Résultats de la recherche

349 résultats correspondent à AASQA
Mardi 31 juillet 2012
Rapport
Surveillance du benzène Développement de matériaux de référence de BTEX sur tubes - Exercice d’intercomparaison
Les Matériaux de Référence (MR) permettent d’assurer la traçabilité des mesures et de valider les méthodes analytiques. En 2010, il avait été constaté qu’il n’existait pas de matériaux de référence, en France, disponibles pour la mesure du benzène, du toluène, de l'éthylbenzène et des xylènes (BTEX) en air ambiant par prélèvement sur tubes de Carbograph 4, Carbopack B et Carbograph X. C’est pourquoi, dès 2010, le LNE avait proposé de développer une méthode de chargement de tubes en BTEX à partir d’un mélange gazeux de référence gravimétrique en bouteille (MR gazeux), afin de pouvoir disposer de matériaux de référence de BTEX sur tubes d’adsorbant pouvant être ensuite utilisés notamment pour l'étalonnage des systèmes analytiques et pour l’évaluation des performances des laboratoires à l’analyse des prélèvements de BTEX sur tubes. Par conséquent, l'objectif final est de disposer des tubes chargés suivants : -  Tubes actifs de type Carbopack X chargés en BTEX, -  Tubes passifs de type Radiello  – Carbograph 4 chargés en BTEX, -passifs de type Carbopack B chargés en BTEX.   L'étude menée en 2011 a porté dans un premier temps sur de nouveaux essais menés avec le NPL (laboratoire de métrologie anglais) afin de valider la procédure de chargement des BTEX.La comparaison faite avec le NPL en 2010 avait conduit à des écarts relatifs importants entre les masses chargées par le LNE et par le NPL. Après des recherches, l'explication venait du fait que le NPL appliquait une double correction de la température sur le débit du mélange gazeux servant au chargement des tubes. De nouveaux essais de comparaison ont été réalisés en 2011. Pour les tubes chargés par le NPL et analysés par le LNE, ils ont montré des écarts relatifs plus faibles (de 1 à 4% selon les composés) entre les masses chargées par le NPL et celle analysées par le LNE par rapport aux résultats de la première comparaison (6 à 9%). En revanche, pour les tubes chargés par le LNE et analysés par le NPL, ce problème de double correction n'a pas permis d’expliquer les écarts importants entre les masses chargées par le LNE et les masses analysées par le NPL qui sont de 6 à 13% selon les adsorbants et les composés. Ces écarts pourraient s’expliquer par les méthodes d’étalonnage différentes entre le NPL et le LNE : en effet, le système analytique du NPL est étalonné avec des tubes chargés par voie liquide, alors que celui du LNE est étalonné avec des tubes chargés par voie gazeuse. Néanmoins, il est à noter que le LNE organise actuellement une comparaison européenne dans le cadre d’EURAMET sur cette problématique. Des tubes ont été chargés par le LNE et par le VSL (laboratoire de métrologie hollandais) avec des BTEX à la fin de l’année 2011 et sont en cours d’analyse par différents laboratoires de métrologie européens (METAS en Suisse, le NPL en Angleterre et le JRC en Italie). Les résultats seront disponibles au cours du second semestre 2012. Dans un second temps, le LNE a organisé une campagne d'intercomparaison afin de tester l’aptitude des laboratoires à analyser différents types de tubes (passifs et actifs) susceptibles d'être utilisés par les AASQA pour effectuer leurs prélèvements. Le LNE a réalisé une série de chargement de tubes (Carbograph 4, Carbopack B et X) par voie gazeuse à partir de mélanges gazeux de référence gravimétriques du LNE en mettant en œuvre la méthode développée au cours de l'année 2010. L'INERIS a réalisé l'autre série de chargement en chambre d'exposition à une concentration en BTEX constante, maîtrisée et contrôlée (par analyseur en continu) afin de mimer au mieux un prélèvement passif et de fournir aux laboratoires des matériaux d’essais aussi proches que possible des tubes prélevés par diffusion. Les résultats de l’intercomparaison portant sur l’analyse des tubes chargés par le LNEmontrent que sur les sept laboratoires, seul le laboratoire A présente des résultats très significativement différents des masses chargées sur les tubes pouvant aller jusqu’à des écarts relatifs entre les masses analysées et les masses chargées de 100 % : ceci pourrait s’expliquer par une limite de détection trop élevée par rapport aux masses à analyser, et ce quelque soit l’adsorbant. Cependant, ceci pourrait également provenir d’un problème au niveau de la méthode d’analyse ou d’étalonnage.   