similaires en chambre de simulation pourront être menés en 2014 en générant l’acétaldéhyde seul, puis en mélange avec le formaldéhyde.Evaluation des tubes DSD-DNPH® - En chambre d’exposition et en air intérieur, les tubes DSD-DNPH® sont en bon accord avec les tubes Radiello, les tubes DSD-DNPH® se caractérisant néanmoins par une tendance à la sous-estimation. - Les tubes DSD-DNP® ne semblent pas adaptés à des mesures dans des conditions de concentration faible. Une modification de la méthode analytique par injection d’un volume de solution extraite plus importante pourrait améliorer les limites de quantification.Evaluation des tubes DSD-DNPH® pour la mesure de l'acétaldéhyde Les tubes DSD-DNP® ne semblent à ce jour pas adaptés à la mesure de l’acétaldéhyde, quel que soit l’environnement considéré. LISTE DES ABREVIATIONS ET ACRONYMES ANSES : Agence Nationale de SEcurité SanitaireCOV : Composés Organiques Volatils, DSD : Diffusive Sampling Device, DNPH : 2,4-DiNitroPhénylHydrazine,HCSP : Haut Conseil de Santé Publique,HPLC : High Performance Liquid Chromatography,LCSQA : Laboratoire Central de Surveillance de la Qualité de l’Air,IARC : International Agency for Research on Cancer,INERIS : Institut National de l’Environnement Industriel et des Risques,RDM : Régulateur de Débit Massique,VGAI : Valeurs Guide Air Intérieur.
Jeudi 13 janvier 2022
Rapport
Synthèse des résultats du suivi de l’adéquation des analyseurs automatiques de PM à la méthode de référence
    Cette note fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air ambiant. Elle a fait l'objet d'une résolution approuvée en CPS (comité de pilotage de la surveillance) du 16 décembre 2021. Mise en application : 1er janvier 2022   Conformément aux exigences de l’arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air ambiant en France, le LCSQA est en charge, en collaboration avec les AASQA, d’assurer le suivi en continu de l’adéquation entre la méthode de référence et les AMS conformes pour la mesure des PM en France. En 2020, le LCSQA a publié un rapport présentant le bilan des résultats issus des campagnes de mesure réalisées entre 2016 et 2019 et répondant aux exigences de la norme NF EN 16450 en termes de nombre et de répartition des données. Il s’est attaché à comparer et à mettre en perspective les résultats avec ceux obtenus dans les deux bilans indicatifs de trois ans réalisés sur les périodes 2013-2016 et 2015-2017. Le rapport présente également un bilan global regroupant l’ensemble des données acquises depuis 2013. Les conclusions de ce rapport portent uniquement sur la France métropolitaine, les DROM n’ayant pas encore fait l’objet de campagnes de mesure validées. A l’issue de ce rapport, une note de synthèse portant sur les conclusions a été rédigée à l’attention du ministère de la transition écologique.     On going verification of suitability of automated measuring system with the referece method: summary of results In accordance with the requirements of the decree of 16 April 2021 on the national ambient air quality monitoring system in France, the LCSQA is in charge, in collaboration with the AASQA, of on-going check of equivalence between the reference method and the compliant AMS for the measurement of PM in France. In 2020, the LCSQA published a report presenting the results of the measurement campaigns carried out between 2016 and 2019 and meeting the requirements of standard NF EN 16450 in terms of the number and distribution of data. It has endeavoured to compare and put the results into perspective with those obtained in the two three-year indicative assessments carried out over the periods 2013-2016 and 2015-2017. The report also presents an overall assessment of all the data acquired since 2013. The conclusions of this report only concern metropolitan France, as the DROMs have not yet been the subject of validated measurement campaigns. A summary note, based on the conclusions of this report, has been written for the Ministry of Ecological Transition.
