Résultats de la recherche

322 résultats correspondent à Air ambiant
Jeudi 26 septembre 2024
Rapport
Guide méthodologique Calcul des statistiques relatives à la qualité de l’air (2024)
  Ce guide fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air.  Il a été présenté en CPS (comité de pilotage de la surveillance) du 15 mars 2024 et validé le 28 mai 2024. Mise en application : 1er janvier 2023   Le guide « Calcul des statistiques relatives à la qualité de l’air (2023) » précise l’ensemble des règles qui doivent être appliquées pour passer des données de mesure acquises aux statistiques de qualité de l’air, contrôler le respect des objectifs de qualité associés et le cas échéant, comparer les statistiques avec les seuils réglementaires. Il s’accorde avec les dispositions et exigences en vigueur en Europe et s’applique à toutes les données issues du dispositif national de surveillance pour les polluants réglementés par les Directives 2008/50/CE et 2004/107/CE sur la qualité de l’air ambiant. Ce guide remplace le guide de 2016.
Dimanche 1 juin 2025
Episode de pollution
Episode du 01/06/2025 - PM10 - GUADELOUPE - Alerte
Mercredi 2 février 2022
Rapport
Tests d'efficacité de piégeage du dicamba, quinmérac et piclorame
Le dicamba, le piclorame et le quinmérac font partie de la liste des substances cibles de la Campagne Nationale Exploratoire sur les Pesticides (CNEP) réalisée par l’Anses, le réseau des AASQA et l’Ineris en tant que membre du LCSQA, entre juin 2018 et juin 2019. L’analyse du dicamba, du piclorame et du quinmérac dans les prélèvements d’air ambiant, en phase particulaire, a fait l’objet d’un précédent rapport (ici). L’objectif de ces travaux est de déterminer l’efficacité de piégeage de ces substances lors du prélèvement. Les tests d’efficacité de piégeage du prélèvement du dicamba, du quinmérac et du piclorame ont été réalisés conformément à la norme XP X43-058 « Air ambiant - Dosage des substances phytosanitaires (pesticides) dans l'air ambiant - Prélèvement actif » (Septembre 2007), sur deux appareillages : un préleveur séquentiel bas débit « Partisol » et un préleveur séquentiel haut débit « DA80 » de la société suisse DIGITEL. La détermination de l’efficacité de piégeage du prélèvement est étudiée à trois niveaux de concentration dans l’air ambiant : 1, 10 et 100 ng/m3. Le précédent rapport (ici) détaillait la méthode d’analyse par LC/MS2. L’extraction était alors réalisée aux ultrasons par de l’eau acidifiée pH2 à l’acide chlorhydrique (0,1% HCl à 37%), suivant les préconisations d’extraction détaillées dans le rapport "métrologie du glyphosate et de ses métabolites en air intérieur et extérieur : tests de prélèvements actifs" (2012). L’acide chlorhydrique n’étant pas conseillé sur les analyseurs de spectrométrie de masse (MS), des essais complémentaires sur les milieux d’extraction possibles ont été réalisés lors de cette étude. Ils ont permis de mettre en évidence que l’eau (EMQ) ou l’eau acidifiée pH2 avec de l’acide formique (0,9% d’acide formique) (EMQ pH2) permettent d’obtenir des rendements d’extraction proches de 100%. Les filtres issus des tests d’efficacité de piégeage ont donc été extraits à l’eau ultrapure non acidifiée (EMQ). Les résultats des tests d’efficacité de piégeage réalisés en janvier et février 2021 ont permis de mettre en évidence que : Pour le dicamba, aucune des conditions de prélèvement testées n’est efficace pour son piégeage sur filtre quartz. Pour le piclorame et le quinmérac, le prélèvement sur filtre quartz par le préleveur Partisol, pendant 1 semaine, est le plus adapté quel que soit le niveau de concentration dans l’air.     Dicamba, quinmerac and picloram trapping efficiency tests.   