Le laboratoire C présente des résultats dispersés pour une même série quelque soient les composés et les adsorbants. Par conséquent, pour le Carbograph 4, les résultats de ce laboratoire sont satisfaisants uniquement pour le m-xylène et quelques tubes pour l’éthylbenzène et l’o-xylène ;  pour le Carbopack B, les résultats sont satisfaisants pour le benzène, le toluène et l’o-xylène, mais pas pour l’éthylbenzène et le m-xylène. Par contre, dans le cas du Carbopack X, tous les résultats obtenus sont justes excepté pour l’un des tubes de benzène, d’éthylbenzène et d’o-xylène.   Pour le Carbograph 4, le laboratoire E a obtenu des résultats satisfaisants pour le toluène. Pour le benzène et l’o-xylène, malgré des écarts relatifs de respectivement - 5 et 5 %, les incertitudes sont trop faibles pour que tous les résultats puissent être considérés comme justes (deux tubes sur cinq sont corrects). Pour l’éthylbenzène et le m-xylène, les écarts sont très importants avec 25 %. Pour le Carbopack B, il a obtenu des résultats satisfaisants pour le benzène, l’éthylbenzène et l’o-xylène. Pour les deux autres composés, l’écart relatif moyen reste relativement faible (- 5 %), mais comme l’incertitude associée est peu élevée, les résultats ne peuvent pas être tous considérés comme justes. Enfin, les résultats sont satisfaisants pour le Carbopack X pour l’ensemble des composés.   Pour le Carbograph 4, le laboratoire G a des résultats satisfaisants pour le benzène et le toluène. Pour l’éthylbenzène, le m-xylène et l’o-xylène, les écarts sont assez importants avec -10 % : au vu des incertitudes, les résultats ne peuvent pas être considérés comme justes. Par contre, pour le Carbopack B et le Carbopack X, les résultats sont satisfaisants pour l’ensemble des composés.   Les résultats de l’intercomparaison portant sur l’analyse des tubes chargés par l’INERISsont satisfaisants pour les laboratoires B (hormis pour 2 tubes en éthylbenzène), D, E, F, G et H. Le laboratoire A présente des z-scores supérieurs à 3 en valeur absolue pour tous les composés ; les résultats sont donc insatisfaisants. Les résultats montrent qu’il sous estime fortement les masses de BTEX (maximale pour le m-xylène). Le laboratoire C présente des résultats tantôt discutables tantôt non satisfaisants sauf pour l’o-xylène où ils sont tous satisfaisants. Les résultats obtenus lors de l’exercice d’intercomparaison portant sur l’analyse de tubes chargés par le LNE et par l’INERIS sont résumés pour l’ensemble des participants dans les 2 tableaux ci-après. Le premier porte uniquement sur les résultats obtenus pour le benzène qui est le composé réglementé dans la directive européenne 2008/50/CE.   Benzène Laboratoire Tubes chargés par le LNE Tubes Radiello (Carbograph 4) chargés par l’INERIS Carbograph 4 Carbopack B Carbopack X Résultats satisfaisants Résultats satisfaisants Résultats satisfaisants Résultats satisfaisants Oui Non Oui Non Oui Non Oui Non                  A   X   X   X   X B X   X   X   X   C   X X   X     X D X   X   X   X   E X   X   X   X   F X   X   X   X   G X   X   X   X   H - - - - - - X     Le second porte sur l'ensemble des composés (benzène, toluène, éthylbenzène, o-xylène et m-xylène).   Benzène, toluène, éthylbenzène, m-xylène et o-xylène Laboratoire Tubes chargés par le LNE Tubes Radiello (Carbograph 4) chargés par l’INERIS Carbograph 4 Carbopack B Carbopack X Résultats satisfaisants Résultats satisfaisants Résultats satisfaisants Résultats satisfaisants Oui Non Oui Non Oui Non Oui Non                  A   X   X   X   X B X   X   X   X   C   X   X X     X D X   X   X   X   E   X   X X   X   F X   X   X   X   G   X X   X   X   H - - - - -   X     Au vu de l’ensemble des résultats obtenus (comparaison bilatérale avec le NPL et comparaisons françaises menées en 2009, 2010 et 2011), la méthode de chargement des tubes d’adsorbant peut être validée.   En conséquence, le LNE est en mesure de mettre à disposition, des laboratoires d’analyse, des matériaux de référence de BTEX sur tubes contenant différents types d’adsorbant (Carbopack B et X, Carbograph 4) pour des masses de BTEX inférieures à 2000 ng.  