Jeudi 30 avril 2020
Rapport
Guide européen pour la mise en œuvre d’outils statistiques de type « modèles récepteurs » : principaux points d’attention
L’élaboration et l’évaluation des plans d’action visant à améliorer la qualité de l’air nécessitent l’identification et la quantification des principales sources d’émissions. Deux grands types de méthodologies sont alors principalement utilisées : celles se basant sur l’utilisation de modèles numériques permettant de simuler le devenir des polluants dans l’atmosphère à partir de cadastres d’émission, de la paramétrisation des conditions météorologiques et des processus physico-chimiques de (trans-)formation des PM ; celles se basant sur la mesure des propriétés physico-chimiques des particules sur un site récepteur (« modèles récepteurs »). Ces derniers rendent compte des situations réelles et sont aujourd’hui couramment utilisés au sein de la communauté scientifique et par les acteurs de la surveillance de la qualité de l’air. Un guide méthodologique pour leur mise en œuvre a été édité en 2014 et révisé en 2019 dans le cadre des travaux du forum Européen pour la modalisation de la qualité de l’air (FAIRMODE).[1] Le LCSQA/Ineris s’est fortement impliqué dans ces travaux, en collaboration avec le Joint Research Center. La présente note relie les différents chapitres du guide européen (indiqués en bleu) à certains des principaux points d’attention à considérer lors de la mise en œuvre de ce type outils statistiques, et en particulier de la Positive Matrix Factorization (PMF). Elle ne constitue donc pas un substitut à une lecture attentive et une application rigoureuse du guide européen.   [1] https://ec.europa.eu/jrc/en/publication/european-guide-air-pollution-source-apportionment-receptor-models
Actualité
Journée nationale de la qualité de l’air : publication d’un dossier dédié à l’expertise de l’Ineris dans le domaine de la qualité de l’air
Mercredi 22 février 2017
Rapport
Comparaison Inter-laboratoires d’analyseurs de mesure automatique des particules par absorption de rayonnement bêta
  Réalisation d'un essai d’intercomparaison sur la mesure de particules en continu à l’aide d’analyseurs automatiques par absorption de rayonnement bêta - Octobre 2016 - Station fixe « La Faiencerie Creil » (Oise). Trois BAM 1020 ont été mis à disposition par les AASQA participants (AIRPARIF, LIG’AIR, ATMO Franche-Comté), un MP101M+, instrument en cours de développement a été installé par Environnement SA. Cet exercice a mis en œuvre un système de dopage de particules développé par l’INERIS lors d’études précédentes et permettant une distribution homogène de particules pour l’ensemble des instruments participants. La génération de particules a été assurée par la nébulisation de sels dissous de sulfate d’ammonium et de nitrate d’ammonium jusqu’à des concentrations de plus de 100 µg/m3. Etant donné le faible nombre de participants, le traitement des données ne pouvait pas se reposer sur l’analyse statistique des résultats des participants à travers la méthode consensuelle. En effet, l’incertitude de mesure de l’ensemble des participants aurait été trop importante. Ainsi, un préleveur Leckel été mis en place par l’INERIS dans le but d’obtenir une mesure de référence, laquelle sera utilisé pour évaluer les résultats des participants. L’estimation des scores de performances Z des analyseurs automatiques montre que ces derniers respectent les exigences de la Directive européenne en termes d’incertitude (25%) à la valeur limite (VL) journalière. Néanmoins, un participant montre des écarts important lorsque les instruments ont été exposés à des particules semi-volatiles. De façon générale, une tendance semble montrer l’existence de légères pertes des particules semi-volatiles par les analyseurs automatiques.  
Mardi 5 octobre 2021
Rapport
Performances Prev’air en 2019
Ce rapport présente les performances des prévisions nationales opérées dans le cadre de la plateforme Prev’Air (www.prevair.org). L’objectif est de montrer en toute transparence des éléments d’appréciation de la qualité de la production Prev’air. Ce rapport traite successivement les quatre polluants O3, NO2, PM10 et PM2.5, fournis quotidiennement par les prévisions du système Prev’Air, du jour courant J jusqu’au J+3 afin d’évaluer la capacité des modèles à prévoir leurs concentrations. L’estimation du comportement des outils est réalisée grâce à des indicateurs statistiques qui permettent de comparer les résultats de modélisation avec les observations validées de la base de données nationale GEOD’air, elle-même alimentée par les AASQA (associations de surveillance de la qualité de l’air) et développée par le LCSQA. Une attention particulière est portée à l’évaluation des performances de Prev’Air concernant la détection des seuils réglementaires. Cet exercice a pour objectif d’estimer l’aptitude des modèles à prévoir spécifiquement les épisodes de pollution. L’ozone est évalué sur les mois de l’été 2019 (avril à septembre). Les autres polluants (PM10, PM2.5, NO2) sont évalués sur l’ensemble de l’année 2019. L’année 2019 n’a connu que peu d’épisodes de pollution d’ampleur nationale : deux pour l’ozone, du 27 juin au 8 juillet (en 2 phases) et du 23 au 26 juillet, et un pour les PM10, deuxième quinzaine de février. L’évaluation de ces épisodes est effectuée