Résultats de la recherche

398 résultats correspondent à AASQA
Jeudi 15 avril 2021
Rapport
Guide : Recommandation QA/QC pour la surveillance du mercure gazeux dans l’air ambiant
  Référentiel technique national Ce guide fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air. Il a été approuvé en CPS (comité de pilotage de la surveillance) du 18 mars 2021. Mise en application : 18 mars 2021     La directive européenne 2004/107/CE du 15 décembre 2004 préconise la mise en place dans les états membres d’une surveillance du mercure dans l’air ambiant. En complément des exigences réglementaires européennes, la circulaire du ministère de l’environnement en date du 23 mars 2009 à destination des préfectures concernées demande la réalisation de campagnes de mesures au voisinage d’industries de production de chlore. Contrairement aux autres polluants de la directive européenne 2004/107/CE, le mercure ne dispose pas de seuil réglementaire (valeurs cible). Par ailleurs, les travaux de normalisation réalisés par le CEN (Comité Européen de Normalisation) ont abouti en 2010 à la publication de normes décrivant les méthodes à employer pour la mesure du mercure gazeux total (NF EN 15852) et des dépôts de mercure dans l’air ambiant (NF EN 15853). Deux types d’analyseurs sont disponibles et utilisés par les Associations Agréées de Surveillance de la Qualité de l’Air (AASQA) pour la mesure du mercure gazeux total. L’analyseur Tekran 2537 est utilisé presque exclusivement en surveillance dans des environnements industriels (chimie du chlore, incinération), dans des zones habitées très proches des industries concernées et pouvant être impactées par les retombées régulières ou ponctuelles. Les concentrations rencontrées sont très variables mais peuvent être élevées, approchant ou dépassant 30 ng.m-3 en moyenne annuelle, et plus de 1000 ng.m-3 en valeur horaire. L’analyseur peut également être utilisé lors de campagnes qui peuvent être de longue durée (étude d’impacts entre autres) pour lesquelles les niveaux de concentrations sont plus faibles, de l’ordre de quelques ng.m-3. L’analyseur Lumex RA 915 AM a jusqu’à maintenant été utilisé pour la surveillance en site (péri)urbain ou rural sous influence industrielle pour lesquels les valeurs moyennes horaires maximales mesurées étaient de l’ordre de 230 ng.m-3. Il est aussi mis en œuvre pour la surveillance de sites industriels chloriers. Aucune utilisation pour des mesures en site urbain/ rural sous influence de fond n’a été rapportée. Ce guide a pour objectif de définir l’ensemble des recommandations (installation, contrôles, fonctionnement, maintenance, expression des données) à mettre en œuvre pour harmoniser et assurer la qualité des mesures de mercure gazeux réalisées à l’aide des analyseurs Lumex RA 915 AM et des analyseurs Tekran 2537 dans l’air ambiant. En l’absence de procédures de contrôles précises dans la norme NF EN 15852 (2010), des tests métrologiques simplifiés destinés à préciser les caractéristiques métrologiques des appareils ont été définis en s’inspirant de ceux habituellement mis en œuvre pour les analyseurs de polluants gazeux inorganiques classiques. Ainsi, ces contrôles portant sur la linéarité, la limite de détection, la répétabilité et la dérive sur 7 jours sont réalisables par le LCSQA/Ineris qui dispose d’un générateur de mercure basse concentration raccordé aux étalons internationaux. Par ailleurs, l’analyseur de mercure Lumex RA 915 AM doit être étalonné annuellement chez le constructeur en utilisant des solutions SRM (Standard Reference Materials) alors que l’ajustage de la source interne de l’analyseur Tekran peut être réalisé par l’utilisateur en intervenant sur le débit de perméation de la source. QA/QC recommendation for gaseous mercury monitoring in ambiant air The EU Directive 2004/107/EC of 15 December 2004 calls for the establishment of gaseous mercury monitoring in ambient air in states members. In addition to European regulatory requirements, the Ministry of the Environment's circular dated 23 March 2009 to the relevant prefectures calls for measurement campaigns to be carried out in the vicinity of chlorine production industries. Unlike the other pollutants in the 2004/107/EC EUROPEAN Directive, mercury