Résultats de la recherche

93 résultats correspondent à PM2,5
Vendredi 9 novembre 2012
Rapport
Note : Suivi de l’équivalence des appareils de mesure automatique homologués en PM10 – Campagnes 2012 à Douai-Dorignies
Dans la continuité des travaux 2011, le LCSQA a participé aux essais de comparaison multi-instruments de mesure PM à l’initiative d’ATMO-Nord-Pas de Calais dans la station de l’Ecole des Mines de Douai (EMD), sur le site d’observation de Dorignies. Cet exercice, réalisé de janvier à avril 2012, a permis de suivre l’équivalence des analyseurs automatiques avec la méthode de référence (gravimétrie). La présente note synthétise les résultats obtenus lors de cette campagne. Cette étude, réalisée sur la fraction PM10, confirme le respect du critère de 25% d’incertitude élargie au niveau de la valeur limite pour le TEOM-FDMS et le BAM 1020. En revanche, les résultats obtenus pour cette campagne à Dorignies indiquent une surestimation globale de l’ordre de 20% pour la jauge bêta MP101M-RST, qui présente une incertitude élargie au niveau de la valeur limite supérieure à 30% pour cette série de données.
Vendredi 14 décembre 2012
Rapport
Retour d’expérience sur l’utilisation d’un indicateur optique de type FIDAS 200 - Campagne 2012 à Douai-Dorignies
Un analyseur en temps réel de poussières de type FIDAS 200 (constructeur PALAS®) pour la détermination granulométrique des poussières en suspension a été testé par le LCSQA d’abord à l’INERIS en 2011, puis en 2012, lors d’essais de comparaison multi-instruments de mesure PM à l’initiative d’ATMO-Nord-Pas de Calais dans la station de l’Ecole des Mines de Douai (EMD), sur le site d’observation de Dorignies, en parallèle d’un exercice de suivi de l’équivalence d’analyseurs automatiques homologués pour la mesure réglementaire. La présente note synthétise les résultats obtenus lors de cette dernière campagne. Le FIDAS 200 présente des résultats globalement satisfaisants par rapport à la méthode de référence, avec des coefficients de corrélation de 0,98 et 0,95 respectivement en PM10 et PM2.5. Cependant, une sous-estimation globale de l’ordre de 20% sur les PM10 et de 10% en PM2.5 est observée. Cette sous-estimation semble notamment résulter d’une déviation de calibration se traduisant par un décalage granulométrique. Par retour d’expérience et après échange avec le fournisseur, il est ainsi recommandé de procéder à une calibration mensuelle ou, a minima, avant toute nouvelle campagne de mesures, plutôt qu’à une calibration annuelle comme initialement préconisé par le constructeur. Il sera intéressant de compléter par d’autres essais ce retour d’expérience afin de statuer, à moyen terme, sur une éventuelle homologation par la Commission de suivi « particules » du dispositif national de surveillance pour la mesure automatique des PM, une fois la preuve faite par le constructeur de la démonstration d’équivalence par rapport à la méthode de référence (tests d’équivalence en cours au TüV, en PM10 & PM2.5). Les tests sur différentes typologies de site se déroulent en Allemagne et en Angleterre et l’ensemble des tests devraient se terminer fin juin 2013 pour approbation éventuelle en fin d’année 2013.