Dicamba, picloram and quinmerac are part of the list of target substances of the National Exploratory Campaign on Pesticides (CNEP) carried out by Anses, the AASQA network and Ineris as a member of the LCSQA, between June 2018 and June 2019. A previous report described the analysis of dicamba, picloram and quinmerac in ambient air samples, in the particulate phase (here). The objective of this work is to test the trapping efficiency of the sampling for these substances. The trapping efficiency tests for dicamba, quinmerac and picloram were carried out in accordance with standard XP X43-058 « Air ambiant - Dosage des substances phytosanitaires (pesticides) dans l'air ambiant - Prélèvement actif » (September 2007), on two devices: a “Partisol” low flow sequential sampler and a high-speed sequential sampler “DA80” from the Swiss company DIGITEL. The determination of the sampling trapping efficiency was studied at three concentration levels in ambient air: 1, 10 and 100 ng / m3. The previous report (here) detailed the LC/MS2 analytical method. The extraction was then carried out by an ultrasonic extraction with acidified water pH2, with hydrochloric acid (0.1% HCl at 37%), according to the extraction recommendations detailed in report "métrologie du glyphosate et de ses métabolites en air intérieur et extérieur : tests de prélèvements actifs" (2012). As hydrochloric acid is not recommended for mass spectrometry (MS) analyzers, additional tests on the possible extraction medium were carried out during this study. It was demonstrated that extraction with water (EMQ) or acidified water pH2 (EMQ pH2) with formic acid (0.9% formic acid) could lead to yields close to 100%. The filters resulting from the trapping efficiency tests were therefore extracted with ultrapure water (EMQ). The results of the trapping efficiency tests carried out in January and February 2021 showed that: For dicamba, none of the sampling conditions tested is effective for its trapping on a quartz filter. For picloram and quinmerac, sampling on a quartz filter using the Partisol sampler, for 1 week, is the most suitable regardless of the level of concentration in the air.
Actualité
Participation du LCSQA à la conférence "Protéger le souffle, c'est protéger la vie : je m'informe et j'agis"
A l’occasion de la Journée nationale de la qualité de l’air du 14 octobre, la direction générale de l’énergie et du climat (D
Jeudi 15 avril 2021
Rapport
Guide : Recommandation QA/QC pour la surveillance du mercure gazeux dans l’air ambiant
  Référentiel technique national Ce guide fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air. Il a été approuvé en CPS (comité de pilotage de la surveillance) du 18 mars 2021. Mise en application : 18 mars 2021     La directive européenne 2004/107/CE du 15 décembre 2004 préconise la mise en place dans les états membres d’une surveillance du mercure dans l’air ambiant. En complément des exigences réglementaires européennes, la circulaire du ministère de l’environnement en date du 23 mars 2009 à destination des préfectures concernées demande la réalisation de campagnes de mesures au voisinage d’industries de production de chlore. Contrairement aux autres polluants de la directive européenne 2004/107/CE, le mercure ne dispose pas de seuil réglementaire (valeurs cible). Par ailleurs, les travaux de normalisation réalisés par le CEN (Comité Européen de Normalisation) ont abouti en 2010 à la publication de normes décrivant les méthodes à employer pour la mesure du mercure gazeux total (NF EN 15852) et des dépôts de mercure dans l’air ambiant (NF EN 15853). Deux types d’analyseurs sont disponibles et utilisés par les Associations Agréées de Surveillance de la Qualité de l’Air (AASQA) pour la mesure du mercure gazeux total. L’analyseur Tekran 2537 est utilisé presque exclusivement en surveillance dans des environnements industriels (chimie du chlore, incinération), dans des zones habitées très proches des industries concernées et pouvant être impactées par les retombées régulières ou ponctuelles. Les concentrations rencontrées sont très variables mais peuvent être élevées, approchant ou dépassant 30 ng.m-3 en moyenne annuelle, et plus de 1000 ng.m-3 en valeur horaire. L’analyseur peut également être utilisé lors de campagnes qui peuvent être de longue durée (étude d’impacts entre autres) pour lesquelles les niveaux de concentrations sont plus faibles, de l’ordre de quelques ng.m-3. L’analyseur Lumex RA 915 AM a jusqu’à maintenant été utilisé pour la surveillance en site (péri)urbain ou rural sous influence industrielle pour lesquels les valeurs moyennes horaires