Lundi 21 juin 2010
Page de livre
Commission de Suivi du 11/10/10
Parmi les sujets proposés pour l’ordre du jour on notera :
Vendredi 20 juillet 2012
Rapport
Connaissance du nombre et de la distribution granulométrique des particules submicroniques - Suivi dans le temps, métrologie : bilan des travaux 2003- 2011
La surveillance du nombre, de la granulométrie et de la composition chimique desparticules fines dans l’air ambiant apparaît comme un enjeu majeur pour unemeilleure compréhension de l’impact sanitaire des aérosols. Il en va de même pour l’étude de leurs impacts climatiques. Ainsi, la communauté scientifiqueeuropéenne s’est-elle engagée depuis quelques années dans des actionsprospectives consacrées aux particules submicroniques.C’est dans ce contexte que la présente action du LCSQA a été proposée dès 2003, avec pour objectif principal de documenter la situation française par la mise en oeuvre in situ de techniques de comptage et de caractérisation de la distribution en taille. Un axe majeur de cette action a consisté, en collaboration avec AIRPARIF, àassurer un suivi des particules submicroniques sur le site de fond urbain deGennevilliers, lors de campagnes de mesure hivernales reconduitesannuellement. Des campagnes estivales ont également été réaliséesponctuellement sur ce site afin d’étudier la variabilité saisonnière des sources et des processus de formation. Ces travaux mettent en évidence les rôles majeursjoués par le trafic automobile et, en été, par les processus photochimiques, sur lesniveaux de concentrations de particules ultrafines (PUF) en région parisienne.Dès 2003, cette action a été menée sous la forme d’une campagne hivernale de 5semaines, effectuée à l’aide de granulomètres de laboratoire de type SMPS (10 – 500 nm) et APS (0,5 μm – 20 μm). A partir de 2009, nous avons cherché àallonger le temps de mesurage, afin de bénéficier d’une meilleure assisestatistique : pour ce faire, nous avons porté nos efforts sur l’étude d’un nouveaugranulomètre développé spécifiquement pour la surveillance en air ambiant, le 3031 (société TSI). A ce stade, et étant donné les difficultés posées par l’utilisation de sourcesradioactives sur le territoire national, le 3031 semble être l’instrument le plusindiqué pour les activités de surveillance. La réflexion n’est cependant pas close,avec notamment l’émergence de nouvelles pistes instrumentales (compteur à eau), mais aussi le besoin de poursuivre les exercices de comparaison avec unSMPS et de recueillir de nouveaux retours d’expérience.Différentes AASQA développent désormais des actions régionales sur lesparticules ultrafines. A leur demande, le LCSQA/INERIS fait évoluer son activitésur les particules submicroniques en développant une activité de support. Il s’agira tout particulièrement pour 2012, d’organiser des exercices d’intercomparaisonvisant à mieux connaître les performances du granulomètre 3031 ainsi qu’à veillerà l’homogénéité des mesures réalisées au sein du dispositif national (en particulier en Ile de France, Rhône-Alpes, Aquitaine et PACA).