Mardi 13 mai 2014
Rapport
Maintien et amélioration des chaînes nationales d’étalonnage
En 1996, sous l’impulsion du Ministère chargé de l'Environnement, un dispositif appelé « chaîne nationale d’étalonnage » a été conçu et mis en place afin de garantir, sur le long terme, la cohérence des mesures réalisées dans le cadre de la surveillance de la qualité de l’air pour les principaux polluants atmosphériques  gazeux réglementés. Ce dispositif a pour objectif d’assurer la traçabilité des mesures de la pollution atmosphérique en raccordant les mesures effectuées dans les stations de surveillance à des étalons de référence spécifiques par le biais d’une chaîne ininterrompue de comparaisons appelée « chaîne d’étalonnage ». Compte tenu du nombre élevé d’Associations Agréées de Surveillance de la Qualité de l'Air (AASQA), il était peu raisonnable d’envisager un raccordement direct de l'ensemble des analyseurs de gaz des stations demesure aux étalons de référence nationaux, malgré les avantages métrologiques évidents de cette procédure. Pour pallier cette difficulté, il a été décidé de mettre en place des procédures de raccordement intermédiaires gérées par un nombre restreint de laboratoires d’étalonnage régionaux ou pluri-régionaux (appelés également niveaux 2) choisis parmi les acteurs du dispositif de surveillance de la qualité de l'air (AASQA et LCSQA-MD). Par conséquent, ces chaînes nationales d’étalonnage sont constituées de 3 niveaux : le LCSQA-LNE en tant que Niveau 1, des laboratoires d’étalonnage inter-régionaux (au nombre de 8) en tant que Niveau 2 et les stations de mesures en tant que Niveau 3. Dans le cadre de ces chaînes nationales d’étalonnage, le LCSQA-LNE raccorde tous les 3 mois les étalons de dioxyde de soufre (SO2), d’oxydes d'azote (NO/NOx), d'ozone (O3), de monoxyde de carbone (CO) et de dioxyde d’azote (NO2) de chaque laboratoire d’étalonnage. De plus, depuis plusieurs années, le LCSQA-LNE raccorde directement les étalons de benzène, toluène, éthylbenzène et o,m,p-xylène (BTEX) de l’ensemble des AASQA, car au vu du nombre relativement faible de bouteilles de BTEX utilisées par les AASQA, il a été décidé en concertation avec le MEDDE qu’il n’était pas nécessaire de créer une chaîne d’étalonnage à 3 niveaux.Ce rapport fait également la synthèse des problèmes techniques rencontrés en 2013 par le LCSQA-LNE lors des raccordements des polluants gazeux, à savoir :  Les problèmes rencontrés sur les matériels du LCSQA-LNE,  Les problèmes rencontrés au niveau des raccordements,  Les problèmes rencontrés au niveau du transport des matériels.   Concernant la mesure des particules, le bilan sur les mises à disposition de moyens de contrôle d’étalonnage d’appareils effectués par le LCSQA-MD dans le cas des particules est donné dans le présent rapport. Il convient de rappeler que la chaîne d’étalonnage nationale ne concernant que les polluants atmosphériques gazeux (SO2, NO, NO2, CO, O3 et BTEX), une mise à disposition de moyens de contrôle de l'étalonnage des analyseurs PM10 et PM2.5 sur site est assurée dans l’attente de l’intégration de ces polluants dans la chaîne. Ces dispositifs de transfert consistent en des cales étalon pour les analyseurs automatiques de particules (microbalances à variation de fréquence et jauges radiométriques) permettant aux AASQA de vérifier l’étalonnage et la linéarité de leurs appareils directement en station de mesure, en y associant le débit de prélèvement. Pour l’année 2013, 12 mises à disposition ont été effectuées. Le respect de la consigne pour le débit de prélèvement est globalement constaté (moyenne de valeur absolue d’écart de 0,70 ± 0,35% pour 49 appareils vérifiés (dont 34 FDMS, 1405-F ou DF) soit environ 7 % du parc d’analyseurs automatiques actuellement en station