Résultats de la recherche

82 résultats correspondent à CARA
Mercredi 20 décembre 2017
Rapport
Traitement harmonisé de jeux de données multi-sites pour l’étude de sources de PM par Positive Matrix Factorization (PMF)
Ce rapport présente les résultats issus de l’utilisation de l’outil statistique Positive Matrix Factorization (PMF) pour une réanalyse homogène de 15 jeux de données français collectés lors de ces 6 dernières années dans le cadre du programme CARA et/ou de projets de recherche nationaux/européens. Ce travail a notamment été conduit dans le cadre du projet SOURCES (cofinancé par l’ADEME) et constitue la plus large étude de sources de PM10 au niveau national par application d’outil sources-récepteur. Cette étude inclut le développement d’une méthodologie de traitement de données harmonisée (analyse statistique du jeu de données, sélection des variables d’entrée pour l’analyse PMF, estimation de leurs incertitudes, application des contraintes chimiques spécifiques dans les profils chimiques de certains facteurs). L’application de cette méthodologie sur un ensemble des jeux de données disponibles converge vers les principales conclusions suivantes : Les émissions primaires liées au transport routier influencent fortement la masse des PM10sur les sites de proximité automobile, mais également sur certains sites de fond urbain tels que Rouen, Marseille, Grenoble et Nogent (avec des contributions relatives de l’ordre de 20-30% en moyenne annuelle). Sur les autres sites, les contributions annuelles sont d’environ 10%. La source de combustion de la biomasse est très importante en hiver, contribuant jusqu’à 70% de la masse des PM10en moyenne saisonnière à Chamonix (contre 10-15% à Marseille, Lens et Rouen, et environ 30% sur tous les autres sites). Les aérosols secondaires riches en nitrate d’ammonium présentent une concentration maximale au printemps (typiquement 30% des PM10), en particulier sur les sites de la moitié nord de la France. L’impact des aérosols secondaires riches en sulfate d’ammonium sur les niveaux de PM10est principalement observé en période estivale (en particulier dans le sud de la France). Les poussières minérales présentent des contributions importantes (5-20%) et relativement comparables au printemps et en été sur un grand nombre de sites. De nouveaux traceurs organiques - e.g., polyols et l’acide méthylsulfonique (MSA), rarement utilisés dans les études précédentes - ont permis la quantification de sources biogéniques spécifiques (e.g., émissions primaires biogéniques et aérosols organiques secondaires d’origine marine) qui présentes des contributions significatives du printemps à l’automne. Cette étude s’inscrit dans un contexte de définition de procédures d’assurance qualité pour l’application des outils de source apportionment au niveau européen, incluant les exercices de comparaison inter-laboratoire organisés par le JRC et les travaux de normalisation du CEN. La méthodologie mise en œuvre pourra notamment être utilisée dans de prochaines études PMF à large échelle spatiale, permettant ainsi d’améliorer la comparabilité des résultats entre les différents sites et des différentes régions. Néanmoins, une limitation inhérente à l’utilisation d’un protocole de traitement de données harmonisé réside dans l’hétérogénéité (en nombre et en qualité) du panel des espèces chimiques utilisées comme variables d’entrée. Ainsi, selon les caractéristiques spécifiques des sites et jeux de données étudiés, l’utilisation d’une approche « personnalisée » de traitement de données peut être préférée. En particulier, l’élargissement du jeu de données d’entrée avec, par exemples, de nouveaux marqueurs organiques (e.g., n-alcanes, hopanes, cellulose, oxy- et nitro-HAP dérivés, et/ou autres marqueurs de composés secondaires), des résultats de mesures isotopiques (e.g., 14C, 15N), et/ou des données d’analyseurs automatiques (AE33, ACSM, mesures de métaux en continu…), doit permettre d’améliorer l’identification et la quantification de certaines sources minoritaires (e.g., émissions industrielles et/ou combustion de fioul lourd) ainsi que les facteurs liés aux aérosols secondaires (organiques et inorganiques).