Mercredi 12 mai 2010
Rapport
Evaluation de modèles pour la simulation de la pollution à proximité des axes routiers
La présente étude, planifiée sur trois ans (2007-2009) porte sur la modélisation de la pollution atmosphérique à proximité des axes routiers. Elle a pour objet la mise à disposition de données, d’informations techniques et de méthodologies de référence qui permettent d’apprécier la qualité des modèles disponibles et d’optimiser leur usage. Depuis 2007, un fond d’informations comprenant un recensement de campagnes de mesure réalisées en France ou à l’étranger, des informations techniques sur les modèles, des résultats de modélisation et un outil Excel de comparaison modèle-mesure a été progressivement constitué. Il est accessible sur le site du LCSQA (/fr/pollution-de-proximite). Des jeux de données relatifs à quelques unes des campagnes référencées ont pu être récupérés sur Internet (données du programme européen TRAPOS) ou auprès des AASQA. Depuis 2008, une part importante du travail a été consacrée à l’application de modèles de proximité à certains de ces jeux, afin de s’assurer que les données et méthodologies fournies étaient cohérentes et aisément exploitables, d’offrir des résultats de comparaison entre simulations et mesures et de mieux caractériser le fonctionnement des modèles. Des modèles d’usage courant ont été sélectionnés : ADMS-Urban, CALINE4, OSPM, SIRANE et STREET. Le modèle CALINE4, testé en 2008 sur les données TRAPOS, n’a pas été conservé pour la suite des évaluations : conçu pour simuler la dispersion autour d’axes interurbains, il s’est révélé inadapté à la modélisation en milieu construit. En 2009, trois rues de Nantes ont été étudiées : une rue canyon très encaissée (rue de Crébillon), une rue canyon classique (rue de Strasbourg) et une rue semi-ouverte (quai de la Fosse). Ces nouveaux calculs ont bénéficié de données d’entrée plus complètes (données d’émissions et de concentrations fournies par AIR Pays-de-Loire) et d’une meilleure connaissance du terrain. Les résultats obtenus, enrichis par des tests de sensibilité, confirment et précisent les remarques émises à l’issue des simulations TRAPOS (Wroblewski et al., LCSQA 2008). Ils mettent en évidence quelques traits récurrents des modèles : Quel que soit le modèle, les résultats sont sensiblement meilleurs pour le NO2 que pour les NOx : le biais est plus faible et la dispersion entre modèle et mesure est moindre. La moyenne annuelle modélisée de NO2 s’écarte d’au minimum 3,7% et d’au maximum 35% de la valeur mesurée. La qualité des résultats (notamment la corrélation) est meilleure pour les configurations incluses rigoureusement dans le champ d’application des modèles : rues canyons classiques pour ADMS-Urban, OSPM, SIRANE et STREET, axes ouverts pour ADMS-Urban et SIRANE. Pour ce second type de rue, ADMS-Urban et SIRANE, qui recourent tous deux à une formulation gaussienne, produisent des résultats concordants. Quel que soit le polluant, ADMS-Urban sous-estime les concentrations, ce qui pourrait s’expliquer par une dispersion accrue liée au couplage modèle de rue-modèle gaussien. OSPM est étroitement lié aux données d’émissions ; cela reste vrai pour ADMS-Urban et SIRANE, mais de façon moins sensible. Pour ces deux modèles, l’influence de la météorologie et de la pollution de fond est plus grande, ce qui peut expliquer une meilleure restitution des variations horaires de concentrations et en conséquence, une corrélation modèle-mesure plus élevée. Les statistiques sur les périodes de campagnes ne suffisent pas à caractériser les modèles et leur capacité de suivre l’évolution temporelle des concentrations. Les séries temporelles modélisées et mesurées s’écartent parfois l’une de l’autre de façon notable. Seule une analyse approfondie en fonction de la météorologie et des concentrations de fond pourrait permettre d’évaluer le comportement des modèles sur de courts pas de temps. En ce qui concerne les PM10, les résultats sont plus contrastés. La modélisation demeure satisfaisante pour ADMS-Urban et SIRANE, en dépit d’un biais plus élevé : l’écart entre les moyennes annuelles modélisées et mesurées est inférieur à 40% ; la corrélation, assez faible avec SIRANE pour la rue de Crébillon, est supérieure à 0,7 partout ailleurs. De façon étonnante et pour l’instant inexpliquée, la qualité des résultats d’OSPM chute sensiblement. En 2010, cette évaluation des modèles sera complétée par l’étude de deux situations complexes (axes avec intersections, situés à Poitiers) à partir de données fournies par ATMO Poitou-Charentes. Une note de synthèse reprenant les principaux résultats de ces travaux sera rédigée et étayée d’éléments bibliographiques.  