de mesure). Les essais montrent un comportement correct de l’ensemble des appareils contrôlés. Concernant le contrôle de la constante d’étalonnage de la microbalance, la moyenne de la valeur absolue de l’écart observée en AASQA (MVAE) varie entre 0,65 et 1,07% (soit pour l’ensemble des AASQAcontrôlées une moyenne ± écart-type de 0,90 ± 0,16%). L’étendue de l’écart réel constaté sur le terrain est restreinte car comprise entre -2,05 et +2,48 % pour 85 appareils contrôlés (dont 61 FDMS, 1405-F ou DF) (soit environ 13% du parc de microbalances TEOM actuellement en station de mesure). Le contrôle de la linéarité montre l’excellent comportement des appareils sur ce paramètre, que ce soit en configuration en continu (TEOM 50°C) ou séquentiell e (avec le module 8500, en version 1504-F ou DF): le coefficient de régression moyen R2 varie de 0,9998 à 1, la pente et l’ordonnée à l’origine moyennes de la droite de régression varient respectivement de 0,9797 à 1,0031 et de – 18 à + 113, sachant que 33appareils (dont 25 FDMS ou 1405-F) ont été contrôlés sur ce paramètre (soit environ 5% du parc de microbalances TEOM actuellement en station de mesure). Concernant les jauges radiométriques MP101M de marque Environnement SA, un contrôle de cale étalon d’AASQA (vérification par le LCSQA-MD des valeurs de cales étalon fournies par le constructeur) ainsi qu’une mise à disposition de cales étalon permettant le contrôle sur site de l’étalonnage de jauges ainsi que leur linéarité ont été assurés. L’évaluation de cale d’ATMO Franche Comté a été faite sur l’appareil de référence du LCSQA-MD, préalablement étalonné et contrôlé par un couple de cales spécifiques a donné des résultats satisfaisants : l’écart constaté a été de –2,6% sur la cale contrôlée (par rapport à la valeur annoncée par le fabricant) et de –1,5% par rapport à la valeur obtenue lors du précédent raccordement effectué par le LCSQA-MD en 2012 (montrant la stabilité de ce type d’instrument).Comme pour la microbalance, le contrôle de la linéarité montre l’excellent comportement des jauges sur ce paramètre : le coefficient de régression moyen R2 est de 1, la pente et l’ordonnée à l’origine moyennes de ladroite de régression varient respectivement de 1 à 1,05 et de – 22 à +1,3, sachant que 4 appareils ont été contrôlés sur ce paramètre (soit environ 3% du parc de jauges MP101M actuellement en station de mesure). Le comportement de cette « chaîne de contrôle pour la mesure des particules » mise en place par le LCSQA-MD peut être qualifié de satisfaisant. Les résultats obtenus pour les microbalances TEOM (concernant les paramètres débit de prélèvement, étalonnage et linéarité) et pour les radiomètres bêta MP101M (concernant le contrôle de moyens d’étalonnage) sont des éléments probants de l’Assurance Qualité / Contrôle Qualité (QA/QC) appliquée aux analyseurs automatiques de particules en suspension et sont des sources d’information nécessaires dans le cadre du calcul de l’incertitude de mesure sur ce type d’appareil. Le maintien et l’extension du programme QA/QC pour les analyseurs automatiques de particules rentrent dans les missions pérennes du LCSQA dans le cadre de la coordination technique du Dispositif National de Surveillance de la Qualité de l’Air. L’extension des essais à la jauge radiométrique BAM 1020 de la marque Met One est actuellement en cours de mise en place mais pose des difficultés techniques et organisationnelles dans la mesure où la configuration technique de l’appareil diffère fortement de la jauge MP101M. Ceci nécessite des modalités de mise à disposition de cales totalement différentes de celles actuellement adoptées et un mode opératoire spécifique qui devra être testé avec quelques AASQA volontaires avant d’être généralisé à tout le dispositif.    
