Résultats de la recherche

322 résultats correspondent à Air ambiant
Lundi 15 avril 2019
Rapport
Bilan d’exploitation de l’outil Vigilance atmosphérique – Années 2016 à 2018
Mise en service en 2015, l’application Vigilance atmosphérique permet de recueillir et diffuser en temps réel des informations relatives aux épisodes de pollution dans l’air ambiant ainsi qu’aux procédures préfectorales déclenchées lors de ces épisodes. La présente note dresse un bilan des informations saisies dans Vigilance de 2016 à 2018. Elle ne constitue pas une analyse rétrospective détaillée des épisodes réellement survenus, l’application n’ayant pas été conçue dans cet objectif, mais fait ressortir les principales caractéristiques des déclarations. Les épisodes sont majoritairement déclarés sur prévision et sont généralement associés à un dépassement du seuil d’information et de recommandation. Plus fréquents en hiver pour les PM10 (en ce qui concerne la métropole) et en été pour l’ozone, ils sont le plus nombreux dans les régions suivantes : Auvergne-Rhône-Alpes (PM10 et O3), Île-de-France (PM10 et O3), Hauts-de-France (PM10), Grand Est (PM10 et O3), PACA (O3) et la zone des Caraïbes dans son ensemble (PM10). S’agissant du SO2, quelques épisodes sont constatés chaque année dans 4 à 5 régions, et qui sont dus soit à des dysfonctionnements ponctuels d’installations industrielles (épisodes de courte durée au voisinage de zones industrielles), soit à des émissions volcaniques (La Réunion).  L’année 2018 a été marquée par une diminution du nombre d’épisodes de PM10 hivernaux et printaniers déclarés mais, du fait d’un été chaud et ensoleillé, par une augmentation du nombre d’épisodes d’ozone. Entre 550 et 900 procédures préfectorales par an ont été déclarées entre 2016 et 2018. Si toutes les procédures n’ont pas de mesures associées, en 2018, la plupart des procédures d’alerte comprenaient 3 à 5 mesures. Les différents secteurs d’activité (agricole, résidentiel-tertiaire, industriel et transports) sont représentés.
Jeudi 4 avril 2019
Rapport
Guide méthodologique pour l'élaboration des inventaires territoriaux des émissions atmosphériques
  Ce guide fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air ambiant. Il a été approuvé en CPS (comité de pilotage de la surveillance) du 14 juin 2018. Mise en application : 14 juin 2018 PCIT, 2018 Ce guide a été révisé en mars 2019. Ses modifications portent sur la partie A (éléments généraux et transversaux).  
Mardi 15 novembre 2016
Page
Les acteurs
Lundi 9 novembre 2015
Rapport
Homologation d’appareillage pour la surveillance réglementaire de la qualité de l’air - Document cadre (OBSOLÈTE)
  Attention : Ce document cadre est obsolète - il a été revu en juillet 2016. La note "Conformité technique des appareils de mesure pour la surveillance réglementaire de la qualité de l'air" de juillet 2016 annule et remplace le document cadre de 2015. Aller à Conformité technique des appareils de mesure.   