does not have a regulatory threshold (target values). In addition, standardization work carried out by the European Standards Committee (NEC) in 2010 resulted in the publication of standards outlining the methods to be used for measuring total gaseous mercury (NF EN 15852) and mercury deposits in the ambient air (NF EN 15853). Two types of analyzers are available and used by the Air Quality Monitoring Associations (AASQA) for the measurement of total gaseous mercury. The Tekran 2537 analyzer is used almost exclusively for monitoring in industrial environments (chlorine chemistry, incineration), in inhabited areas close to the concerned industries and which may be impacted by regular or one-off impacts. The concentrations encountered are highly variable but can be high, approaching or exceeding 30 ng.m-3 on an annual average, and more than 1000 ng.m-3 in hourly value. The analyzer can also be used in campaigns that can be long-lasting (impact study among others) for which concentrations are lower, in the order of a few ng.m-3. The Lumex RA 915 AM analyzer has so far been used for (peri)urban or rural site surveillance under industrial influence for which the maximum average hourly values measured were in the range of 230 ng.m-3. It is also implemented for the monitoring of industrial chlorinator sites. No use for urban/rural site measurements under background influence has been reported. The objective of this guide is to define all the recommendations (installation, controls, operating, maintenance, data expression) to be implemented to harmonize and ensure the quality of gaseous mercury measurements made using Lumex RA 915 AM analyzers and Tekran 2537 analyzers in the ambient air. In the absence of specific control procedures in the NF EN 15852 (2010) standard, simplified metrological tests to clarify the metrological characteristics of the devices have been defined based on those usually used for conventional inorganic gas pollutant analyzers. Thus, these controls on linearity, detection limit, repeatability and 7-day drift are achievable by the LCSQA/Ineris, which has a low-concentration mercury generator connected to the international standards.  
Vendredi 18 décembre 2020
Rapport
Guide méthodologique pour la mesure du « Black Carbon » par Aethalomètre multi longueur d’onde AE33 dans l’air ambiant (version2020) - Obsolète
  Référentiel technique national Ce document fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air ambiant. Il a été approuvé en CPS (comité de pilotage de la surveillance) du 15 décembre 2020. Mise en application : 15 décembre 2020     Ce document constitue la mise à jour du guide méthodologique LCSQA paru en 2018, relatif à l’utilisation de l’aéthalomètre multi-longueurs d’onde AE33 fabriqué par « Magee Scientific » en air ambiant. Cet instrument permet la mesure des concentrations de carbone suie (ou Black Carbon, BC), émis par les sources de combustion. Ce guide méthodologique ne constitue pas un mode opératoire ou un manuel d’utilisation. Le lecteur est invité à se reporter au manuel fourni par le distributeur pour les informations relatives au fonctionnement de l’instrument lui-même. Ce document s’attache à recenser les bonnes pratiques, les fréquences de maintenance, les différentes étapes inhérentes à la validation des données ainsi que les méthodes d’exploitation des données à travers notamment l’utilisation d’un modèle d’estimation des sources reliées aux combustions de biomasse ou de carburant fossile. Il a été rédigé sur la base des documents des constructeurs, des échanges avec le distributeur, de l’état de l’art scientifique. Il s’appuie aussi sur les retours d’expérience des utilisateurs des AASQA, émis notamment lors des réunions LCSQA du « Groupe Utilisateur AE33 » et du « Groupe de travail du programme CARA ». Enfin, il intègre les retours des séminaires techniques à destination des associations agrées pour la surveillance de la qualité de l’air (AASQA), organisées conjointement avec le constructeur, le distributeur français et le LCSQA. Ce guide pour l’utilisation des AE33 pourra être remis à jour en fonction des retours d’expériences des utilisateurs, des préconisations du constructeur ou des avancées de l’état de l’art scientifique.