Vendredi 29 janvier 2010
Rapport
Etude des performances des appareils de mesure : Retour d'expériences sur le MicroVol
L'étude des performances des appareils de mesure est une mission pérenne du LCSQA/INERIS. Ce rapport 2009 est dédié au préleveur de particules de type MicroVol (distribués en France par Ecomesure). Les PM (PM10 et PM2.5) occupant aujourd'hui une place prioritaire dans le cadre de la surveillance de la qualité de l'air, la mesure indicative de ces polluants constitue un réel besoin. Parmi les outils potentiellement intéressants pour réaliser ce type de mesure, l'échantillonneur de PM de type MicroVol présente un certain nombre d'avantages: bas prix, léger et peu encombrant, pouvant être installé directement à l'extérieur, et permettant de réaliser en plus de la pesée des filtres, des analyses chimiques des particules prélevées. Ce rapport permet de réaliser un premier bilan de l'utilisation, assez limitée, de cet instrument par les Associations Agrées de Surveillance de la Qualité de l'Air (AASQA), et de présenter des tests réalisés à l'INERIS sur la tenue du débit. Outre les avantages cités plus haut, sa facilité d'utilisation et son faible bruit sont mis avant. Par ailleurs, les premiers tests réalisés par les AASQA indiquent généralement une bonne corrélation entre les mesures gravimétriques réalisées à l'aide de ce préleveur et les mesures par TEOM-FDMS. L'utilisation du MicroVol pour l'étude de variations relatives des PM en air ambiant semble donc envisageable. Néanmoins, en raison de son faible débit (3 L/min pour les PM10), l'échantillonnage par MicroVol doit être réalisé sur une période relativement longue (quelques jours), ce qui implique une alimentation sur secteur, par le biais de panneaux solaires, ou d'une autre batterie que celle proposée avec l'instrument. La durée de l'échantillonnage semble également être à l'origine d'une perte, par re-volatilisation, d'espèces semi-volatiles au cours du prélèvement. Parmi les optimisations envisageables, le montage en aval de la tête de coupure d'un collecteur d'eau permettrait de protéger le débitmètre (très sensible à l'humidité) ; et la mise en place de supports spécifiques semble nécessaire à l'installation sécurisée de l'instrument en extérieur. Un autre point important est la faible résistance de l'instrument aux basses températures, ATMO-Rhône-Alpes ayant constaté plusieurs problèmes techniques durant les prélèvements hivernaux. Enfin, en vue de la réalisation d'études de cartographie, le prélèvement simultané de PM sur filtres et de composés gazeux sur cartouches apparaît comme envisageable, l'ajout d'une cartouche en aval du porte-filtre, tel que développé à l'INERIS, n'entraînant pas de perte de charge rédhibitoire au bon fonctionnement de l'instrument (pour une utilisation aux alentours de 20°C).
Mercredi 17 février 2010
Rapport
Missions diverses et travaux de synthèse - Contribution du LCSQA/INERIS à la campagne de mesure de Peyrusse-Vieille dans le cadre du programme EMEP
Dans le contexte de la Convention de Genève sur la pollution transfrontière, le programme européen EMEP s'intéresse à la surveillance de la qualité de l'air et des dépôts dans les zones éloignées de sources de pollution. En 2008/2009, une série de campagnes de mesure ont été organisées en Europe dans le cadre de ce programme. Ces campagnes visaient notamment à acquérir de nouvelles données sur la composition chimique des aérosols en milieu rural avec un objectif final d’amélioration des modèles. Outre les appuis techniques et stratégiques à la réalisation des mesures, le Laboratoire Central de Surveillance de la Qualité de l’Air (LCSQA) y voyait également l’opportunité de comparer différentes méthodes d’échantillonnage afin de tester in-situ les méthodologies de prélèvement et d'analyse des PM2.5 développées dans le cadre de la fiche « caractérisation chimique des particules » en vue de la spéciation chimique nécessaire dans le cadre de la nouvelle directive et devant être mise en œuvre au 1er janvier 2010. En particulier, la mise en œuvre simultanée de prélèvements bas-débits et hauts-débits avait pour objectif d’élaborer des recommandations sur le type de matériel nécessaire pour cette mesure. C’est dans cette optique que le LCSQA/INERIS a participé à la campagne de