Modalités d'évaluation des dispositifs de mesure pour la surveillance réglementaire de la qualité de l'air ambiant en vue de leur homologation Dans le cadre de leurs activités au sein du Laboratoire National de Référence (tel que prescrit dans la Directive 2008/50/CE ‐ article 3 ‐ et notifié par le Ministère en charge de l’environnement) et de son rôle de coordinateur technique de la surveillance de la qualité de l’air, les membres du LCSQA ont proposé au Ministère, qui l’a approuvé, un schéma d’homologation des appareillages utilisés par les AASQA pour la mesure de polluants atmosphériques réglementés. Il est prévu que le même schéma d’homologation soit étendu à tout appareil de mesure utile au Dispositif National français (ex : système de mesure indicative), à la demande de fournisseur ou du Ministère en charge de l’environnement. L’homologation est à terme destinée à tout dispositif de mesure de polluant de l’air ambiant en référence aux Directives et textes français, c’est à dire tout dispositif (électrique ou non) utilisé pour la surveillance de la qualité de l’air dans la chaîne de mesure (du prélèvement au rapatriement de données en Poste Central). Il est prévu un schéma d’homologation similaire pour les Systèmes d’Acquisition de Mesure et les Postes Centraux, schéma qui sera décrit dans un document spécifique. Pour répondre aux exigences européennes (notamment l’annexe VI.D « introduction de nouveaux appareils » de la Directive 2008/50/CE), les appareils automatiques et les préleveurs (gaz et/ou particules) sont les premiers dispositifs pris en considération. Les collecteurs de précipitation et les systèmes d’acquisition de mesure seront concernés à court terme (2015‐2016). Une demande d’homologation peut être faite par un constructeur ou par son distributeur sur le territoire français. Dans le cas du distributeur, les responsabilités liées au schéma d’homologation lui incombent. Le dossier d’homologation est étudié par les membres du LCSQA, en collaboration avec la Commission de Suivi couvrant le (ou les) polluant(s) concerné(s). En fonction des éléments du dossier, un avis technique détaillé sur la demande d’homologation est formulé par le LCSQA – Mines Douai, auprès du Ministère en charge de l’environnement. Ce dernier décide de l’homologation ‐ ou non ‐ de l’appareillage concerné. Un appareillage se voit accordé une homologation dans la configuration technique de fonctionnement et d’utilisation qui lui a permis de répondre aux exigences techniques du référentiel d’étude (norme, guide…). Cela permet de spécifier le contexte technique d’utilisation du dispositif (ex : station climatisée, moyen mobile…) et d’assigner le statut de mesure (ex : mesure fixe, mesure indicative…). D’autres exigences peuvent également être prises en compte (ex : la gestion de sources radioactives couverte par l’autorisation délivrée par l’Autorité de Sûreté Nucléaire). Un suivi technique de l’homologation est assuré par les membres du LCSQA avec l’aide du demandeur de l’homologation (cf. § 3.5) et des AASQA (ex : au travers de tests de suivi d’équivalence, de retours d’expérience des utilisateurs…). Ainsi, dans le cas de méthodes dites « équivalentes », les résultats du suivi en continu de l’équivalence géré au niveau national par le LCSQA sont pris en compte dans le processus d’homologation pour contrôler et valider l’adéquation des conditions spécifiques de sites rencontrés lors du suivi et celles de la démonstration d’équivalence initiale. Le suivi d’équivalence à l’échelle nationale intègre les typologies de site3 et les conditions climatiques représentatives de la France. Toute modification (technique, informatique) d’un appareil homologué implique a minima l’information du LCSQA ‐ Mines Douai qui donnera, au Ministère en charge de l’environnement, un avis technique sur l’impact de la modification sur l’homologation de l’appareillage (cf. § 3.5), après concertation avec les Commissions de Suivi couvrant le (ou les) polluant(s) concerné(s).
