Premier essai national d’aptitude des micro-capteurs (EAµC) pour la surveillance de la qualité de l’air : synthèse des résultats

Type de documents
Rapport d’étude
Année programme
2017
Auteurs
N. Redon - L. Spinelle
Nom de l'organisme
IMT LD - INERIS
Mots clés
Appareils de mesure - Mesure multi-polluants - NO2 (dioxyde d’azote) - NOx (Oxydes d’azote) - O3 (ozone) - Particules (PM) - Retour d’expérience
Thématique

L’émergence sur le marché de micro-capteurs connectés a conduit le dispositif national de surveillance de la qualité de l’air à s’intéresser à la fiabilité de ces nouveaux dispositifs. Il n’existe à l’heure actuelle aucun cadre normatif national ou européen permettant de comparer les performances de ces différents appareils commercialisés aux appareils de mesures de référence.

Le premier essai d’aptitude national sur le terrain de micro-capteurs de gaz et de particules installés en site fixe, coordonné par le Laboratoire Central de Surveillance de la Qualité de l’Air (LCSQA), s’inscrit dans la continuité des travaux amorcés ces deux dernières années en laboratoire pour déterminer les caractéristiques de performance des micro-capteurs[1]. Ces travaux ont notamment permis de comprendre les effets de différents paramètres de mesures sur les systèmes capteurs mais il est cependant difficile en laboratoire de reproduire l’ensemble des facteurs d’influences sur la mesure. C’est pourquoi, les essais sur le terrain utilisant une comparaison directe avec des mesures de référence permettent d’obtenir une meilleure représentativité de ces effets.

Cet essai, conduit de début janvier à mi-février 2018, avait pour objectif de placer en conditions réelles sur un site de typologie urbaine, un grand nombre de systèmes différents afin d’évaluer leur aptitude à suivre les principaux polluants d’intérêt pour l’air ambiant : le dioxyde d’azote (NO2), l’ozone (O3) et les particules (PM2,5 et PM10).

Organisé par le LCSQA/IMT Lille Douai sur la station de mesure de la qualité de l’air de son Centre de Recherche, cet essai a regroupé 16 participants qui ont mis en œuvre 44 dispositifs au total, réplicas inclus. 17 systèmes étaient de conception et d’origines différentes (France, Pays-Bas, Royaume-Uni, Espagne, Italie, Pologne, États-Unis). Les systèmes mis à disposition ont été fournis par des fabricants, des distributeurs ou des utilisateurs volontaires œuvrant dans le cadre du dispositif national de surveillance (Associations Agréées de surveillance de la qualité de l’air, AASQA, et membres du LCSQA). Ainsi, les systèmes mis à disposition avaient des historiques d’utilisation différents. Cet essai a été réalisé conformément aux pratiques en vigueur pour l’organisation des comparaisons inter-laboratoires ou des essais d’aptitude. Ainsi, dans ce document, chaque système testé est identifié à l’aide d’un code alphanumérique unique. Une liste des participants est cependant fournie, laissant ainsi la possibilité de contacter chacun d’entre eux pour obtenir son numéro d’identification. Cependant, une discussion est en cours avec chaque participant concernant une possible levée d’anonymat afin de pouvoir documenter par exemple l’influence de l’usage ou des différentes versions de logiciel ou d’algorithme.

Les données ont été exploitées par le LCSQA/Ineris par comparaison aux mesures d’instruments de référence. Un volume de plus de 70 millions de données minutes a dû être traité par des méthodes élaborées spécifiquement. Outre les performances métrologiques de ces instruments, une attention particulière a été portée à d’autres paramètres tels que la simplicité de mise en œuvre, l’autonomie, la portabilité, la fiabilité de communication (GSM, Wifi, Bluetooth, filaire, …), la convivialité des applications de récupération des données en tenant compte de l’objectif recherché. Chaque système a fait l’objet d’une fiche d’évaluation par polluant mesuré. Cette fiche inclut un descriptif technique succinct, un tableau récapitulatif des performances métrologiques, un radar « papillon » affichant des notations de 0 à 5 pour 8 critères qualitatifs ou quantitatifs, les relevés des séries temporelles de chacun des réplicas testés comparés aux données de l’instrument de référence, les graphiques de corrélation, et enfin un avis général.

Ce document a pour objectif de présenter la méthodologie mise en œuvre avec un comparatif des notations qualitatives ainsi qu’une synthèse des résultats pour NO2, O3 et PM2,5. Un rapport détaillé suivra et inclura en complément les résultats obtenus pour les capteurs PM10, ainsi que l’intégralité des fiches individuelles d’évaluation produites. Celles-ci intègreront l’ensemble des données chiffrées, les radars, les séries temporelles de concentrations, les graphiques de corrélation et enfin les avantages et inconvénients à retenir pour chaque couple système/polluant.