terrain organisée à Peyrusse-Vieille en début d’année 2009. Le présent rapport vise à synthétiser les résultats de ces travaux. Il s’attache notamment à la comparaison de prélèvements réalisés à l’aide d’échantillonneurs bas-débit et haut-débit, ainsi qu’à l’étude de la composition chimique des PM2.5 au cours de la campagne. Une très bonne correspondance a pu être observée tout au long de la campagne entre les prélèvements réalisés à l’aide d’un préleveur de type DA-80 (fonctionnant à 30 m3/h) et ceux réalisés à l’aide d’un préleveur de type Partisol+ (fonctionnant à 1 m3/h). Une conclusion marquante de cet exercice d’inter-comparaison est que, malgré une vitesse faciale de prélèvement plus importante (de l’ordre de 3 fois supérieure pour un DA-80 par rapport à un Partisol+), les concentrations de composés semi-volatiles, et notamment de nitrate d’ammonium, obtenues à l’aide d’un échantillonneur haut-débit sont comparables à celles obtenues à l’aide d’un échantillonneur bas-débit. Par ailleurs, les quantités de matière échantillonnées par unité de surface sur les filtres hauts-débits sont environ trois fois supérieures à celles échantillonnées sur les filtres bas-débits, permettant d’obtenir une meilleure précision sur la mesure des espèces présentes en faibles quantités dans l’aérosol (e.g. Na+, Ca2+, Mg2+ et K+). Le rôle majeur joué par la matière organique dans les PM2.5 tout au long de la campagne est à souligner. Cette fraction organique représente en moyenne 45% des espèces mesurées. Les résultats présentés dans ce rapport suggèrent une influence prépondérante des émissions régionales par combustion du bois sur ces concentrations hivernales de matière organique.
Vendredi 5 février 2010
Rapport
Bilan des deux premières années de mesure des PM10 ajustées en France et évaluation des outils de modélisation
Jusqu'au 1er Janvier 2007, la surveillance opérationnelle des PM10 était réalisée en France par des systèmes de mesure automatique de type TEOM ou jauge Bêta. Cependant la sous-estimation des niveaux de PM10 mesurés par ces méthodes par rapport à la méthode de référence EN 12341 est un artefact très connu. Cette sous-estimation est liée à la perte de composés volatils par les TEOM et les jauges Bêta. La Commission Européenne a réclamé, pour l'ensemble de l'Europe, la mise à niveau des mesures de PM10, afin de respecter les prescriptions de la directive, avec une date butoir au 1er janvier 2007. L’application d’un facteur correctif aux données des TEOM ou des jauges Bêta n’est pas apparue pertinente, étant donné la complexité de la relation entre ces types de mesures et la méthode de référence. Dans le même temps, des solutions techniques ont fait leur apparition, et une démonstration d'équivalence a pu être réalisée pour deux outils : le TEOM-FDMS de Thermo R&P, pour la mesure des PM10 et des PM2.5, la jauge radiométrique MP101M-RST d’Environnement SA pour la mesure des PM10. La problématique a alors évolué vers la question de leurs modalités d’intégration au sein du système de surveillance français. Les réflexions et divers travaux du LCSQA ont permis d’élaborer une stratégie nationale d’intégration et de déploiement de ces nouveaux outils, tout en répondant à un impératif de mise en œuvre à partir du 1er janvier 2007. Depuis cette date, les associations agréées de surveillance de la qualité de l’air ont équipé une partie de leurs sites de TEOM-FDMS et de jauges Bêta RST en plus des TEOM ou jauge Bêta déjà installés. Ces sites dits "de référence" fournissent la mesure de deux variables : la concentration en PM10 (concentration mesurée par TEOM-FDMS ou jauge Bêta RST), la concentration de PM10 non volatiles (concentration mesurée par TEOM ou jauge Bêta). L’écart entre ces deux concentrations est appelé "delta". Sur les autres sites, qui ne mesurent que la concentration de PM10 non volatiles, la concentration de PM10 est estimée en ajoutant le delta d’un site de référence adéquatement choisi. On parle de concentration "ajustée". Pour les années antérieures à 2007, il n’existe pas de mesures pour réaliser un tel ajustement. Une méthode d’ajustement qui utilise la fraction volatile modélisée par le modèle CHIMERE a donc été proposée. La présente étude dresse un bilan des deux premières années de fonctionnement de l’ajustement