Mardi 19 février 2019
Rapport
Utilisation des lignes de prélèvement actif associées aux systèmes automatiques et préleveurs actifs pour la surveillance du benzène et des autres composés aromatiques
Conformément aux exigences de la Directive Européenne 2008/50/CE [1] et aux recommandations du guide pour la surveillance du benzène dans l’air ambiant (version 2014) [2], les Associations Agréées de Surveillance de la Qualité de l’Air (AASQA) réalisent depuis plusieurs années des prélèvements de benzène par pompage actif. Le guide de recommandations dans sa version actuelle donne des préconisations concernant la mise en œuvre des lignes de prélèvement associées aux analyseurs automatiques et aux préleveurs actifs. Des travaux réalisés en 2015 ont montré que pour garantir au mieux la fiabilité des mesures actives du benzène et des autres composés aromatiques d’intérêt (toluène, éthylbenzène et xylènes), il convenait de privilégier l’utilisation de lignes de prélèvement ayant le plus faible volume mort possible, en acier inoxydable pour la surveillance des composés aromatiques ramifiés et que pour le benzène uniquement, le PFA (un copolymère du Téflon « PTFE ») pouvait convenir. Cette solution est difficile à mettre en œuvre sur le terrain pour l’installation de certains points de mesure à cause de la rigidité des tubulures en acier inoxydable. Ce constat a conduit à la réalisation d’une nouvelle série d’essais avec des lignes réalisées à partir de matériaux souples et de longueur n’excédant pas 5 mètres (longueur maximale utilisée par les AASQA). Les essais réalisés ont permis de tester l’influence de deux matériaux : le PFA (un copolymère du « PTFE ») et le PTFE (souvent appelé « Téflon ») et de la passivation des lignes avant leur première utilisation. Sur la base des expérimentations menées en laboratoire, les recommandations en matière de ligne de prélèvement pour le prélèvement et la mesure des composés aromatiques sont : de limiter au maximum le volume mort en privilégiant des lignes de faible section (1/8’’) et les plus courtes possibles ( de procéder au remplacement complet des lignes de prélèvement plutôt qu’à leur nettoyage. La fréquence de remplacement ne doit pas excéder 2 années mais est laissée au libre arbitre des utilisateurs en fonction notamment de la typologie du site et de son taux d’empoussièrement ; pour le prélèvement ou la mesure du benzène uniquement, d’utiliser indifféremment des lignes de prélèvement en acier inoxydable, en PFA ou en PTFE dont la longueur maximale est fixée à 10m et ayant subies une étape préalable de passivation ; pour le prélèvement ou la mesure simultané du benzène, du toluène et de l’éthylbenzène d’utiliser indifféremment des lignes de prélèvement en acier inoxydable ou en PFA dont la longueur maximale est fixée à 10m et ayant subies une étape préalable de passivation ; pour le prélèvement ou la mesure simultané de l’ensemble des BTEX,  seul l’acier inoxydable peut convenir.  
Mardi 19 février 2019
Rapport
Mise en place et qualification d’une ligne de distribution de gaz pour comparaison inter laboratoire (CIL)
L’organisation de comparaisons inter laboratoires est une des missions du LCSQA requises par l’arrêté du 19 avril 2017 relatif au dispositif national de surveillance de la qualité de l’air ambiant (cf. article 23 concernant la Conformité du dispositif et qualité des données). Ce type d’exercice doit être mené dans le respect des exigences prescrites dans la norme harmonisée pour les essais d’aptitude (NF EN ISO/CEI 17043 - Evaluation de la conformité - Exigences générales concernant les essais d’aptitude - 2010). Une ligne de distribution de gaz a été élaborée et qualifiée en vue de l’exercice bisannuel de comparaison inter laboratoires pour les laboratoires dits « niveaux 2 » impliqués dans la chaîne nationale d’étalonnage des analyseurs automatiques de polluants gazeux inorganiques. Les polluants couverts sont le dioxyde de soufre (SO2), les oxydes d’azote (NO/NO2/NOx), l’ozone (O3) et le monoxyde de carbone (CO). Le dispositif consiste en un système de génération de gaz (pour une gamme de concentration allant de quelques ppb à la proche ppm) et d’une ligne isolée en verre passivé d’environ 15 mètres de long sur laquelle des points d’entrée permettant aux participants (10 minimum) de prélever un échantillon pour mesure sur analyseur automatique. Outre la détermination (pour chaque polluant) de la gamme de concentration atteignable, des tests d’homogénéité de ligne et de stabilité en concentration et en paramètres environnementaux (température et humidité relative) ont été menés pour qualifier le dispositif. Cet outil est opérationnel et sera utilisé lors du prochain ECIL « niveaux 2 » programmé en octobre 2018.