maximales mesurées étaient de l’ordre de 230 ng.m-3. Il est aussi mis en œuvre pour la surveillance de sites industriels chloriers. Aucune utilisation pour des mesures en site urbain/ rural sous influence de fond n’a été rapportée. Ce guide a pour objectif de définir l’ensemble des recommandations (installation, contrôles, fonctionnement, maintenance, expression des données) à mettre en œuvre pour harmoniser et assurer la qualité des mesures de mercure gazeux réalisées à l’aide des analyseurs Lumex RA 915 AM et des analyseurs Tekran 2537 dans l’air ambiant. En l’absence de procédures de contrôles précises dans la norme NF EN 15852 (2010), des tests métrologiques simplifiés destinés à préciser les caractéristiques métrologiques des appareils ont été définis en s’inspirant de ceux habituellement mis en œuvre pour les analyseurs de polluants gazeux inorganiques classiques. Ainsi, ces contrôles portant sur la linéarité, la limite de détection, la répétabilité et la dérive sur 7 jours sont réalisables par le LCSQA/Ineris qui dispose d’un générateur de mercure basse concentration raccordé aux étalons internationaux. Par ailleurs, l’analyseur de mercure Lumex RA 915 AM doit être étalonné annuellement chez le constructeur en utilisant des solutions SRM (Standard Reference Materials) alors que l’ajustage de la source interne de l’analyseur Tekran peut être réalisé par l’utilisateur en intervenant sur le débit de perméation de la source. QA/QC recommendation for gaseous mercury monitoring in ambiant air The EU Directive 2004/107/EC of 15 December 2004 calls for the establishment of gaseous mercury monitoring in ambient air in states members. In addition to European regulatory requirements, the Ministry of the Environment's circular dated 23 March 2009 to the relevant prefectures calls for measurement campaigns to be carried out in the vicinity of chlorine production industries. Unlike the other pollutants in the 2004/107/EC EUROPEAN Directive, mercury does not have a regulatory threshold (target values). In addition, standardization work carried out by the European Standards Committee (NEC) in 2010 resulted in the publication of standards outlining the methods to be used for measuring total gaseous mercury (NF EN 15852) and mercury deposits in the ambient air (NF EN 15853). Two types of analyzers are available and used by the Air Quality Monitoring Associations (AASQA) for the measurement of total gaseous mercury. The Tekran 2537 analyzer is used almost exclusively for monitoring in industrial environments (chlorine chemistry, incineration), in inhabited areas close to the concerned industries and which may be impacted by regular or one-off impacts. The concentrations encountered are highly variable but can be high, approaching or exceeding 30 ng.m-3 on an annual average, and more than 1000 ng.m-3 in hourly value. The analyzer can also be used in campaigns that can be long-lasting (impact study among others) for which concentrations are lower, in the order of a few ng.m-3. The Lumex RA 915 AM analyzer has so far been used for (peri)urban or rural site surveillance under industrial influence for which the maximum average hourly values measured were in the range of 230 ng.m-3. It is also implemented for the monitoring of industrial chlorinator sites. No use for urban/rural site measurements under background influence has been reported. The objective of this guide is to define all the recommendations (installation, controls, operating, maintenance, data expression) to be implemented to harmonize and ensure the quality of gaseous mercury measurements made using Lumex RA 915 AM analyzers and Tekran 2537 analyzers in the ambient air. In the absence of specific control procedures in the NF EN 15852 (2010) standard, simplified metrological tests to clarify the metrological characteristics of the devices have been defined based on those usually used for conventional inorganic gas pollutant analyzers. Thus, these controls on linearity, detection limit, repeatability and 7-day drift are achievable by the LCSQA/Ineris, which has a low-concentration mercury generator connected to the international standards.  