Lundi 19 mars 2018
Rapport
Guide méthodologique pour la mesure du « Black Carbon » par Aethalomètre multi longueur d’onde AE33 dans l’air ambiant (OBSOLETE)
  Attention : Ce guide 2016 est obsolète ; il a fait l'objet d'une révision en 2020 applicable au 15 décembre 2020. Lire le guide révisé "Guide méthodologique pour la mesure du « Black Carbon » par Aethalomètre multi longueur d’onde AE33 dans l’air ambiant " (2020)   Ce document constitue la première version du guide méthodologique LCSQA pour la mesure des concentrations de carbone suie (ou Black Carbon, BC), émis par les sources de combustion. Il concerne l’utilisation de l’aethalomètre multi-longueur d’onde AE33 fabriqué par « Magee scientific ». Ce guide méthodologique ne constitue pas un mode opératoire ou un manuel d’utilisation. Le lecteur est invité à se reporter au manuel fourni par le distributeur pour les informations relatives au fonctionnement de l’instrument lui-même. Ce document s’attache à recenser les bonnes pratiques, les fréquences de maintenance, les différentes étapes inhérentes à la validation des données ainsi que les méthodes d’exploitation des données à travers notamment l’utilisation d’un modèle d’estimation des sources reliées aux combustion de biomasse ou de carburant fossile. Il a été rédigé sur la base des documents des constructeurs, des échanges avec le distributeur, de l’état de l’art scientifique ainsi que des retours d’expériences des utilisateurs des AASQA émis notamment lors des réunions LCSQA du « Groupe Utilisateur AE33 » et du « Groupe de travail du programme CARA ». Ce guide pour l’utilisation des AE33 pourra être remis à jour en fonction des retours d’expériences des utilisateurs, des préconisations du constructeur ou des avancées de l’état de l’art scientifique. Approuvé en CPS du 15 mars 2018.
Jeudi 30 avril 2020
Rapport
Guide européen pour la mise en œuvre d’outils statistiques de type « modèles récepteurs » : principaux points d’attention
L’élaboration et l’évaluation des plans d’action visant à améliorer la qualité de l’air nécessitent l’identification et la quantification des principales sources d’émissions. Deux grands types de méthodologies sont alors principalement utilisées : celles se basant sur l’utilisation de modèles numériques permettant de simuler le devenir des polluants dans l’atmosphère à partir de cadastres d’émission, de la paramétrisation des conditions météorologiques et des processus physico-chimiques de (trans-)formation des PM ; celles se basant sur la mesure des propriétés physico-chimiques des particules sur un site récepteur (« modèles récepteurs »). Ces derniers rendent compte des situations réelles et sont aujourd’hui couramment utilisés au sein de la communauté scientifique et par les acteurs de la surveillance de la qualité de l’air. Un guide méthodologique pour leur mise en œuvre a été édité en 2014 et révisé en 2019 dans le cadre des travaux du forum Européen pour la modalisation de la qualité de l’air (FAIRMODE).[1] Le LCSQA/Ineris s’est fortement impliqué dans ces travaux, en collaboration avec le Joint Research Center. La présente note relie les différents chapitres du guide européen (indiqués en bleu) à certains des principaux points d’attention à considérer lors de la mise en œuvre de ce type outils statistiques, et en particulier de la Positive Matrix Factorization (PMF). Elle ne constitue donc pas un substitut à une lecture attentive et une application rigoureuse du guide européen.   [1] https://ec.europa.eu/jrc/en/publication/european-guide-air-pollution-source-apportionment-receptor-models
Jeudi 17 février 2011
Rapport
Caractérisation Chimique des Particules - Veille sur les études de sources
La pollution particulaire constitue aujourd’hui un véritable enjeu à la fois politique  sanitaire et règlementaire. Ainsi, un besoin fort est exprimé par les pouvoirs publics de se doter d’outils de compréhension des phénomènes et d’aide à la décision afin d’appliquer la Directive 2008/50/CE et mettre en œuvre des plans de réduction des sources de matière particulaire (PM) en France. C’est pourquoi le dispositif CARA a été crée au sein du Laboratoire Central de Surveillance de la Qualité de l’Air (LCSQA) et que des campagnes de mesures sont menées sur le territoire pour suivre des traceurs spécifiques de certaines pollutions, caractériser la pollution particulaire dans des zones spécifiques telles les zones rurales, mettre au point des méthodes d’analyse et de traitement des données pour attribuer les sources et comprendre les phénomènes. En 2009, un premier rapport s’est attaché à faire l’état des lieux des différentes approches existantes pour l’attribution des sources de particules ainsi que des différentes études de source de PM menées en France au niveau national, régional et dans le domaine de la recherche, ce