Vendredi 10 novembre 2017
Rapport
Maintien et amélioration des chaînes nationales d'étalonnage - analyseurs automatiques de PM
Nouveau rapport LCSQA : Maintien et amélioration des chaînes nationales d'étalonnage - analyseurs automatiques de PM Sous l'impulsion du ministère en charge de l'environnement, la "chaîne nationale d'étalonnage" a été conçue et mise en place afin de garantir la traçabilité et la cohérence des mesures réalisées dans le cadre de la surveillance de la qualité de l'air pour les principaux polluants atmosphériques gazeux réglementés. Dans le cas des particules, en l’absence d’étalons primaires nationaux, il s’avère impossible d’effectuer comme pour les gaz un raccordement direct des analyseurs automatiques en station de mesure aux étalons de référence nationaux. Les objectifs de la mise à disposition par Mines Douai de moyens de contrôle de mesure de particules en suspension dans l’air ambiant par voie automatique sont les suivants : Ÿ fournir aux AASQA un moyen de contrôle raccordé à une chaîne d’étalonnage, leur permettant de vérifier, si possible directement sur le site, le bon fonctionnement de leurs analyseurs automatiques (microbalances à variation de fréquence, jauges radiométriques), Ÿ vérifier la conformité du débit de prélèvement des appareils par le biais d'une procédure commune et, donc de permettre une comparaison de l'ensemble des résultats de mesures au niveau national (les éventuels problèmes liés aux caractéristiques des sites de prélèvements ne sont pas pris en compte dans ces travaux), Ÿ tester la linéarité des appareils ou la réponse à un autre niveau de la gamme de mesure d’appareillage dans des conditions respectant les servitudes d’utilisation préconisées par le fabricant, à savoir dans une gamme de valeurs correspondant à l’empoussièrement usuel observé sur un site de mesure. En 2016, la mise à disposition des cales étalon pour vérification sur site du bon fonctionnement des analyseurs automatiques de PM sur site met en évidence le comportement correct de l’ensemble des appareils contrôlés. En 2016, 16 mises à disposition ont été effectuées, pour un total de 86 appareils représentant un peu plus de 10% du parc d’analyseurs automatiques de PM actuellement opérationnels en  AASQA. Le comportement de cette « chaîne de contrôle pour la mesure des particules » mise en place par le LCSQA-MD peut être qualifié de satisfaisant. Les résultats obtenus pour les microbalances TEOM et pour les radiomètres bêta MP101M et BAM 1020 concernant les paramètres débit de prélèvement, respect de constante d’étalonnage et linéarité sont des éléments probants de l’Assurance Qualité / Contrôle Qualité (QA/QC) appliquée aux analyseurs automatiques de particules en suspension et sont des sources d’information nécessaires dans le cadre du calcul de l’incertitude de mesure sur ce type d’appareil. Le maintien et l’extension du programme QA/QC pour les analyseurs automatiques de particules rentrent dans les missions pérennes du LCSQA dans le cadre de la coordination technique du Dispositif National de Surveillance de la Qualité de l’Air et sont en phase avec la parution prochaine de la norme EN 16450 « Air ambiant - Systèmes automatisés de mesurage de la concentration de matière particulaire (PM10; PM2,5) ».
Lundi 22 février 2010
Rapport
Développement de matériaux de référence pour les HAP
Les Hydrocarbures Aromatiques Polycycliques (HAP) sont des agents carcinogènes génotoxiques pour l’homme et leurs effets sur la santé sont principalement dus aux concentrations retrouvées dans l’air ambiant, et en particulier sur les particules. C’est pourquoi a directive 2004/107/CE (4ème directive fille) a établi la nécessité d’améliorer la surveillance et l’évaluation de la qualité de l’air, en introduisant le suivi des HAP et plus particulièrement du benzo(a)pyrène (B[a]P). Cette surveillance des HAP implique deux étapes : des prélèvements d'air ambiant sur filtres effectués par les AASQA et l'analyse de ces prélèvements en laboratoire afin de déterminer les concentrations de HAP. La pertinence d'un tel dispositif de surveillance de l'air repose sur la qualité des informations obtenues. Elle peut être