Vendredi 18 décembre 2020
Rapport
Guide méthodologique pour le contrôle des paramètres critiques pour la mesure des analyseurs automatiques de PM
  Référentiel technique national   Ce guide fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air ambiant. Il a été approuvé en CPS (comité de pilotage de la surveillance) du 15 décembre 2020. Mise en application : 15 décembre 2020     L’objectif du présent document est de compléter les exigences de la norme NF EN 16450 « Air ambiant - Systèmes automatisés de mesurage (AMS) de la concentration de matière particulaire (PM10 ; PM2,5) » d’avril 2017 concernant le contrôle des paramètres dits « critiques » (c’est-à-dire ayant une influence majeure sur le résultat de mesure). La norme privilégie la température ambiante, la pression ambiante, l’humidité relative ambiante et le débit total de prélèvement. Il s’agit essentiellement de recommandations (voire de points de vigilance essentiels) pour chaque type d’appareil de mesure automatique (AMS) utilisé par les Associations Agréées pour la Surveillance de la Qualité de l’Air (AASQA) pour la surveillance réglementaire des particules en suspension. Si ce complément aux guides méthodologiques du RTN (Référentiel Technique National) s’appuie sur les critères d’exigence de la norme NF EN 16450, il est cependant possible de privilégier les exigences spécifiées par le constructeur pour les AMS déployés dans le réseau national de surveillance de la qualité de l’air avant la parution de cette norme. Pour certains AMS, le critère d’action fixé par le constructeur peut s’avérer moins exigeant que celui de la norme tout en permettant d’assurer a priori la bonne qualité des mesures. En effet, le suivi réalisé par le LCSQA de l’équivalence des AMS par rapport à la méthode gravimétrique de référence (selon la norme NF EN 12341 « Air ambiant - Méthode normalisée de mesurage gravimétrique pour la détermination de la concentration massique PM10 ou PM2,5 de matière particulaire en suspension » en vigueur) permet de vérifier le respect de l’objectif de qualité des données qui en terme d’incertitude relative des AMS doit être ≤ 25 % au niveau de la valeur limite journalière (Tableau 1 du chapitre 7.2 de la norme NF EN 16450). Ce document est intégré au RTN, les exigences associées se substituent à celles des guides méthodologiques spécifiques à chaque AMS dans l’attente de leur révision. Les révisions à venir des guides méthodologiques spécifiques à chaque type d’AMS s’appuieront également sur le retour d’expérience des AASQA dans la mise en œuvre des présentes recommandations.
Lundi 13 avril 2015
Rapport
Maintien et amélioration des chaînes nationales d’étalonnage
En 1996, sous l’impulsion du Ministère chargé de l'Environnement, un dispositif appelé « chaîne nationale d’étalonnage » a été conçu et mis en place afin de garantir, sur le long terme, la cohérence des mesures réalisées dans le cadre de la surveillance de la qualité de l’air pour les principaux polluants atmosphériques gazeux réglementés. Ce dispositif a pour objectif d’assurer la traçabilité des mesures de la pollution atmosphérique en raccordant les mesures effectuées dans les stations de surveillance à des étalons de référence spécifiques par le biais d’une chaîne ininterrompue de comparaisons appelée « chaîne d’étalonnage ». Compte tenu du nombre élevé d’Associations Agréées de Surveillance de la Qualité de l'Air (AASQA), il était peu raisonnable d’envisager un raccordement direct de l'ensemble des analyseurs de gaz des stations de mesure aux étalons de référence nationaux, malgré les avantages métrologiques évidents de cette procédure. Pour pallier cette difficulté, il a été décidé de mettre en place des procédures de raccordement intermédiaires gérées par un nombre restreint de laboratoires d’étalonnage régionaux ou pluri-régionaux (appelés également niveaux 2) choisis parmi les acteurs du dispositif de surveillance de la qualité de l'air (AASQA et LCSQA-MD). Par conséquent, ces chaînes nationales d’étalonnage sont constituées de 3 niveaux : le LCSQA-LNE en tant que Niveau 1, des laboratoires d’étalonnage inter-régionaux (au nombre de 8) en tant que Niveau 2 et les stations de mesures en tant que Niveau 