travail a révélé la multiplicité et la diversité de ces études. En 2010, ce travail de veille s’est poursuivi et a permis de mettre en évidence les principaux éléments suivants : Le nombre de sites instrumentés pour l’étude des PM est passé d’une trentaine en 2009 à une cinquantaine en 2010. La grande majorité de ces sites couvre la partie Est de la France, l’Ouest n’étant couvert que par quelques sites du dispositif CARA et les sites ruraux. Une grande majorité des projets régionaux est tournée vers l’attribution des sources locales et plus particulièrement le chauffage au bois, aucun ne s’intéresse spécifiquement aux apports transfrontaliers (si l’on excepte les projets AERA paragraphe 7.9 et PACTES paragraphe 7.11 en partenariat avec l’Italie) et aux sources naturelles. Parmi l’ensemble des projets, deux seulement sont destinés à des applications épidémiologiques (« Brumes de sable » en Martinique paragraphe 7.5 et le site d’observation de la Meuse paragraphe 7.7) et un se destine à des études de toxicologie (PACTES en région PACA paragraphe 7.9). Le nombre d’études régionales est bien plus important que le nombre d’études menées à l’échelle nationale et les programmes de recherche nationaux sont peu nombreux. Alors que de multiples études régionales sont venues enrichir celles répertoriées en 2009, aucun nouveau programme de recherche national n’a été initié en 2010 alors que les campagnes MEGAPOLI ont eu lieu et que le programme FORMES est arrivé à son terme. Cet état de fait semblerait mettre évidence une plus grande facilité à monter des projets localement, qu’au niveau national en regroupant plusieurs laboratoires et ainsi des compétences multiples et complémentaires, et par conséquent la nécessité de favoriser la mise en place et le financement de ce type de projets par un encadrement national par exemple.  Néanmoins, qu’elles soient un outil des pouvoirs publics, aient pour objectif la caractérisation d’une pollution locale ou la compréhension des phénomènes, toutes ces études participent à la connaissance de la pollution particulaire en France et sont ou seront à l’origine d’une masse importante de données. A nouveau le besoin de cohérence nationale pour la mise en œuvre de tels projets est clairement identifié afin que les méthodes de mesures soient harmonisées pour une meilleure exploitation des données et que les différents projets soient coordonnés pour apporter les réponses adaptées à la problématique nationale posée par la pollution particulaire (réduction des sources, estimation de l’exposition, application de la Directive). Dans ce contexte et dans la continuité du travail de veille réalisé depuis 2009, une revue et compilation de l’ensemble de ces données est prévue pour les années à venir par le LCSQA. La vision globale que peut offrir ce travail pourrait permettre de proposer des pistes d’orientation des projets en création ou d’exploitation des données des projets en cours.
Mardi 30 janvier 2018
Rapport
Surveillance des métaux dans les particules en suspension
Depuis 2007, une surveillance est effectuée par l’ensemble des AASQA de façon continue ou ponctuelle, pour le Pb, As, Cd et Ni dans les PM10 en accord avec les directives européennes (2008/50/CE et 2004/107/CE modifiées par la directive 2015/1480/CE). Les objectifs de l’IMT Lille Douai, au sein du LCSQA, sont d'assurer un rôle de conseil et de transfert de connaissances auprès des AASQA, de procéder à des travaux permettant de garantir la qualité des résultats, de participer activement aux travaux de normalisation français (AFNOR X43D) et européens (WG14, WG20, WG44), de réaliser une veille technologique sur les nouvelles méthodes de prélèvement et d’analyse susceptibles d’optimiser les coûts tout en respectant les objectifs de qualité et de participer à la valorisation des activités de surveillance et des études menées en collaborations avec les AASQA. En 2017, les travaux réalisés ont porté sur la fourniture de filtres vierges en fibre de quartz. Des filtres ont été achetés par lots et leurs caractéristiques chimiques ont été contrôlées, avant d’être redistribués aux AASQA sur simple demande de leur part. En 2017, 3 275 filtres en fibre de quartz (Pall et Whatman) ont été distribués auprès de 15 AASQA différentes. Le LCSQA IMT Lille Douai a également participé aux GT « Caractérisation chimique et sources des PM » et « Référentiel constituant » organisés en 2017. Il a enfin réalisé les analyses des métaux, métalloïdes et éléments majeurs dans des échantillons de PM10 collectés dans le cadre du programme CARA à Nogent sur Oise et Metz pendant l’année 2016. Le traitement statistique (ACP, PMF) de ces données doit permettre l’identification des principales sources de particules affectant la zone (site récepteur) et leurs contributions relatives à la masse des PM10.