Jeudi 22 avril 2010
Page de livre
Programme 2010
Thème 1 METROLOGIE - ASSURANCE QUALITE Rédaction des guides pratiques de calculs d'incertitudes et formation des
Lundi 22 février 2010
Rapport
Analyse des impuretés dans les gaz de zéro
  Pour le réglage à zéro des analyseurs, les AASQA utilisent des gaz de zéro (Air zéro en bouteille…) pour lesquels on considère que les concentrations des impuretés sont inférieures au seuil de détection des analyseurs et de ce fait, sont données comme étant égales à zéro.Toutefois, ceci reste un postulat pouvant parfois être remis en cause par exemple lors des audits réalisés par le COFRAC.De plus, les normes européennes NF EN 14211, NF EN 14212, NF EN 14625 et NF EN 14626 portant sur l’analyse de SO2, de NO/NOx/NO2, CO et O3 fournissent des spécifications pour les gaz de zéro à utiliser. Toutefois, la chaîne d’étalonnage pour l’air zéro n’existant pas pour l’instant, il n’est pas possible de déterminer si les exigences normatives sont respectées.Enfin, la fabrication des mélanges gazeux de référence gravimétriques et la génération de mélanges gazeux de référence dynamiques (dilution d’un mélange gazeux haute concentration par voie dynamique, mélange gazeux généré par perméation…) impliquent l’utilisation de gaz de zéro (azote ou air). Une des sources d’erreur dans le calcul de la concentration de ces mélanges gazeux de référence est la pureté des gaz de zéro utilisés, ce qui est soulevé de façon récurrente par les auditeurs techniques du COFRAC et lors des réunions sur les comparaisons européennes et internationales, car les laboratoires nationaux se doivent d’être capables de déterminer la pureté des gaz utilisés.L’objectif final de cette étude est de développer une méthode d'analyse de la pureté des gaz de zéro en caractérisant et en quantifiant les impuretés (NO, NO2, SO2 et CO) présentes dans les gaz de zéro.Ceci permettra à terme d’analyser et de comparer les gaz de zéro vendus par les fabricants de gaz afin de valider le choix des fournisseurs et de répondre aux exigences normatives.L'étude menée en 2008 a permis de développer la méthode d'analyse pour le NO en utilisant un spectromètre de type « Tunable Infrared Laser Absorption » de la société Aerodyne Research qui fonctionne selon le principe de l’absorption infrarouge.L’objectif de l'étude menée en 2009 était de poursuivre le développement de la méthode d'analyse pour le composé NO2 présent à l'état de traces dans les bouteilles d'air (concentrations inférieures à 1 nmol/mol).Les essais effectués en 2009 ont montré que : Cet appareil est très sensible, puisqu’il permet d’analyser de très faibles concentrations de NO2 (jusqu'à 0,2 nmol/mol) : en effet, sa limite de détection est de 0,03 nmol/mol et sa limite de quantification de 0,09 nmol/mol, ce qui est en adéquation avec la norme européenne NF EN 14625 qui indique que le gaz de zéro doit contenir une concentration en NO2 inférieure ou égale à 1 nmol/mol, Les concentrations analysées entre 0,2 nmol/mol et 1 nmol/mol ont une incertitude élargie de 0,2 nmol/mol après avoir optimisé les conditions opératoires et définies une procédure d'analyse. Au terme des études menées en 2008 et 2009, les essais montrent que le spectromètre DUAL QC-TILDAS-210 (Aerodyne Research) est un appareil très performant avec des caractéristiques métrologiques permettant d'analyser de très faibles concentrations de NO etde NO2 dans les gaz de zéro respectivement à partir de 0,2 et 0,1 nmol/mol avec une incertitude élargie de 0,2 nmol/mol.Toutefois, dans le cas du NO2, il convient de prendre certaines précautions avec le système d’analyse lorsque des mesures sont faites à de très faibles concentrations pour éviter des adsorptions éventuelles du NO2 sur les parois internes du système et donc des sousestimations des concentrations.Fin 2009, deux lasers ont été rajoutés à ce système analytique pour pouvoir effectuer des mesures de SO2 et de CO, en même temps que les mesures de NO et NO2 : de cette façon, les concentrations de SO2, de NO, de NO2 et de CO pourront être déterminées simultanément dans un même gaz de zéro.L'étude 2010 aura donc pour objectif de poursuivre la détermination des performances métrologiques du spectromètre DUAL QC-TILDAS-210 et le développement de la méthode d'analyse pour les composés CO et SO2 présents à l'état de traces dans les gaz de zéro.