opérationnel de PM10. La première partie est consacrée à l’impact quantitatif de l’ajustement sur les niveaux de PM10 mesurés. Le bilan exhaustif des dépassements des valeurs limites annuelle et journalière est établi pour les années 2007 et 2008 et comparé à celui qui aurait été obtenu sans ajustement. Cet ajustement a pour effet d’augmenter significativement le nombre de dépassements, qu’il s’agisse du dépassement de la valeur limite annuelle (de 2 à 11 sites sur un total de 291 en 2007 ; de 1 à 7 sites sur un total de 283 sites en 2008*) ou de la valeur limite journalière qui se révèle la plus contraignante (de 7 à 75 sites sur 291 en 2007 ; de 4 à 24 sites sur 283 en 2008*).* chiffres non réglementaires établis sur les périodes pour lesquelles les données de PM10 non volatiles et de PM10 sont simultanément disponibles. La cohérence spatiale des deltas utilisés pour l'ajustement des mesures de PM10 non volatiles est examinée dans la seconde partie. Cette étude met en évidence : des zones relativement homogènes : Normandie, Picardie, Île de France, Centre, Pays de Loire une zone très hétérogène : le pourtour méditerranéen des hétérogénéités dans les autres régions, plus ou moins prononcées selon les périodes. Elle montre également des disparités, dont il serait intéressant d’analyser l’origine, entre les sites de référence équipés de couples Bêta-Bêta-RST et les sites de référence équipés de couples TEOM-TEOM-FDMS. La troisième partie a eu pour objet d'étudier le positionnement de la modélisation déterministe par rapport aux mesures de PM10 non volatiles et de PM10 réalisées sur les sites de référence. Les niveaux de PM10 des années 2007 et 2008 sont resimulés avec le modèle CHIMERE et des données météorologiques analysées. Les concentrations en PM10 issues du modèle CHIMERE ont été validées sur leur composante volatile ce qui a permis de déduire une méthode de correction des PM10 par modélisation pour les années 2005 et 2006. Cette méthode de correction a été améliorée en prenant en compte la composante nitrate d’ammonium modèle mais également un coefficient supplémentaire permettant d’annuler le biais sur le jeu de données disponible en 2007 et 2008. Ainsi, la méthode de correction par le modèle CHIMERE calculée sur la période 2007-2008 appliquée aux données 2005 et 2006 donne un nombre de stations en dépassement de 63 en 2005 et 94 en 2006. Les fichiers d’ajustement par le modèle des concentrations de PM10 non volatiles issues des TEOM et jauges Bêta pour les années 2005, 2006 sont disponibles sur le site www.lcsqa.org.
Jeudi 26 avril 2012
Rapport
Suivi et optimisation de l’utilisation des TEOM-FDMS : Efficacité de séchage des modules FDMS
Depuis le 1er janvier 2007, les TEOM-FDMS sont très largement utilisés en routine par l’ensemble des associations agréées de surveillance de la qualité de l’air (AASQA) pour la surveillance des PM10 et des PM2.5.  Dans le cadre du déploiement et de la mise en œuvre de ces instruments, le LCSQA/INERIS est notamment chargé du suivi et de l’optimisation de leur utilisation au sein du dispositif national de surveillance de la qualité de l’air, ainsi que d'assurer la qualité des données produites en construisant une approche QA/QC basée sur celle décrite dans les normes utilisées pour la mesure des polluants gazeux inorganiques (O3, NOx, SO2, CO). Ce travail se concrétise notamment par la rédaction d’un guide pour l’utilisation du TEOM-FDMS, dont une nouvelle version a été élaborée en 2010, en partenariat avec les AASQA. En 2011, le LCSQA/INERIS a poursuivi son travail d’évaluation sur le terrain des TEOM-FDMSavec notamment pour objectif de vérifier la validité des critères définis par le guide d’utilisation dans le cas d’un environnement climatique « extrême » (i.e. chaud et humide). Le présent rapport restitue les principaux résultats de ces travaux, en portant l’accent sur les enseignements tirés de tests de terrain réalisés en Martinique en collaboration avec Madininair, permettant en outre d’étudier l’influence de l’humidité relative sur les performances du sécheur dans le cas d’un aérosol atmosphérique réel très humide (pour faire suite à des travaux réalisés en laboratoire en 2009). Ces résultats renforcent les recommandations préconisées par le guide d’utilisation de 