Mardi 19 novembre 2019
Rapport
Estimation des concentrations de PM liées à la combustion de biomasse à partir des mesures d’absorption par le Brown Carbon
Le dispositif national s’est équipé ces dernières années d’Aethalomètre multi-longueurs d’onde (de type AE33) permettant d’assurer la surveillance du carbone suie en tant que traceur potentiel de polluants responsables de l’impact sanitaire des particules, mais également de différencier les émissions de ce composé dues à la combustion d’hydrocarbures de celles liées à la combustion de biomasse (BCff vs. BCwb). Il est ainsi possible de disposer d’une première estimation des concentrations de PM issues de ces deux familles de sources à l’aide de simples approches mono-traceur (PMff = a x BCff et PMwb = b x BCwb). Cependant, les profils chimiques des particules émises par combustion de biomasse peuvent être très différents d’un site et/ou d’une période de mesure à l’autre, induisant une forte incertitude sur les valeurs du facteur de conversion à appliquer entre BCwb et PMwb selon le cas d’étude. La valeur de ce facteur reste très incertaine si elle ne peut pas être contrainte par le biais d’études de sources spécifiques et indépendantes (e.g., mesures sur filtres). Outre le carbone suie, les combustions de biomasse émettent principalement de la matière organique, dont une partie absorbe le rayonnement lumineux dans le proche ultraviolet. Cette fraction organique absorbante, appelée Brown Carbon (BrC), n’est pas identique d’une combustion à l’autre, ne provient pas uniquement de la combustion de biomasse et n’est pas le seul composé (en plus du carbone suie) à absorber la lumière autour de 400 nm. Malgré ces nombreux facteurs d’incertitudes, on observe de très fortes corrélations entre les concentrations de PM issues de la combustion de biomasse et la quantité de lumière absorbée dans le proche UV par le BrC sur un panel de différents sites de fond urbain français. Ces résultats suggèrent la possibilité d’estimer directement les concentrations d’aérosols organiques issues de la combustion de biomasse, sans hypothèses sur la part de Black Carbon liée à la biomasse.
Jeudi 16 avril 2015
Rapport
Eléments de compréhension des épisodes de pollution particulaire de fin décembre 2014 - début janvier 2015
D’importants épisodes de pollution particulaire ont impacté la métropole (en particulier la façade ouest, le bassin parisien, l’Alsace et Rhône-Alpes) en fin d’année 2014 - début d’année 2015. Cette note synthétise les résultats obtenus pour ces épisodes dans le cadre du programme CARA, notamment par analyses chimiques de filtres prélevés par les AASQA sur 13 sites du dispositif national au cours de ces épisodes. Les interprétations scientifiques proposées dans cette note pourront être consolidées en cours d’année 2015, notamment à l’aide d’une analyse plus approfondie des mesures réalisées par aethalomètres multi-longueurs d’onde. La variabilité spatiale et temporelle des niveaux de PM10 observée autour du 1er janvier 2015 est principalement liée aux fluctuations des concentrations de matière organique. Cette dernière fraction constitue près des ⅔ de l’ensemble des PM10 pour les sites de fond urbain ayant pu être étudiés et présentant un dépassement du seuil journalier de 50μg/m3. L’analyse du contenu en lévoglucosan sur l’ensemble des filtres disponibles permet de conclure à la forte influence de la source « combustion de biomasse » sur ces niveaux de matière organique. Ces résultats sont à relier en premier lieu à l’utilisation accrue du chauffage au bois au cours des vacances et jours fériés, couplée à des conditions météorologiques défavorables à la dispersion des polluants autour du 1er janvier 2015, en particulier sur la partie ouest de la France. Sur l’ensemble des sites étudiés ici, seul celui de proximité automobile de Strasbourg Clémenceau présente des dépassements du seuil journalier de 50μg/m3 ne pouvant être directement expliqués par la combustion de biomasse.