garantie de façon pérenne en développant des processus de quantification impliquant un raccordement des mesures réalisées par les AASQA à un même talon de référence détenu par un laboratoire de référence. Cette procédure permet d'assurer la traçabilité des mesures réalisées sur site et de comparer les mesures effectuées par l’ensemble des AASQA dans le temps et dans l'espace. Dans le cas des analyses en laboratoire, le LNE a, entre autres, pour objectif d'établir la traçabilité métrologique des résultats d'analyse en développant des matériaux de référence certifiés (MRC) caractérisés avec des méthodes de référence primaires : l'utilisation de ces RC lors des analyses en laboratoire permet de s'assurer de la justesse et de la fidélité des résultats et de valider la méthode d’analyse. De plus, ces MRC peuvent également être pris comme échantillons lors d'essais inter laboratoires afin de pouvoir disposer de valeurs de référence et non de valeurs moyennes. Une synthèse bibliographique sur les MRC de HAP a été réalisée en 2006 et a permis de mettre en évidence que les références de certains MRC disparaissent des catalogues : ceci est le cas des MRC de particules dans l’air qui sont rarement renouvelés, contrairement à 'autres matrices comme les sédiments et les biotes. De plus, il a été montré que seulement deux types de MRC dans les particules étaient disponibles : un pour l’analyse des particules diesel et l’autre pour l’analyse de poussières dans les habitations. Mais, ces matériaux proposés ne sont pas représentatifs des particules rélevées dans l’air ambiant. C'est pourquoi le LNE a proposé de développer un MRC adapté à la problématique de la mesure des HAP dans l'air ambiant. La production d'un tel MRC comprend plusieurs phases : Le développement de la méthode d'analyse permettant de caractériser le MRC. Elle comprend plusieurs étapes : une extraction des HAP de la matrice, une purification de l’extrait, une séparation des composés et leur détection. L'étape la plus délicate et qui est ource prépondérante d’incertitudes est liée à l’extraction. La mise au point de la méthode de dopage de particules avec les HAP. L’étude d’homogénéité et de stabilité du lot de particules. L’année 2009 a été principalement consacrée à finaliser les conditions d’extraction afin d’atteindre un rendement proche de 100%. Les résultats de l'étude montrent que l’extraction est une étape délicate du processus d’analyse des HAP : en effet, il est nécessaire de mettre en oeuvre des conditions permettant d’extraire principalement les composés recherchés tout en préservant leur intégrité (s’assurer que la structure de la molécule n’est pas modifiée). Il est donc nécessaire d’optimiser un grand nombre de paramètres pour obtenir des rendements d’extraction maximaux. Les différents paramètres testés ont été les suivants : la température d’extraction, le type de solvant d’extraction, le type de matrice de remplissage… Cependant, malgré l'optimisation de ces paramètres, le problème de sous-estimation des concentrations par rapport à la valeur du Matériau de Référence Certifié n'a pas pu être résolu pour certains composés. Il sera donc nécessaire de tester d’autres paramètres tels que la pression ou le temps d’extraction. Une grande importance est attachée à ces essais, car ils permettront de réduire au maximum les incertitudes liées à la détermination des concentrations en HAP lors du développement du MRC. Cette étape d’optimisation est indispensable pour poursuivre dans les meilleures conditions le projet de développement d’un matériau de référence pour les HAP. C'est pour cette raison que ces essais seront poursuivis en 2010. De plus, en 2010, le LNE fabriquera un MRC synthétique de particules dont les caractéristiques seront suffisamment bien décrites en termes de physico-chimie et qui permettra de valider le protocole analytique (évaluation de la perte des composés, blanc de laboratoire…). L’avantage résidera également dans le fait que le dopage pourra être adapté aux teneurs de la réglementation en vigueur, ainsi qu’aux limites de quantification annoncées par les laboratoires ou à des besoins exprimés par les membres du LCSQA.