3. Dans le cadre de ces chaînes nationales d’étalonnage, le LCSQA-LNE raccorde tous les 3 mois les étalons de dioxyde de soufre (SO2), d’oxydes d'azote (NO/NOx), d'ozone (O3), de monoxyde de carbone (CO) et de dioxyde d’azote (NO2) de chaque laboratoire d’étalonnage. De plus, depuis plusieurs années, le LCSQA-LNE raccorde directement les étalons de benzène, toluène, éthylbenzène et o,m,p-xylène (BTEX) de l’ensemble des AASQA, car au vu du nombre relativement faible de bouteilles de BTEX utilisées par les AASQA, il a été décidé en concertation avec le MEDDE qu’il n’était pas nécessaire de créer une chaîne d’étalonnage à 3 niveaux. Le tableau ci-après résume les étalonnages effectués depuis 2006 par le LCSQA-LNE pour les différents acteurs du dispositif de surveillance de la qualité de l’air (AASQA, LCSQA-INERIS et LCSQA-MD), tous polluants confondus (NO/NOx, NO2, SO2, O3, CO, BTEX et Air zéro).     Nombre   2006 2007 2008 2009 2010 2011 2012 2013 2014 Raccordements Niveau 1/ Niveaux 2 146 180 180 180 180 180 181 180 180 Raccordements Madininair 16 24 13 25 19 13 27 14 27 Raccordements BTEX 38 42 37 40 38 33 23 25 26 Raccordements LCSQA-INERIS 12 21 18 20 36 39 32 44 36 Raccordements ORA 0 8 6 6 5 7 4 4 3 Raccordements « Air zéro » - - - - - - - 8 18   Somme totale des raccordements 212 275 254 271 278 272 257 275 290   Ce rapport fait également la synthèse des problèmes techniques rencontrés en 2014 par le LCSQA-LNE lors des raccordements des polluants gazeux, à savoir : ·         Les problèmes rencontrés sur les matériels du LCSQA-LNE, ·         Les problèmes rencontrés au niveau des raccordements, ·         Les problèmes rencontrés au niveau du transport des matériels.
Mercredi 4 décembre 2013
Rapport
Guide pour l'utilisation des jauges radiométriques bêta MP101M Environnement SA (OBSOLETE)
Ce guide a pour objectif de fournir une aide aux utilisateurs des jauges radiométriques MP101M d’Environnement SA en leur fournissant une première liste de procédures à mettre en oeuvre ainsi qu’un échéancier à respecter pour permettre le bon fonctionnement de l'outil en routine. L’absorption de rayonnement bêta et la mesure par variation de fréquence constituent à ce jour les 2 techniques usuelles en AASQA pour la mesure automatique de la concentration massique des particules en suspension dans l’air ambiant. Ceci est la conséquence de la démonstration d’équivalence obtenue en 2006, confirmée en 2008,  2010 et 2011 par les exercices d’intercomparaison sur site menés par le LCSQA. Concernant la jauge bêta, le système centralisé de gestion administrative des sources radioactives mis en place depuis 2010 a facilité les démarches administratives pour  les AASQA. Compte tenu du redéploiement technique en vue de respecter l’échéance de 2013 fixée par la Directive n°2008/50/CE sur la conformité des techniques de mesure, des AASQA ont adopté cette technique ou envisagent de le faire.   L'objectif sera d'élaborer à court terme un guide similaire pour l'autre jauge radiométrique homologuée en France, le BAM 1020 de la marque Met One. Note : Ce guide a été rédigé sur la base des documents et échanges avec le constructeur ainsi qu’à partir du retour d’expérience du personnel des AASQA (journées techniques des AASQA, journées utilisateurs, etc.). Ce guide d’utilisation de la MP101M pourra évoluer et devra être remis à jour régulièrement en fonction des remarques et propositions des utilisateurs. Les modalités d'évolution de ce document sont à définir collectivement, et pourront être discutées en Commission de Suivi "Mesure des particules en suspension". Toute remarque peut être adressée directement par email à Sabine Crunaire (sabine.crunaire@mines-douai.fr), François Mathé (francois.mathe@mines-douai.fr) ou Benoît Herbin (benoit.herbin@mines-douai.fr)  
Mercredi 10 février 2016
Rapport
Essais de perçage en BTX sur des cartouches Carbopack X-450 mg dans des conditions environnementales extrêmes (type DOM)