Vendredi 17 janvier 2014
Rapport
Comparaison inter laboratoires organisée pour les laboratoires européens impliqués dans l’analyse du lévoglucosan et de ses isomères
Depuis 2011, l’INERIS est partenaire associé du réseau européen ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) du programme de recherche « FP7-Infrastructures ». Ce projet vise notamment l’harmonisation des techniques d’observation des particules atmosphériques, des espèces gazeuses à courte durée de vie et des nuages à l’échelle européenne. Dans ce cadre et à travers le pilotage du programme CARA (Caractérisation chimique des particules) pour le LCSQA (Laboratoire central de surveillance de la qualité de l’air), l’INERIS a organisé une comparaison inter laboratoires analytique  (CIL) au premier semestre 2013. Cet essai portait sur l’analyse du lévoglucosan et de ses isomères (mannosan et galactosan) reconnus pour être des composés organiques majeurs dans l’étude des sources de particules, notamment pour identifier la source combustion de biomasse (chauffage au bois). La comparaison inter laboratoire a été ouverte prioritairement aux membres du réseau ACTRIS puis à tous les laboratoires européens. Sur 15 inscrits, dont 3 français (tous sont impliqués dans l’analyse du levoglucosan pour les AASQA), 13 laboratoires ont rendus des résultats. Les participants ont reçu les matériaux d’essais suivants à analyser: ‐ un matériau de référence commercialisé par le NIST (National Institut of   Standards and Technology) (SRM 1649b, urban dust). ‐ trois matériaux solides (poinçons de filtre) préparés par l’INERIS et issus de   prélèvements d’air ambiant pour deux d’entre eux, le troisième étant un   blanc de terrain. Les prélèvements ont été effectués sur filtre en quartz à l'aide d'un préleveur grand volume de type ANDERSEN, équipé d'une tête PM10, à un débit de 70 m3/h. Chaque filtre était découpé avec un emporte-pièce en 16 poinçons de 47 mm de diamètre. Aucune norme n’encadre actuellement l’analyse du lévoglucosan et de ses isomères. Les laboratoires ont mis en oeuvre leurs propres méthodes analytiques. Ceci a permis d’obtenir des informations sur les performances analytiques des laboratoires ainsi que sur la comparabilité des données au niveau européen. La plupart des laboratoires ont obtenu des Z-scores (indicateur statistique de performance) satisfaisants. Seuls deux laboratoires présentent des valeurs aberrantes (13320 et 13373) sur le lévoglucosan et un seul (13312) sur le mannosan et/ou le galactosan. De plus, trois laboratoires (13320, 13373 et 13337) présentent des écart-types de répétabilité supérieurs à 10 %. Les écart-types de reproductibilité sont de l’ordre de 20-25% pour le lévoglucosan et le mannosan mais de 30 à 60 % pour le galactosan. Un laboratoire (13358) a obtenu un résultat d’analyse sur le filtre blanc très élevé. Les limites de quantification évaluées par les participants semblent globalement être plus faibles pour les utilisateurs de chaînes analytiques de type GC/MS que ceux utilisant la HPLC. Aucun impact de la procédure analytique mise en oeuvre n’a été détecté lors des traitements statistiques dans les résultats obtenus dans le cadre de cette CIL. Les incertitudes élargies calculées dans le cadre de cette CIL pour le lévoglucosan et le mannosan sont satisfaisantes et par exemple, cohérentes avec celles requises pour l’analyse du benzo[a]pyrene dans l’air ambiant (Directive européenne 2004/107/CE) ( Les AASQA collaborant avec des laboratoires français impliqués dans l’analyse du levoglucosan et ses isomères sont invités à se rapprocher de ces derniers afin de prendre connaissance de leurs résultats.