à la fois sur les prévisions brutes de Prev’Air et sur les calculs de l’adaptation statistique, qui vise à corriger les biais systématiques du modèle brut par un processus d’apprentissage historique. Les gains obtenus par le modèle statistique résident dans sa capacité à corriger les sur- et sous-estimations des concentrations induites par le modèle brut. Cette prévision corrigée statistiquement sert généralement de référence à l’expertise de l’équipe Prev’air pour la communication en cas d’épisode de pollution de l’air. Pour la première fois, les prévisions Prev’AIR pour les DROM des caraïbes ont été évaluées et montrent des performances satisfaisantes. Dans l’ensemble, le comportement de Prev’Air est satisfaisant avec une bonne aptitude à respecter les objectifs de qualité définis par le groupe de travail prévision (composé du LCSQA et des AASQA) qui a établi ces valeurs cibles pour les différents scores ainsi que le contenu à faire figurer dans les rapports annuels d’évaluation des plateformes de prévisions constituant le dispositif national de surveillance de la qualité de l’air. Les prévisions avec adaptation statistique disponibles sur la métropole respectent les objectifs de performance et ont permis la plupart du temps d’anticiper l’occurrence des épisodes de pollution et d’identifier les principales zones affectées. Les prévisions brutes rencontrent plus de difficultés à satisfaire les objectifs de qualité notamment dans les DROM.     Performances of Prev’air in 2019 This report presents the performance of the national forecasts carried out within the Prev'Air platform (www.prevair.org). The objective is to assess the quality of Prev'air production. This report deals successively with four pollutants O3, NO2, PM10 and PM2.5, daily provided by the forecasts of the Prev'Air system, from day D to D+3 in order to evaluate the capacity of the models to forecast their concentrations. The behavior of the system is estimated using conventional statistical indicators, which allow the modelling results to be compared with validated observations from the national GEOD'air database, itself fed by the AASQA (air quality monitoring associations) and developed by the LCSQA. Particular attention is paid to the evaluation of Prev'Air' forecasts regarding the detection of regulatory thresholds. The objective of this exercise is to estimate the capacity of the models to specifically anticipate pollution episodes. Ozone is evaluated over the summer months of 2019 (April to September). The other pollutants (PM10, PM2.5, NO2) are assessed over the whole year 2019. A few pollution episodes occurred during this year: two for ozone, from June 27 to July 8 (in 2 phases) and from July 23 to 26, and one for PM10, in the second half of February. The evaluation of these episodes is carried out both on Prev'Air's raw forecasts and on the statistical adaptation of the Chimere which aims at correcting the systematic biases of the raw model through a historical learning process. The gains obtained by the statistical model lie in its ability to correct the over- and underestimations of concentrations computed by the raw model. This statistically corrected forecast generally serves as a reference to the expertise of the Prev'air team for communication in the event of an air pollution episode. For the first time, the Prev'air forecasts for the Caribbean DROMs have been assessed and show satisfactory performances. On the whole, the performance of Prev'Air is satisfactory with a good ability to meet the quality objectives defined by the forecasting working group (composed of the LCSQA and the AASQA) which established these target values for the different scores as well as the content to be included in the annual evaluation reports of the forecasting platforms involved in the national air quality monitoring system. The forecasts with statistical adaptation match the performance objectives and have mostly allowed to anticipate the occurrence of pollution episodes and to identify the main affected areas. Raw forecasts are less satisfactory to comply with the quality objective, particularly in the DROM.  
Mercredi 11 août 2010
Rapport
Essai de comparaison interlaboratoires sur les Hydrocarbures Aromatiques Polycycliques (HAP)
  Dans le cadre de l’assistance aux Associations Agréées de Surveillance de la Qualité de l’Air (AASQA), un essai de comparaison interlaboratoires analytique a été organisé par l’INERIS en collaboration avec le LNE en avril 2008. Cet essai portait sur l’analyse du Benzo[a]Pyrène ([B[a]P) et des autres HAP concernés par la directive 2004/107/CE du 15 décembre 2004. L’objectif de cet essai était d’une part, d’estimer l’incertitude élargie pour l’analyse du B[a]P dans l’air ambiant afin de savoir comment les différents laboratoires se situent par rapport aux exigences de la directive et d’autre part, de fournir aux AASQA des éléments comparatifs vis-à-vis des résultats obtenus lors des essais interlaboratoires précédents. De plus, la norme NF EN 15549 n’ayant pas été publiée avant la réalisation de cet exercice, les laboratoires ont mis en œuvre leurs propres méthodes analytiques ce qui a permis d’obtenir des informations sur les performances analytiques des laboratoires et sur les améliorations possibles, et au final, de compléter les éléments