Conformément aux exigences de la Directive Européenne 2008/50/CE [1] et aux recommandations du guide pour la surveillance du benzène dans l’air ambiant (version 2014), les Associations Agréées de Surveillance de la Qualité de l’Air (AASQA) réalisent depuis plusieurs années des prélèvements de benzène par pompage actif sur des cartouches contenant du Carbopack X. Jusqu’alors des cartouches contenant 500 mg de cet adsorbant étaient utilisées en routine par les AASQA, mais courant 2013 un problème technique pour la réalisation de ces cartouches a contraint le principal fournisseur des AASQA (TERA Environnement) à réduire la quantité d’adsorbant des cartouches à 450+/-10 mg. Cette modification a entrainé la réalisation d’essais permettant de vérifier l’intégrité des prélèvements réalisés par les AASQA pour la surveillance réglementaire du benzène par prélèvement actif.
Mercredi 16 septembre 2020
Rapport
Rapport d'activité LCSQA 2019
Après une première partie retraçant les faits marquants de l'année 2019, le rapport d'activité présente l'ensemble des démarches mises en œuvre et les actions réalisées en 2019 pour assurer la coordination du dispositif français de surveillance de la qualité de l'air selon les quatre principales orientations décrites dans le contrat de performance 2016-2021 signé avec le ministère de la transition écologique : Assurer la qualité des données de l’observatoire et les adéquations avec les exigences européennes et les besoins de surveillance Assurer la centralisation au niveau national, l’exploitation et la mise à disposition des données produites par le dispositif de surveillance Améliorer les connaissances scientifiques et techniques du dispositif pour accompagner la mise en œuvre des plans d’action et anticiper les enjeux futurs du dispositif Assurer la coordination, l’animation et le suivi du dispositif national de surveillance Le rapport s'achève sur la présentation de l'organisation du LCSQA ainsi que des principaux chiffres clés, des indicateurs et jalons prioritaires. Notons que cette année constitue une étape intermédiaire dans la réalisation des objectifs fixés dans le contrat de performance du LCSQA et dont le bilan est positif au regard des indicateurs retenus : maintien du rythme des audits techniques des AASQA, production de guides méthodologiques ; enfin malgré la diminution du nombre de raccordements à la chaîne nationale de traçabilité métrologique, la qualité des données produites par le dispositif national est demeurée  conforme aux référentiels en vigueur. Parmi les principaux sujets traités par le LCSQA en 2019, on peut retenir : Une augmentation significative de la part de la subvention du ministère de tutelle consacrée aux actions prospectives (+8%) permettant de réaliser des travaux sur les polluants non réglementés et les micro-capteurs. Ces travaux ont conduit à l’organisation de deux campagnes d’évaluation sur le terrain, la mise en place d’une base de données permettant le partage d’information et le retour d’expérience entre les membres du dispositif national, et enfin l’utilisation de ces données pour la réalisation des cartographies urbaines ; La reprise des travaux sur les pesticides, en collaboration avec l’Anses, avec la coordination de la campagne nationale exploratoire des pesticides dont les mesures se sont déroulées entre juin 2018 et juin 2019. Les travaux ont été publiés cette année. la prévision et la mise en œuvre d’un référentiel commun pour toutes les AASQA (Associations agréées pour la surveillance de la qualité de l’air). Un dossier technique décrivant les travaux du LCSQA dédiés à la modélisation et la prévision aussi bien au niveau national qu’européen complète ce rapport d’activité annuel (Télécharger le dossier technique) la poursuite de la collaboration avec le Gouvernement de la Nouvelle Calédonie qui s’est traduite en 2019 par la réalisation d’une comparaison interlaboratoire pour Scal’Air (organisme de surveillance de la qualité de l’air en Nouvelle-Calédonie) concernant les particules et le gaz et l’accompagnement pour la mise en œuvre de la modélisation à Nouméa Les travaux du LCSQA réalisés en 2019 ont été financés par la Direction Générale de l’Énergie et du Climat (bureau de la qualité de l’air) du Ministère de la Transition Écologique (MTE) mais ont également bénéficié d’un financement de la part de l’Anses pour la campagne nationale exploratoire de mesure des pesticides dans le cadre du dispositif de phytopharmacovigilance (PPV).  