Vendredi 5 février 2010
Rapport
Travaux relatifs à la plateforme nationale de modélisation Prev'Air : Bilan des performances et bilans utilisateurs (1/2)
Dans ce rapport nous évaluons les performances des modèles mis en œuvre dans la plateforme de prévision et de cartographie de la qualité de l’air, Prev’Air. Cette estimation du comportement des outils est réalisée à l’aide d’indicateurs statistiques classiques et des observations obtenues en temps quasi réel de la base de données BASTER gérée par l’ADEME et alimentée par les AASQA (associations de surveillance de la qualité de l’air). En 2009, les performances affichées par les modèles sont assez proches de celles obtenues en 2008 pour ce qui concerne Chimere, la version n’ayant pas fondamentalement évolué. Le modèle a fait preuve d’une aptitude excellente à détecter les épisodes d’ozone et de particules de l’année 2009. Toutefois, sa tendance à surestimer l’intensité des épisodes d’ozone durant l’été, nous pousse à investiguer le possible effet de la crise économique sur les émissions estivales 2009 et ses répercussions sur la production d’ozone. Le comportement de Mocage s’est amélioré par rapport aux années précédentes pour l’ozone avec la mise en service d’une nouvelle version. Néanmoins, elle présente une incapacité à détecter les dépassements du seuil d’information à l’ozone. La version « Ensemble » de Prev’Air, en test et en développement depuis un an rencontre également ce problème, bien qu’elle possède les meilleurs scores (biais, erreur quadratique moyenne et corrélation), l’Ensemble se montre pour le moment incapable de prévoir correctement les dépassements. Une nouvelle version visant à corriger ce défaut est en développement et sera testée en 2010. Des travaux préliminaires ont également été amorcés en 2009 sur une nouvelle version de Chimere afin de délivrer une prévision des poussières désertiques au dessus des Antilles françaises, à l’instar de ce que Mocage réalise sur le Globe mais avec une meilleure résolution horizontale dans le but de prévoir précisément l’arrivée de ces panaches souvent d’origine saharienne. Enfin, un dernier chapitre détaille l’actualité des utilisateurs de Prev’Air en 2009.
Lundi 22 février 2010
Rapport
Rédaction de guides pratiques de calcul d'incertitude (5 parties)
  Ces cinq rapports constituent des versions projets des guides méthodologiques publiées en mai 2011.   Au niveau réglementaire, les directives européennes relatives à la surveillance de la qualité de l’air fixent des seuils d’incertitude sur les concentrations mesurées par les réseaux de surveillance de la ualité de l’air « au voisinage de la valeur limite appropriée ». En marge de ces directives, plusieurs normes décrivant des procédures d'estimation des incertitudes associées aux mesurages ont été répertoriées dans le domaine spécifique de la qualité de l’air. Une lecture attentive de ces normes montre qu’elles ne sont pas très faciles d’application et qu‘elles peuvent être interprétées de diverses façons, ce qui peut conduire à des résultats très différents. Par conséquent, pour répondre aux exigences des directives et pour permettre d’harmoniser les pratiques d’estimation des incertitudes au sein des AASQA, le LCSQA a proposé de rédiger un guide pratique pour estimer l’incertitude sur les mesures effectuées à l’air ambiant. L’approche est basée sur les normes et documents existants, et en particulier sur les méthodes de calcul proposées dans les normes européennes rédigées par les groupes de normalisation CEN TC 264/WG12 et CEN TC 264/WG13. L’objectif est donc de rédiger un guide pratique pour l’estimation des incertitudes associées aux différents types de mesures effectuées dans l’air ambiant. Ce guide est structuré en huit parties, correspondant chacune à une technique de mesure particulière applicable à un ou plusieurs composés. Un fois finalisées, les différentes parties sont validées en Commission de normalisation X43D « Air ambiant » de l’AFNOR et publiées sous forme de fascicules de documentation.