Actualité
Exercice de comparaison inter-laboratoires européen 2019 pour la mesure de polluants gazeux inorganiques en air ambiant
Le LCSQA/Ineris a participé à l’exercice de comparaison inter-laboratoires (CIL) européen organisé récemment par le JRC (Joint Research Center / centre de recherche scientif
Lundi 12 novembre 2018
Rapport
Premier essai national d’aptitude des micro-capteurs (EAµC) pour la surveillance de la qualité de l’air : synthèse des résultats
L’émergence sur le marché de micro-capteurs connectés a conduit le dispositif national de surveillance de la qualité de l’air à s’intéresser à la fiabilité de ces nouveaux dispositifs. Il n’existe à l’heure actuelle aucun cadre normatif national ou européen permettant de comparer les performances de ces différents appareils commercialisés aux appareils de mesures de référence. Le premier essai d’aptitude national sur le terrain de micro-capteurs de gaz et de particules installés en site fixe, coordonné par le Laboratoire Central de Surveillance de la Qualité de l’Air (LCSQA), s’inscrit dans la continuité des travaux amorcés ces deux dernières années en laboratoire pour déterminer les caractéristiques de performance des micro-capteurs[1]. Ces travaux ont notamment permis de comprendre les effets de différents paramètres de mesures sur les systèmes capteurs mais il est cependant difficile en laboratoire de reproduire l’ensemble des facteurs d’influences sur la mesure. C’est pourquoi, les essais sur le terrain utilisant une comparaison directe avec des mesures de référence permettent d’obtenir une meilleure représentativité de ces effets. Cet essai, conduit de début janvier à mi-février 2018, avait pour objectif de placer en conditions réelles sur un site de typologie urbaine, un grand nombre de systèmes différents afin d’évaluer leur aptitude à suivre les principaux polluants d’intérêt pour l’air ambiant : le dioxyde d’azote (NO2), l’ozone (O3) et les particules (PM2,5 et PM10). Organisé par le LCSQA/IMT Lille Douai sur la station de mesure de la qualité de l’air de son Centre de Recherche, cet essai a regroupé 16 participants qui ont mis en œuvre 44 dispositifs au total, réplicas inclus. 17 systèmes étaient de conception et d’origines différentes (France, Pays-Bas, Royaume-Uni, Espagne, Italie, Pologne, États-Unis). Les systèmes mis à disposition ont été fournis par des fabricants, des distributeurs ou des utilisateurs volontaires œuvrant dans le cadre du dispositif national de surveillance (Associations Agréées de surveillance de la qualité de l’air, AASQA, et membres du LCSQA). Ainsi, les systèmes mis à disposition avaient des historiques d’utilisation différents. Cet essai a été réalisé conformément aux pratiques en vigueur pour l’organisation des comparaisons inter-laboratoires ou des essais d’aptitude. Ainsi, dans ce document, chaque système testé est identifié à l’aide d’un code alphanumérique unique. Une liste des participants est cependant fournie, laissant ainsi la possibilité de contacter chacun d’entre eux pour obtenir son numéro d’identification. Cependant, une discussion est en cours avec chaque participant concernant une possible levée d’anonymat afin de pouvoir documenter par exemple l’influence de l’usage ou des différentes versions de logiciel ou d’algorithme. Les données ont été exploitées par le LCSQA/Ineris par comparaison aux mesures d’instruments de référence. Un volume de plus de 70 millions de données minutes a dû être traité par des méthodes élaborées spécifiquement. Outre les performances métrologiques de ces instruments, une attention particulière a été portée à d’autres paramètres tels que la simplicité de mise en œuvre, l’autonomie, la portabilité, la fiabilité de communication (GSM, Wifi, Bluetooth, filaire, …), la convivialité des applications de récupération des données en tenant compte de l’objectif recherché. Chaque système a fait l’objet d’une fiche d’évaluation par polluant mesuré. Cette fiche inclut un descriptif technique succinct, un tableau récapitulatif des performances métrologiques, un radar « papillon » affichant des notations de 0 à 5 pour 8 critères qualitatifs ou quantitatifs, les relevés des séries temporelles de chacun des réplicas testés comparés aux données de l’instrument de référence, les graphiques de corrélation, et enfin un avis général. Ce document a pour objectif de présenter la