Mercredi 23 juillet 2014
Rapport
Surveillance du benzène
Depuis 2006, les travaux concernant la surveillance du benzène ont porté sur la mise au point et l’évaluation des performances de la méthode d’échantillonnage actif sur des tubes remplis de Carbopack X, en suivant les prescriptions de la norme 14 662-1. Pour cela, des essais de différents dispositifs d’échantillonnage par prélèvements actifs ou passifs ont été réalisés en atmosphère simulée et en atmosphère réelle.Concernant les tests des dispositifs de prélèvement actifs, des appareils commerciaux ainsi qu’un appareil mis au point par AIRPARIF ont présenté des résultats satisfaisants et conformes aux exigences de la Directive 2008/50/CE et de la norme 14662-1. Cependant, en 2010, des difficultés techniques ont été rencontrées par les AASQA lors de la mise en oeuvre des préleveurs commerciaux sur le terrain et la question de la possibilité de concevoir des préleveurs en AASQA, à l’instar des préleveurs AIRPARIF, s’est posée.Concenrant l’utilisation de tubes passifs pour la mesure indicative du benzène et en l’occurrence l’utilisation des tubes Radiello code 145, une étude menée en 2009/2010 a mis en évidence l’importance de développer une méthode d’analyse adaptée aux tubes Radiello lorsque ces derniers étaient prélevés dans des conditions hivernales défavorables (basse température et haute humidité).Ainsi l’objectif général des travaux présentés dans ce rapport est de poursuivre les actions destinées à améliorer et à vérifier la qualité des techniques de mesure du benzène existantes, à les adapter aux besoins des AASQA et à examiner leur conformité vis-à-vis des exigences de la Directive. A ce jour, une version provisoire du cahier des charges de conception qui sera à terme intégrée dans le guide méthodologique pour la surveillance du benzène (à paraître au 2nd semestre 2013) est en cours de relecture par l’ensemble des AASQA impliquées dans ce travail. Il a donc été prévu de le finaliser au cours de l’année 2013 mais aussi de le compléter en y intégrant notamment des tests de réception métrologique qui s’avèreraient utiles pour valider la phase de conception des différents préleveurs et pour garantir un fonctionnement optimal sur site. Concernant l’évaluation des rapports et certificats d’approbation de type des différents analyseurs automatiques utilisés en France pour la surveillance du benzène, la totalité des rapports de tests émis par le TÜV, le MCERTS, l’UMEG a été communiquée au LCSQA/EMD après leur validation par les organismes évaluateurs. Ainsi, une analyse de l’adéquation à la fois de la méthode utilisée pour évaluer les différents critères inscrits dans la norme en vigueur (EN 14662-3, 2005) mais aussi des résultats en termes de performances a été menée. Les résultats pour chacun des critères ont été rassemblés dans des tableaux pour chacun des fabricants. Une analyse fine des rapports a permis de mettre en avant quelques points pour lesquels des écarts à la norme sont constatés et pour lesquels des compléments ont été demandés auprès des constructeurs. En dernier lieu, l’étude concernant l’utilisation des tubes passifs en conditions hivernales a été menée entre décembre 2012 et février 2013 sur le site de Feyzin. Les résultats obtenus sur les 7 semaines de campagne par 4 méthodes différentes (2 actives et 2 passives) montrent des valeurs de concentrations en benzène très similaires. Cette étude permet par conséquent de valider l’utilisation de la méthode d’analyse des tubes qui a été développée en 2010 et d’en généraliser l’utilisation dans les laboratoires d’analyse des AASQA.