2010. En particulier : -       Les oscillations des températures de point de rosée échantillon (en sortie de sécheur) sont corrélées aux oscillations constatées sur la température de la station (pour des températures de point de rosée ambiant stables). La température de fonctionnement des sécheurs FDMS a donc un impact direct sur l’efficacité de ces derniers et doit être surveillée/contrôlée attentivement, afin d’éviter un éventuel risque de surestimation de la concentration massique. -       L’utilisation de TEOM-FDMS présentant une dépression en amont de la pompe moins importante que -20 inHg (« pouces de mercure », unité utilisée par convention pour le TEOM-FDMS) peut conduire à une baisse rapide du rendement des sécheurs. Sur ce point, il est également à noter que différents retours d’expérience ont montré que le manomètre d’origine pouvait fortement dériver et, par ailleurs, présenter des fuites. Il est donc fortement conseillé de maintenir une dépression plus importante que -20 inHg, et de procéder à une vérification régulière du manomètre d’origine, voire de remplacer ce dernier (permettant en outre la mise en place d’un suivi de la dépression en routine). -       L’utilisation d’un TEOM-FDMS présentant une température de point de rosée échantillon autour de -5°C peut conduire à une légère surestimation de la concentration massique de PM (de l’ordre de 3 µg/m3dans le cas présent d’un environnement très humide). Il semble donc opportun de maintenir un seuil limite d’intervention de -4°C pour ce paramètre. Enfin, la surveillance de l’humidité relative en sortie de sécheur (non suivie jusqu’à présent) pourrait permettre d’identifier plus facilement une dégradation partielle de ce dernier
Lundi 25 février 2013
Rapport
Suivi et optimisation de l'utilisation des TEOM-FDMS Bilan d’activité et perspective d’évolution du guide méthodologique Etude 3/1
Depuis le 1er janvier 2007, un nombre croissant de TEOM-FDMS est utilisé en routine sur l'ensemble du territoire pour la surveillance des PM10 et des PM2.5 envue du respect de la directive européenne sur la qualité de l'air. Cette densification du parc s’accompagne, pour une grande majorité d’AASQA, de difficultés dans lamise en oeuvre quotidienne de ces instruments, chronophages et présentantfréquemment des défauts de conception et des fragilités matérielles. En effet, sil’utilisation des anciennes versions, constituées du TEOM 1400 et du FDMS 8500,semble aujourd’hui assez bien maîtrisée, la mise en oeuvre des nouvelles versions1405f et 1405df) reste encore problématique.Dans le cadre du suivi de l’utilisation des TEOM-FDMS au sein du dispositif national de surveillance de la qualité de l’air, le LCSQA/INERIS travaille avec lesAASQA volontaires à l’optimisation des protocoles d’assurance qualité desdonnées produites en construisant une approche QC/QA basée sur celle décritedans les normes utilisées pour la mesure des polluants gazeux inorganiques (O3,NOx, SO2, CO). Ce travail se concrétise notamment par la mise à jour d’un guide pour l’utilisation du TEOM-FDMS. Ce guide sera révisé en 2013 sur la based’échanges et de retours d’expériences, dont certains réalisés en 2012 etprésentés dans ce rapport. Ces retours d’expériences permettent également laremontée et la centralisation d’informations et de demandes auprès du distributeurfrançais (Ecomesure) et du constructeur (Thermo Scientific). Le présent rapport fait état des principaux résultats obtenus en collaboration avec les AASQA en 2012 concernant les paramètres de suivi de fonctionnement desTEOM-FDMS. En particulier, une étude réalisée en partenariat avec AtmoChampagne-Ardenne a porté sur l’impact du dépassement de la valeur de -4°Csur la température du point de rosée échantillon, montrant que ces conditionsd’utilisations « limites » pouvaient engendrer des surestimations significatives de la concentration en PM. Ces résultats suggèrent la nécessité de renforcer lecritère d’action fixé pour ce paramètre de suivi du sécheur. Il est également rappelé et démontré l’importance de l’isolation des lignes et dusoin à porter lors de la réalisation des opérations de maintenances (préventives et curatives). Enfin, un dernier chapitre porte sur la résolution de certains problèmesfréquemment rencontrés avec la version 1405 des TEOM-FDMS.