Actualité
Réunion technique d’experts européens sur la normalisation des méthodes de caractérisation de la qualité de l’air – 20 et 21 juin 2023
L’I
Mercredi 28 janvier 2015
Rapport
Guide pour la surveillance du benzène dans l'air ambiant (2014)
  Ce document fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air ambiant. Ce rapport est une mise à jour du guide technique de recommandations concernant la mesure du benzène dans l’air ambiant rédigé en décembre 2009.  Il a été validé en Comité de Pilotage de la Surveillance en janvier 2015. Date d'application : 12 novembre 2015   Résumé : Il s’articule de la façon suivante : Partie 1 : Surveillance du benzène dans l’air ambiant par l’utilisation des analyseurs automatiques de BTEX : Les mises à jour concernent : les évolutions apportées par le projet de norme PR NF EN 14662-3 (sept. 2013) [2] ; la liste des appareils homologués pour la surveillance du benzène ; le rendu des résultats. Partie 2 : Surveillance du benzène dans l’air ambiant par l’utilisation de tube rempli de Carbopack X et d’un pompage actif : Cette partie a été intégralement revue en intégrant le cahier des charges de conception des cartouches de prélèvement et des préleveurs à respecter ainsi que les exigences à satisfaire en matière de tests de réception métrologique des préleveurs à réception, de suivi QA/QC des préleveurs en fonctionnement sur site et de rendu des résultats. Partie 3 : Surveillance du benzène dans l’air ambiant par l’utilisation de tube passif radial (Radiello code 145 – Adsorbant Carbograph 4) : Les mises à jour concernent : le mode de conservation des cartouches après exposition ; des préconisations en matière d’analyse chromatographique des cartouches exposées ; les pratiques QA/QC à mettre en place ; le rendu des résultats. Partie 4 : Surveillance du benzène dans l’air ambiant par l’utilisation de tube passif axial (Perkin Elmer – Adsorbants Carbopack B, Carbopack X) : Cette partie a été intégralement supprimée étant donné que cette méthode de prélèvement n’est plus utilisée dans aucun des réseaux de surveillance de la qualité de l’air français.
Actualité
IMT Nord-Europe, l’Ineris et le LNE confortent leur partenariat dans le domaine de la surveillance de la qualité de l’air au sein du LCSQA
Forts de leurs complémentarités, IMT Nord-Europe, l’Ineris et le
Lundi 4 mars 2024
Rapport
Performances Prev'air en 2022
Ce rapport présente les performances des prévisions nationales opérées dans le cadre de la plateforme Prev’Air (www.prevair.org) pour l’année 2022. L’objectif est de montrer des éléments d’appréciation de la qualité de la production Prev’air. Ce rapport traite successivement de l’évaluation des prévisions des concentrations des quatre polluants O3, NO2, PM10 et PM2.5, fournis quotidiennement par le système Prev’Air, du jour courant J jusqu’au J+3. L’estimation du comportement des outils est réalisée grâce à des indicateurs statistiques qui permettent de comparer les résultats de modélisation avec les observations validées de la base de données nationale GEOD’air, elle-même alimentée par les AASQA (associations agréées de surveillance de la qualité de l’air) et développée par le LCSQA. Une attention particulière est portée à l’évaluation des performances de Prev’Air concernant la détection des seuils réglementaires. Cet exercice a pour objectif d’estimer l’aptitude des modèles à prévoir spécifiquement les épisodes de pollution. L’ozone est évalué sur les mois de l’été 2022 (avril à septembre). Les autres polluants (PM10, PM2.5, NO2) sont évalués sur l’ensemble de l’année 2022. L’année 2022 a connu peu d’épisodes de pollution persistants d’ampleur nationale. L’évaluation de ces épisodes est effectuée à la fois sur les prévisions brutes de Prev’Air et sur les prévisions avec adaptation statistique, qui visent à corriger les biais systématiques du modèle brut par un processus d’apprentissage historique. Cette prévision corrigée statistiquement sert généralement de référence à l’expertise de l’équipe Prev’air pour la communication en cas d’épisode de pollution de l’air, et sert également de base aux calculs du module AMU, qui vérifie les critères de l’arrêté mesure d’urgence[1]. Les prévisions Prev’Air pour les DROM des caraïbes ont également été évaluées. Les prévisions sur les DROM de l’océan Indien, produites à partir de mai 2022, seront évaluées à compter de 2024 (rapport de performances portant