Mardi 3 mai 2011
Rapport
Evolution de la classification et des critères d'implantation des stations de mesure de la qualité de l'air - Participation à la réactualisation du guide de classification des stations
Depuis 1993, le Ministère de l'Environnement a confié à l'Ecole des Mines une mission de réflexion sur les critères de choix de sites de mesure qui a fait l’objet de nombreux rapports. En 1998, le groupe de travail "Critères de choix de sites de mesure", comportant des représentants du Ministère de l'Environnement, de 10 réseaux, piloté par l'Ecole des Mines de Douai et l’ADEME, est parvenu à l'élaboration d'un document donnant des recommandations concernant la mise en place de stations de mesure selon des critères identiques sur le plan national et en correspondance avec les instructions de la Directive Cadre 96/62/EC. Ce document non définitif est à considérer comme un guide en vue de la mise en place de stations de mesure de la qualité de l'air présentant : les objectifs d'un réseau la classification des stations de mesures une méthodologie pour le choix des sites des considérations pratiques pour l'implantation des stations. L’objet de la présente étude est de mettre en évidence l’évolution des textes réglementaires et normatifs sur les conditions de mise en place des stations de mesure, et de proposer des pistes de révision du guide de recommandations. Un bilan de l’ensemble des recommandations européennes sur les plans technique et réglementaire concernant les points de prélèvement pour la mesure des polluants atmosphériques en station de mesure automatique a été fait, permettant de voir les incidences des derniers textes réglementaires et normatifs sur l’implantation des stations de surveillance de la qualité de l’air. Ainsi, une synthèse de l’ensemble des recommandations européennes, tant sur le plan réglementaire (Directives européennes 2004/107/CE et 2008/50/CE) que technique (normes EN 14211 sur les NOx, EN 14212 sur le SO2, EN 14625 pour O3 et EN 14626 pour CO, norme EN14662 en 5 parties sur le benzène) a été faite afin de connaître les contraintes relatives à l’emplacement des points de prélèvement. Des propositions d’évolution du guide national «Classification & critères d’implantation des stations de surveillance de la qualité de l’air » sont faites afin de disposer, dans le cadre du Groupe de Travail « Programme de Surveillance de la Qualité de l’Air », d’un document de référence concernant la macro- et micro implantation des points de mesure ainsi que les contraintes techniques pouvant différer selon le polluant considéré. Ce travail ainsi que l’expérience des AASQA peuvent être utiles dans le cadre de la mise en oeuvre des Directives Européennes et de la réorganisation du dispositif national de surveillance de la qualité de l’air prévu en 2011.
Lundi 27 février 2012
Rapport
Bilan/veille sur la qualité de l’air intérieur à un niveau national et international : travaux récents et nouveaux instruments disponibles
L’intérêt croissant porté désormais à la qualité de l’air intérieur (QAI) débouche sur un nombre de plus en plus important d’études, de projets de recherche et en conséquence de publications, tant en France que dans les autres pays européens. Par ailleurs, de nombreux fabricants mettent au point des appareils de mesure adaptés aux paramètres et contraintes propres aux environnements clos (bruit et encombrement notamment). La veille scientifique et métrologique présentée dans ce rapport permet de suivre au fil des ans l’évolution des études et des techniques. Veille scientifique Depuis 2007, les pouvoirs publics ont lancé de nombreuses actions visant à mieux connaitre la composition de l’air intérieur aussi bien dans les lieux recevant du public (campagne de mesure dans les écoles et crèches) que dans le milieu résidentiel (plan radon, les habitations à proximité des pressings…). Le ministère en charge de l’écologie travaille également à appliquer les actions cibles « air intérieur » issues du Grenelle de l’environnement et du Plan Santé-Environnement II (PNSE II). Le présent rapport liste également les nombreuses actions entreprises par les instituts et agences françaises afin de soutenir les mesures du Grenelle et du PNSE II. Depuis 2007, l’Observatoire de la Qualité de l’Air Intérieur (OQAI) a continué de travailler sur les données recueillies lors de la campagne logement afin de comprendre et d’évaluer les disparités entre les logements en termes de niveaux de pollution de l’air intérieur. Le champ des environnements à étudier s’est élargi aux bureaux avec une campagne pilote de mesure en 2009. L’Agence Française de Sécurité Sanitaire de l’Environnement et du Travail (AFSSET) dans le cadre d’un groupe de travail sur les valeurs guides l’air