méthodologie mise en œuvre avec un comparatif des notations qualitatives ainsi qu’une synthèse des résultats pour NO2, O3 et PM2,5. Un rapport détaillé suivra et inclura en complément les résultats obtenus pour les capteurs PM10, ainsi que l’intégralité des fiches individuelles d’évaluation produites. Celles-ci intègreront l’ensemble des données chiffrées, les radars, les séries temporelles de concentrations, les graphiques de corrélation et enfin les avantages et inconvénients à retenir pour chaque couple système/polluant. En termes de polyvalence (systèmes multi-capteurs), seul le système C se démarque des autres systèmes testés durant la campagne. En effet il présente des performances métrologiques avec les notes les plus élevées en considérant la combinaison PM2,5 et NO2 : MAPE (pourcentage moyen des écarts en valeur absolue) inférieur à 100%, R2 compris entre 0,5 et 0,75 mais pente et variabilité variable selon le polluant (PM2,5 : pente = 2,25 et variabilité = 5% ; NO2 : pente = 0,81 et variabilité = 41%). Il présente de surcroît de bonnes caractéristiques qualitatives avec une note de 5 pour la fiabilité et 4,7 pour sa facilité de mise en œuvre. C’est donc le système qui présente le plus de polyvalence parmi ceux testés. En ne considérant qu’un seul polluant, NO2 et PM2,5 indépendamment, d’autres systèmes présentent des performances globales allant de moyennes à très bonnes. En particulier, les systèmes KA et B pour les PM2,5 et le système EB pour le NO2 présentent les meilleurs résultats avec un MAPE inférieur à 100%, un R2 supérieur à 0,75, une pente de corrélation proche de 1 et une variabilité inter-système inférieur à 5%. Cependant, les systèmes KA et B présentent des notes qualitatives plus faibles, notamment en raison de leur manque de polyvalence et de la perte de données durant la période d’exercice. D’autres systèmes, G et J pour les PM2,5 et D pour le NO2, présentent une dispersion plus importante que les systèmes précédents (0,52 Enfin, même si aucun des systèmes évalués ne respecte les objectifs de qualité de données (OQD) des Directives Européennes 2008/50/CE et 2015/14/80 pour les mesures en sites fixes en NO2, O3 et PM (OQD respectifs de 15 %, 15% et 25%), certains peuvent prétendre satisfaire aux critères des méthodes indicatives, notamment pour les PM2,5 (OQD de 50%). Il est important de rappeler que les systèmes micro-capteurs ont été testés en conditions fixes. Ainsi, les résultats obtenus ne peuvent pas être extrapolés à une mise en œuvre en mobilité. Par ailleurs, les radars d’évaluation construits pour cette évaluation donnent une vision de l’ensemble des critères de performance à prendre en compte qui ont un poids plus ou moins important selon l’usage auquel les micro-capteurs sont destinés. En termes de perspectives de ces travaux et afin de compléter cette première évaluation, un second essai d’aptitude a été réalisé durant l’été 2018 afin de tenir compte d’un potentiel effet de saisonnalité, notamment dans la constitution de la matrice d’air (concentrations plus élevées en O3 et moins élevées en NO2 et PM). Ces résultats seront disponibles début 2019. Néanmoins, la dépendance des conditions environnementales ne permet d’évaluer les systèmes capteurs que dans des situations très précises. Il semble donc nécessaire pour une évaluation complète des systèmes de mesures de pouvoir combiner la complexité d’une matrice réelle aux spécificités de concentrations contrôlées. Ainsi, une étude sur la faisabilité d’un dopage de matrice réelle par des mélanges gazeux et particulaires est en cours de réalisation par le LCSQA/Ineris.   [1] N. REDON, F. DELCOURT, S. CRUNAIRE, N. LOCOGE, Protocole de détermination des caractéristiques de performance métrologique des micro-capteurs - étude comparative des performances en laboratoire de micro-capteurs de NO2, Rapport LCSQA, mars 2017. https://www.lcsqa.org/fr/rapport/2016/mines-douai/protocole-determination-caracteristiques-performance-metrologique-micro-cap N. REDON, S. CRUNAIRE, B. HERBIN, E. MORELLE, F. GAIE-LEVREL, T. AMODEO, Faisabilité de la mise en œuvre d'un protocole pour l'évaluation en laboratoire de micro-capteurs pour la mesure des concentrations massiques particulaires, Note technique LCSQA, juillet 2018. https://www.lcsqa.org/fr/rapport/faisabilite-de-la-mise-en-oeuvre-dun-protocole-pour-levaluation-en-laboratoire-de-micro