En termes de polyvalence (systèmes multi-capteurs), seul le système C se démarque des autres systèmes testés durant la campagne. En effet il présente des performances métrologiques avec les notes les plus élevées en considérant la combinaison PM2,5 et NO2 : MAPE (pourcentage moyen des écarts en valeur absolue) inférieur à 100%, R2 compris entre 0,5 et 0,75 mais pente et variabilité variable selon le polluant (PM2,5 : pente = 2,25 et variabilité = 5% ; NO2 : pente = 0,81 et variabilité = 41%). Il présente de surcroît de bonnes caractéristiques qualitatives avec une note de 5 pour la fiabilité et 4,7 pour sa facilité de mise en œuvre. C’est donc le système qui présente le plus de polyvalence parmi ceux testés.

En ne considérant qu’un seul polluant, NO2 et PM2,5 indépendamment, d’autres systèmes présentent des performances globales allant de moyennes à très bonnes. En particulier, les systèmes KA et B pour les PM2,5 et le système EB pour le NO2 présentent les meilleurs résultats avec un MAPE inférieur à 100%, un R2 supérieur à 0,75, une pente de corrélation proche de 1 et une variabilité inter-système inférieur à 5%. Cependant, les systèmes KA et B présentent des notes qualitatives plus faibles, notamment en raison de leur manque de polyvalence et de la perte de données durant la période d’exercice.

D’autres systèmes, G et J pour les PM2,5 et D pour le NO2, présentent une dispersion plus importante que les systèmes précédents (0,5<R2<0,75). Ils restent cependant de bons candidats potentiels en raison d’une faible variabilité (<15%). Ces systèmes obtiennent quant à eux de bonnes notes qualitatives.

Enfin, même si aucun des systèmes évalués ne respecte les objectifs de qualité de données (OQD) des Directives Européennes 2008/50/CE et 2015/14/80 pour les mesures en sites fixes en NO2, O3 et PM (OQD respectifs de 15 %, 15% et 25%), certains peuvent prétendre satisfaire aux critères des méthodes indicatives, notamment pour les PM2,5 (OQD de 50%).

Il est important de rappeler que les systèmes micro-capteurs ont été testés en conditions fixes. Ainsi, les résultats obtenus ne peuvent pas être extrapolés à une mise en œuvre en mobilité. Par ailleurs, les radars d’évaluation construits pour cette évaluation donnent une vision de l’ensemble des critères de performance à prendre en compte qui ont un poids plus ou moins important selon l’usage auquel les micro-capteurs sont destinés.

En termes de perspectives de ces travaux et afin de compléter cette première évaluation, un second essai d’aptitude a été réalisé durant l’été 2018 afin de tenir compte d’un potentiel effet de saisonnalité, notamment dans la constitution de la matrice d’air (concentrations plus élevées en O3 et moins élevées en NO2 et PM). Ces résultats seront disponibles début 2019.

Néanmoins, la dépendance des conditions environnementales ne permet d’évaluer les systèmes capteurs que dans des situations très précises. Il semble donc nécessaire pour une évaluation complète des systèmes de mesures de pouvoir combiner la complexité d’une matrice réelle aux spécificités de concentrations contrôlées. Ainsi, une étude sur la faisabilité d’un dopage de matrice réelle par des mélanges gazeux et particulaires est en cours de réalisation par le LCSQA/Ineris.

 

[1] N. REDON, F. DELCOURT, S. CRUNAIRE, N. LOCOGE, Protocole de détermination des caractéristiques de performance métrologique des micro-capteurs - étude comparative des performances en laboratoire de micro-capteurs de NO2, Rapport LCSQA, mars 2017. https://www.lcsqa.org/fr/rapport/2016/mines-douai/protocole-determination-caracteristiques-performance-metrologique-micro-cap

N. REDON, S. CRUNAIRE, B. HERBIN, E. MORELLE, F. GAIE-LEVREL, T. AMODEO, Faisabilité de la mise en œuvre d'un protocole pour l'évaluation en laboratoire de micro-capteurs pour la mesure des concentrations massiques particulaires, Note technique LCSQA, juillet 2018. https://www.lcsqa.org/fr/rapport/faisabilite-de-la-mise-en-oeuvre-dun-protocole-pour-levaluation-en-laboratoire-de-micro