Vendredi 6 juillet 2018
Rapport
Campagne d’étalonnage des ACSM 2017 : Application d’une nouvelle méthode d’étalonnage et comparaison des mesures
Le rapport "Campagne d’étalonnage des ACSM 2017 : Application d’une nouvelle méthode d’étalonnage et comparaison des mesures" présente les résultats d’une campagne d’étalonnage et de comparaison des ACSM qui s’est déroulée en trois étapes successives, entre le 11 et le 29 mai 2017. Elle a rassemblé l’ensemble des ACSM en fonctionnement dans les AASQA. Dans un premier temps, les ACSM ont été configurés avec les paramètres d’étalonnages existants, déterminés lors de précédentes campagnes en station. Ils ont ensuite été connectés à l’air ambiant en parallèle à l’aide d’une ligne de prélèvement équipée d’une tête PM2,5 et laissés en fonctionnement du 11 au 15 Mai. L’objectif de cette première phase était de comparer les performances des ACSM pour la mesure des cinq espèces chimiques majeures : Matière Organique (OM), Nitrate (NO3-), ammonium (NH4+), sulfate (SO42-) et Chlore (Cl-). Les résultats de cette comparaison ont permis de montrer que les mesures des Q-ACSM participants étaient assez peu dispersées pour l’ensemble des espèces chimiques. Des comparaisons des mesures ACSM avec des mesures de la composition chimique de filtres prélevés dans la fraction PM1 ont également démontré la justesse des valeurs des efficacités d’ionisation (IE) et des efficacités d’ionisation relative de l’ammonium (RIE NH4) utilisés. Ces mêmes résultats ont montré par ailleurs une sous-estimation des mesures des des concentrations de sulfate par Q-ACSM. Dans un deuxième temps, des opérations d’étalonnage ont été menées sur l’ensemble des instruments afin de déterminer les efficacités d’ionisation (IE) et des efficacités d’ionisation relative de l’ammonium (RIE NH4). Une nouvelle procédure d’étalonnage a également été testée dans le but notamment d’améliorer les valeurs des efficacités d’ionisation relatives du sulfate (RIE SO4). Les coefficients d’étalonnages mesurés via les deux approches sont présentés dans ce rapport. A l’issue des opérations d’étalonnage, les ACSM ont été laissés en fonctionnement, du 19 au 29 mai, en parallèle pour la mesure de l’air ambiant. L’objectif était alors de comparer les performances des ACSM après étalonnage et de discuter des résultats des deux méthodes d’étalonnage appliquées. Après étalonnage, la dispersion des mesures ACSM a été réduite de manière notable. De plus, la nouvelle méthode d’étalonnage a permis une meilleure détermination des RIE SO4 plus satisfaisante que ceux qui étaient obtenus avec l’ancienne procédure.
Mercredi 10 février 2016
Rapport
Surveillance des métaux dans les particules en suspension
Depuis 2007, une surveillance est effectuée par l’ensemble des AASQA de façon continue ou ponctuelle, pour le Pb, As, Cd et Ni dans les PM10 en accord avec les directives européennes (2008/50/CE et 2004/107/CE modifié par la 2015/1480/CE). Les objectifs de Mines Douai, au sein du LCSQA, sont : - d'assurer un rôle de conseil et de transfert de connaissances auprès des AASQA, - de procéder à des travaux permettant de garantir la qualité des résultats, - de participer activement aux travaux de normalisation européens (WG14, WG20, WG44), - de réaliser une veille technologique sur les nouvelles méthodes de prélèvement et d’analyse susceptibles d’optimiser les coûts tout en respectant les objectifs de qualité, - de participer à la valorisation des activités de surveillance et des études menées en collaborations avec les AASQA. Au cours de l'année 2015, les travaux réalisés dans le cadre du LCSQA ont porté sur les actions suivantes :  Fourniture de filtres vierges en fibre de quartz. Des filtres sont achetés par lots et leurs caractéristiques chimiques sont contrôlées, avant d’être redistribués aux AASQA sur simple demande de leur part. En 2015, à ce jour, 2825 filtres en fibre de quartz (Pall et        Whatman) ont été distribués auprès de 16 AASQA différentes. Participation au comité de suivi « Benzène, métaux, HAP » sur la stratégie de mesure de As, Cd, Ni, Pb dans l’air ambiant, au groupe de travail « Caractérisation chimique et sources des PM » et au groupe de travail « Référentiel constituant ».  Organisation d'un exercice de comparaison inter-laboratoires (rapport CIL métaux 2015). Cette année, 9 laboratoires indépendants ont participé à cet exercice : Laboratoire Carso (Lyon), Ianesco Chimie (Poitiers), Laboratoire départemental de Haute-Garonne        (Launaguet), Laboratoire de Rouen (Rouen), Micropolluants Technologie (Thionville), Laboratoires des Pyrénées et des Landes (Lagor), TERA Environnement (Crolles), INERIS (Creil) et LUBW (Allemagne).  Analyse des métaux, métalloïdes et éléments majeurs dans des échantillons de PM10 collectés dans le cadre du programme CARA à Nogent sur Oise, Lens, Rouen, Roubaix et Revin (MERA) pendant l’année 2014. L’application de traitement statistique (ACP) et de        modèles source-récepteur (PMF) doit permettre l’identification des principales sources de particules affectant la zone (site récepteur) et leurs contributions relatives à la masse des PM10 (Aérosols inorganiques secondaires, combustion de biomasse ou de fuel lourd, trafic        automobile, aérosols marins, poussières détritiques, industrie …).