sur l’année 2023). Dans l’ensemble, le comportement de Prev’Air est satisfaisant avec une bonne aptitude à respecter les objectifs de qualité définis dans le référentiel technique national[2], qui a établi ces valeurs cibles pour les différents scores concernant l’ozone et les PM10 ainsi que le contenu à faire figurer dans les rapports annuels d’évaluation des plateformes de prévisions constituant le référentiel technique national. Les prévisions avec adaptation statistique disponibles sur la métropole respectent les objectifs de performance et ont permis la plupart du temps d’anticiper l’occurrence des épisodes de pollution et d’identifier les principales zones affectées. Les prévisions brutes rencontrent plus de difficultés à satisfaire les objectifs de qualité, notamment dans les DROM. La composition chimique des particules (PM1) prévue par Prev’air a été évaluée avec l’aide des données CARA[3].  La part d’ammonium, de nitrates, de sulfates et de matière organique est un peu moins bien représentée dans la spéciation des PM1 qu’en 2021.   1] Arrêté du 7 avril 2016 relatif au déclenchement des procédures préfectorales en cas d'épisodes de pollution de l'air ambiant [2] https://www.lcsqa.org/fr/referentiel-technique-national [3] Favez et al. (Atmosphere, 2021) CARA program   Performances of Prev’air in 2022   This report presents the performances in 2022 of the national forecasts carried out within the Prev'Air platform (www.prevair.org). The objective is to assess the quality of Prev'air production. This report deals successively with the evaluation of the O3, NO2, PM10 and PM2.5 concentrations forecasts, daily provided by the Prev'Air system, from day D to D+3. The behavior of this system is estimated using conventional statistical indicators, which allow the modelling results to be compared with validated observations from the national GEOD'air database, itself fed by the AASQA (accredited air quality monitoring associations) and developed by the LCSQA. Particular attention is paid to the evaluation of Prev’Air’s forecasts regarding the detection of regulatory thresholds. The objective of this exercise is to estimate the capacity of the models to specifically anticipate pollution episodes. Ozone is evaluated over the summer months of 2022 (April to September). The other pollutants (PM10, PM2.5, NO2) are assessed over the whole year 2022. Few persistent episodes of national scope were noted during 2022. The evaluation of these episodes is carried out both on Prev’Air’s raw forecasts and on the statistical adaptation of CHIMERE which aims at correcting the systematic biases of the raw model through a historical learning process. This statistically corrected forecast generally serves as a reference to the expertise of the Prev’air team for communication in the event of an air pollution episode. It is also a base for the calculations of the AMU module, which checks the criteria of the emergency measure decree[4]. The Prev'air forecasts for the Caribbean DROMs have been assessed as well. The forecasts for the Indian Ocean overseas territories, produced from May 2022, will be evaluated from 2024 (performance report covering the year 2023). On the whole, the performance of Prev’Air is satisfactory with a good ability to meet the quality objectives defined in the national technical reference document[5] which established these target values for the different scores for ozone and PM10 as well as the content to be included in the annual evaluation reports of the forecasting platforms involved in the national air quality monitoring system. The forecasts with statistical adaptation match the performance objectives and have mostly allowed to anticipate the occurrence of pollution episodes and to identify the main affected areas. Raw forecasts are less satisfactory to comply with the quality objective, particularly in the DROM. The composition of PM1 predicted by Prev’air was assessed using CARA[6] data. Ammonium, nitrates, sulphates, and organic part are predicted less accurately than in 2021.   [4] Decree of 7 April 2016 relating to the triggering of prefectural procedures in the event of episodes of ambient air pollution [5] https://www.lcsqa.org/fr/referentiel-technique-national [6] Favez et al. (Atmosphere, 2021) CARA program   .
Vendredi 17 janvier 2025
Procédure préfectorale
Procédure du 17/01/2025 - TARN-ET-GARONNE - Information & Recommandation