intérieur a publié 5 nouvelles valeurs guides concernant le monoxyde de carbone, le formaldéhyde, le benzène, le naphtalène et le trichloroéthylène. Un nouveau groupe de travail débutant ses travaux en 2010 doivent poursuivre la publication de valeurs guides en suivant une liste de substances identifiées comme prioritaires. En 2009, l’AFSSET a également publié un rapport de mise à jour pour le protocole de mesure des émissions des produits de construction et de décoration. En s’appuyant sur les travaux de l’AFSSET, le Haut Conseil de Santé Publique (HCSP) émet des avis sur des valeurs de gestion à suivre par les responsables des établissements recevant du public afin de les guider dans les actions à entreprendre en cas de dépassement de certains seuil dans les espaces clos. Entre 2007 et 2009, l’INERIS a publié plusieurs rapport ayant trait à l’impact sur la qualité de l’air intérieur de certaines activités comme les pressings « à sec » en centre urbain, les stations-service au pied des immeubles ou encore le chauffage au bois en milieu résidentiel. En 2009, l’INERIS et le CSTB ont signé une convention permettant la mise en place d’une cellule de gestion des crises « air intérieur » ayant pour vocation de répondre aux appels des établissements publics et de les guider dans les démarches à mettre en place en cas de crise. Les AASQA ont également menées de nombreuses campagnes de mesure de la qualité de l’air intérieur, seules certaines études sont présentées dans ce rapport. Un focus a été rédigé sur les actions menées dans les transports en commun (train, métro, bus…). Dans ce rapport, il est également fait mention des normes publiées en lien avec l’air intérieur : méthodologie de mesure et d’échantillonnage, surveillance des appareils au gaz dans les bâtiments ou encore les bilans énergétiques. Enfin, les résumés de plusieurs conférences internationales (Indoor Air 2008, Healthy Buildings 2009 et 5th Warwick Healthy Housing) sont reportés ainsi que le résumé du rapport de l’INERIS sur la mise à jour pour l’OQAI des études étrangères menées sur l’air intérieur dans les logements, les bureaux ou les lieux recevant des enfants. Veille scientifique Concernant ce volet, seuls les appareils destinés, en première intention, à des mesures en air intérieur, hors lieux à pollution spécifique (hygiène professionnelle), ont été recensés ; les exigences en termes de limite de détection étant sensiblement différentes. N'ont également été recensés que ceux qui se sont avérés les plus pertinents par rapport aux critères jugés importants, lors de l'enquête menée en 2008 sur l'évaluation des performances métrologiques des appareils de mesure spécifiques de l’air intérieur, dans le choix d'un appareil de suivi de la qualité de l'air intérieur [INERIS-DRC-08-94300-15173A] : faible bruit, possibilité de suivi sur plusieurs heures et de laisser l'appareil sur site, précision ( Pour chaque appareil, l'ensemble de ses caractéristiques techniques (limite de détection, de quantification, poids, type d'alimentation, possibilité de stockage des données, etc.) ainsi que son prix sont renseignés, dans la mesure des informations disponibles. Au bilan, huit appareils ont été recensés pour une mise sur le marché en 2009. Parmi eux, cinq sont effectivement de nouveaux instruments : il s'agit des analyseurs développés par 2B Technologies, dédiés à la mesure de l'ozone (modèle 202) et des oxydes d'azote (combinaison des modèles 400 et 401), de l'analyseur personnel de fumées noires (MicroAeth AE51) développé par MAGEE Scientific ainsi que des modèles EMV-3 et EMV-4 développés par Quest Technologies, dédiés à la mesure des particules et de certains gaz spécifiques. En complément de ces nouveaux instruments, trois autres appareils ont été commercialisés en 2009 sous une nouvelle version, intégrant des améliorations aux dispositifs existants. Il s'agit : des capteurs électrochimiques (O3 et NO2) Observ'Air développés par Cairpol, avec la mise en place d'un filtre pour limiter les phénomènes d'interférence ; du formaldemeter htV-m développé par PPM technology, dédié à la détection du formaldéhyde et qui intègre à présent un système d'enregistrement des données ; du préleveur SyPAC développé par TERA Environnement, sous sa version II. Ce nouveau modèle intègre de nombreuses améliorations (logiciel, performance des pompes, sonde de température intégrée, sorties numériques, …) Afin de pouvoir garder l'historique des appareils recensés au fil des ans (commercialisation toujours effective, prix à jour, nouveaux appareils) et de rendre cette veille plus interactive, il est envisagé, en 2010, de compiler les tableaux de synthèse réalisés les années précédentes et que cette synthèse soit accessible sur le site internet du LCSQA.