Jeudi 21 février 2019
Rapport
Contrôle qualité de la chaîne nationale d’étalonnage
L'objectif de cette étude est d’effectuer des comparaisons interlaboratoires entre le LCSQA-LNE et les AASQA pour s’assurer du bon fonctionnement de la chaîne nationale d’étalonnage et pouvoir détecter d’éventuelles anomalies auxquelles il conviendra d’apporter des actions correctives. Contrôle qualité du bon fonctionnement de la chaîne d’étalonnage en NO/NOx, NO2, CO et SO2 : Le but est de faire circuler des mélanges gazeux de fraction molaire inconnue (NO/NOx de l’ordre de 200 nmol/mol, CO de l’ordre de 9 µmol/mol, NO2 de l’ordre de 200 nmol/mol et SO2 de l’ordre de 100 nmol/mol) dans les niveaux 3 pour valider les différents raccordements effectués dans le cadre de la chaîne nationale d’étalonnage. Ces mélanges gazeux ont été titrés par le LCSQA-LNE puis envoyés à des niveaux 3. Ces niveaux 3 ont ensuite déterminé la fraction molaire de ces mélanges gazeux avant et après réglage de l’analyseur de station avec l’étalon de transfert 2-3, puis les ont renvoyés au LCSQA-LNE qui les a titrés de nouveau. Des comparaisons interlaboratoires ont été réalisées de février à décembre 2018 avec les réseaux de mesure ATMO AURA, ATMO Bourgogne Franche Comté, ATMO Sud, Madininair, ATMO Nouvelle Aquitaine, AIRPARIF, ATMO Grand Est, GWAD'AIR et ATMO Normandie. En règle générale, les AASQA communiquent au LCSQA-LNE les fractions molaires mesurées soit sans les incertitudes élargies associées, soit avec des incertitudes de mesure inexploitables (inférieures à celles du LCSQA-LNE, valeurs très élevées…). Dans ces conditions, il n'est pas possible de traiter les résultats par des méthodes statistiques. Par conséquent, dans le présent document, le traitement des données est effectué en s'appuyant sur l'ensemble des résultats obtenus depuis 2002 lors des campagnes précédentes qui ont conduit à définir des intervalles maximums dans lesquels doivent se trouver les écarts relatifs entre les fractions molaires déterminées par le LCSQA-LNE et celles déterminées par les niveaux 3 après élimination des valeurs jugées aberrantes. Globalement, en 2018, lorsque les fractions molaires aberrantes sont éliminées, les écarts relatifs entre le LCSQA-LNE et les niveaux 3 restent dans des intervalles qui sont les suivants : ± 7% avant et après réglage pour une fraction molaire en SO2 voisine de 100 nmol/mol ; ± 6% avant et après réglage pour des fractions molaires en NO/NOx et en NO2 voisines de 200 nmol/mol ; ± 6% avant réglage et ± 4% après réglage pour une fraction molaire en CO voisine de 9 µmol/mol. Les résultats montrent que : Globalement la chaîne nationale d'étalonnage mise en place pour assurer la traçabilité des mesures de SO2, de NO/NOx, de NO2 et de CO aux étalons de référence fonctionne correctement ; Le fait de régler l’analyseur avec l’étalon de transfert 2-3 améliore les écarts relatifs, ce qui met en évidence une dérive de la réponse des analyseurs au cours du temps.   Contrôle qualité du bon fonctionnement de la chaîne d’étalonnage en O3 : Comme pour les composés SO2, NO/NOx, CO et NO2, le but est de faire circuler, dans les niveaux 3, un générateur d’ozone portable délivrant un mélange gazeux à une fraction molaire voisine de 100 nmol/mol pour valider les différents raccordements effectués dans le cadre de la chaîne nationale d’étalonnage. La présente comparaison interlaboratoires a été effectuée avec 8 niveaux 3 en 2018, à savoir: AIRPARIF, AIR BREIZH, APL, ATMO AURA, ATMO BOURGOGNE FRANCHE-COMTE, LIG'AIR, GWAD'AIR et MADININAIR. Les résultats obtenus en 2018 montrent que les écarts relatifs entre les fractions molaires en O3 déterminées par les 8 réseaux de mesure et celles déterminées par le LCSQA-LNE sont compris entre -5% et +3%. De plus, les écarts relatifs observés entre les valeurs des AASQA et du LCSQA-LNE sont aléatoirement répartis de part et d’autre de zéro.