Mardi 20 avril 2010
Rapport
Veille technologique et réglementaire sur la méthode par absorption de rayonnement beta pour la mesure des particules en suspension
Mardi 24 mai 2011
Rapport
Suivi et optimisation de l’utilisation des TEOM-FDMS : Guide pour l’utilisation du TEOM-FDMS (OBSOLETE)
Attention : ce guide est obsolète - Une version révisée est disponible dans l'espace documentaire (rubrique Guides méthodologiques)   Le présent guide a pour objectif de fournir une aide aux utilisateurs des TEOM-FDMS (TEOM 1400 couplé à un module FDMS 8500) dans les AASQA. Il a été construit à partir des expériences de chacune des AASQA, rencontrées au cours des journées d'échange sur les TEOM-FDMS ayant eu lieu en 2008, 2009 et 2010. La rédaction de ce guide se nourrit également des échanges réalisés par le LCSQA avec les différents laboratoires européens de référence (notamment lors des réunions de l’AQUILA), le constructeur (Thermo Fisher Scientific) ainsi que le distributeur français (Ecomesure). Ce guide pour l’utilisation du TEOM-FDMS est élaboré en tenant compte de l’expérience de chacun des interlocuteurs participant à ces échanges. Il a vocation à évoluer, afin d'être remis à jour régulièrement. Toutes remarques et propositions de corrections sont les bienvenues, et peuvent être adressées directement au LCSQA (Aurélien Ustache, aurelien.ustache@ineris.fr; Olivier Favez, olivier.favez@ineris.fr). Nous observons, depuis 2007 (date de début d’utilisation des TEOM-FDMS pour la réalisation de mesures réglementaires des PM10 en France), une nette évolution dans la connaissance technique du fonctionnement de l’instrument, tant au niveau des solutions à apporter en cas de problème que des procédures à mettre en œuvre pour vérifier le fonctionnement de l'outil en routine. De ce fait, il est aujourd’hui possible de proposer cette nouvelle version du guide pour l’utilisation du TEOM-FDMS (version 2010), sous la forme d’un protocole d’assurance et de contrôle qualité des mesures en routine, qui reprend et complète les versions antérieurs. Le chapitre 2 de ce document est consacrée aux précautions à prendre lors de l’installation sur site (climatisation de la station de mesure, remplacement et optimisation de certaines pièces de l’instrument, choix des paramètres de fonctionnement d’intérêt à rapatrier au niveau du poste central). La chapitre 3 synthétise les audits et maintenances à réaliser en routine pour s’assurer de la bonne qualité des mesures. Dans cette partie, une attention particulière est notamment portée aux points névralgiques de l’instrument : étanchéité des circuits fluide, stabilité de la microbalance, dépression en amont de la pompe et efficacité du sécheur. Enfin, la dernière partie s’attache à décrire les paramètres d’intérêt à suivre en routine pour la validation des données obtenues à l’aide du TEOM-FDMS. Les modalités d'évolution de ce document sont à définir collectivement, et pourront être discutées en Commission de Suivi "Mesure des particules en suspension". Cette dernière remarque s’applique tout particulièrement aux processus de validations de données, aujourd’hui très disparates d’une AASQA à l’autre.