de comparabilité des données au niveau national. Chaque participant a reçu les matériaux suivants : Quatre matériaux de référence certifiés (MRC) préparés par le LNE, constitués de quatre solutions étalons notées : Etalon 1, Etalon 2, Etalon 3 et Etalon 4, présentant des concentrations différentes ; Deux matériaux liquides (dans du dichlorométhane) préparés par l’INERIS à partir d'un prélèvement réel sur membrane en quartz, à analyser sans autre traitement, notés : Extrait 1 et Extrait 2 ; Quatre matériaux solides (morceaux de filtre) contenus dans des boîtes de Pétri préparés par l’INERIS et issus de prélèvements réels effectués sur filtre en quartz à l'aide d'un préleveur grand volume de type ANDERSEN, équipé d'une tête PM10, à un débit de 60 m3/h. Chaque filtre était découpé avec un emporte-pièce en 12 morceaux de 47 mm de diamètre. Quatre filtres notés Filtre 1, Filtre 2, Filtre 3 et Filtre 4 ont ainsi été envoyés aux laboratoires. L'utilisation de matériaux liquides (dont les MRC) permet de tester la chaîne analytique de chaque laboratoire, alors que l'utilisation de matériaux solides permet de tester l’ensemble de la chaîne analytique (extraction, concentration, purification si nécessaire et analyse) de chaque laboratoire. Cet exercice comprenait pour la première fois, des matrices de concentrations très différentes afin de prendre en compte les gammes de travail habituelles des laboratoires travaillant aussi bien sur des filtres issus des prélèvements haut débit que bas débit. En 2008 également, l’analyse robuste des résultats selon les normes NF ISO 13528 et NF ISO 5725-5 a été mise en œuvre pour la première fois. Ce traitement statistique est préconisé par la norme NF ISO 13528 pour le traitement des résultats des essais de comparaison interlaboratoires. Les principaux enseignements de cet essai interlaboratoires sont les suivants : Le choix de distribuer aux participants à cet essai des matrices de concentrations représentatives des prélèvements haut et bas débit, bien que très pertinent et plus équitable, pose cependant des problèmes lors de la préparation des matrices à analyser, ainsi que sur l’interprétation des résultats. Ainsi, il est important d’attirer l’attention des AASQA sur l’examen des résultats issus des essais interlaboratoires. En effet, les résultats obtenus doivent être regardés de façon spécifique en tenant compte des niveaux de concentrations habituellement rencontrés et non uniquement de façon globale. L’analyse robuste des résultats selon les normes NF ISO 13528 et NF ISO 5725-5 sera désormais mise en œuvre sur les prochains essais interlaboratoires organisés par le LCSQA pour les HAP. Il a cependant été constaté qu’en général lors de cet essai, toutes matrices confondues, les écarts-types de reproductibilité (SR) obtenus en réalisant les « analyses robustes » selon les normes NF ISO 13528 et NF ISO 5725-5, sont plus élevés et conduisent à estimer une incertitude élargie plus importante que celle obtenue avec le traitement statistique selon la norme NF ISO 5725-2. De ce fait dans les années à venir une attention toute particulière sera portée à l’interprétation des résultats afin de garantir le suivi historique ainsi que l’évolution des laboratoires. Cependant, par rapport aux années précédentes, une nette augmentation des coefficients de reproductibilité inter laboratoires (CVR) pour les étalons, ainsi que des résultats très médiocres et inexplicables pour les extraits ont également été observés. Les résultats obtenus pour les filtres sont encourageants et respectent pour la plupart d’entre eux les exigences en termes d’incertitudes. Il est donc à signaler une bonne maîtrise des laboratoires sur l’analyse des matrices mettant en œuvre toute la chaîne analytique (extraction, évaporation et analyse) même à de faibles concentrations. De plus, ces résultats satisfaisants ont été obtenus par tous les laboratoires travaillant aussi bien sur des filtres issus des prélèvements haut et bas débit. Une nette amélioration des limites de détection ainsi que des résultats autour des concentrations équivalentes à un prélèvement bas débit est à signaler. Cependant, les résultats obtenus sont moins bons pour des concentrations inférieures au seuil d’évaluation inférieur (0,4 ng/m3). D’une façon générale, les résultats obtenus cette année sont positifs mais des efforts d’optimisation et de validation des méthodes analytiques (changement de solvant, évaporation, identification et quantification des composés…) doivent encore être réalisés par les laboratoires afin de parvenir à des meilleurs résultats sur des matrices telles que les étalons et les extraits, lesquelles devraient normalement donner lieu à des meilleurs résultats que sur des filtres.
Actualité
Retour sur la visite des Directeurs d’AASQA à l’INERIS le 8 octobre 2013
Afin de mieux faire connaitre les activités de ses membres, le LCSQA a proposé aux directeurs d’AASQA une visite de l’INERIS (Institut National de l'Environnement Industriel et des Risques) à Verneuil en Halatte (Oise) le 8 octobre 2013. Cette visite a été l’occasion de présenter l’ensemble des activités de l’institut qui a pour mission de contribuer à la prévention des risques que les activités économiques font peser sur la santé, la sécurité des personnes et des biens ainsi que sur l’environnement.