Jeudi 30 avril 2020
Rapport
Analyse du dicamba, piclorame et quinmérac dans les prélèvements d’air, phase particulaire
Le Dicamba, le Piclorame et le Quinmérac font partie de la liste des substances cibles de la campagne nationale exploratoire sur les pesticides (CNEP) réalisée par l’Anses, le réseau des AASQA et l’Ineris en tant que membre du LCSQA, entre juin 2018 et juin 2019. Le laboratoire prestataire (IANESCO) pour les analyses des échantillons de la CNEP ne disposant pas de méthode d’extraction et d’analyse de ces composés à rechercher sous forme de sel, l’objectif de ces travaux était de développer une technique d’extraction et d’analyse spécifique en s’appuyant si possible sur la méthode mise en œuvre pour le glyphosate basée classiquement sur une extraction en phase aqueuse. Les performances analytiques obtenues avec une extraction à l’eau acidifiée permettent d’atteindre des limites de quantification inférieures à 1 ng/m3 sans avoir à concentrer l’extrait. L’utilisation de l’eau comme solvant d’extraction permet également d’éviter de passer par une étape de changement de solvant avant l’analyse, ce qui minimise les pertes par évaporation et de gagner en temps d’analyse. La méthode d’extraction est identique à celle du glyphosate et permet donc de réaliser son dosage en parallèle sans avoir la nécessité de réaliser un prélèvement dédié. La stabilité des prélèvements est vérifiée jusqu’à J17 pour le piclorame et le quinmérac alors que le dicamba présente une légère perte lors des premiers jours, autour de 15%, pour se stabiliser jusqu’à J17. Les extraits d’échantillons de filtres restent stables jusqu’à J90.  Il est donc préconisé de réaliser l’extraction des filtres 24H après le prélèvement puis, le cas échéant, de stocker les extraits pendant jusqu’à 90 jours maximum pour analyse ultérieure.       Abstract: Analysis of glyphosate, glufosinate and AMPA by LC/MS/MS Dicamba, Picloram and Quinmerac are included in the list of targeted substances of the national exploratory campaign on pesticides (CNEP) carried out by Anses, the AASQA network and Ineris as a member of the LCSQA, between June 2018 and June 2019. The contractor laboratory (IANESCO) for the analyses of CNEP samples does not have an appropriate method for the extraction and the analysis of these compounds, searched in the form of salt. The objective of this work was to develop a specific extraction and analysis technique based, if possible, on the method used for glyphosate. The analytical performance obtained with an extraction using acidified water allows to attain a quantification limit lower than 1 ng/m3 without the need to concentrate the extract. Using water as an extraction solvent avoids going through a solvent change step before analysis, minimizes evaporative losses and saves analysis time. The extraction method is identical to that used for glyphosate and therefore allows to carry out its dosage in parallel without the need to carry out a dedicated sampling. The stability of the samples is checked until J17 for picloram and quinmerac while dicamba shows a slight loss in the first days, around 15%, then tend to stabilize until J17. Extracts from filter samples remain stable until J90. It is therefore recommended to extract the filters 24 hours after sampling and then store the extracts up to 90 days, if necessary, for further analysis.