Résultats de la recherche

2627 résultats correspondent à PM10
Lundi 13 avril 2015
Rapport
Normalisation & Réglementation 2014
Le cadre régalien et normatif de la surveillance de la qualité de l’air en France est en cours d’évolution, notamment en raison du processus de révision des deux Directives européennes en vigueur  (prévu à partir de 2015) et de la mise en œuvre (suite à leur révision en 2013) de plusieurs  méthodes de référence normalisées (ex : SO2, NO/NOx, CO, O3, PM10 & PM2.5...). De même, des  décisions prises par la Commission Européenne concernant le processus de rapportage ou le  traitement des contentieux (en cours pour les PM10 et pour le NO2) vont impacter le travail  quotidien des AASQA. Cette évolution va influencer la stratégie nationale de surveillance de la  qualité de l’air, dont un cadrage général va être établi avec le 1er Plan National de la Surveillance de la Qualité de l’Air (PNSQA) et sa déclinaison au plan régional via les PRSQA des AASQA dont la 3ème version est prévue à partir de 2016. En tant que Laboratoire de Référence dans le domaine de la Qualité de l’Air notifié par le Ministère en charge de l’environnement, le LCSQA a pour missions l’aide à l’application correcte des textes de référence ainsi que l’assurance de la qualité des mesures dans le respect des exigences des Directives. Pour cela, il participe aux travaux de normalisation nationale (AFNOR – Association Française de NORmalisation) et européenne (CEN – Comité Européen de Normalisation) et assure la transmission de l’information auprès des acteurs du Dispositif National de Surveillance, notamment au travers des Groupes de Travail et des Commissions de Suivi. Il contrôle la correcte application des exigences techniques et législatives lors des audits de vérification technique.   Les travaux décrits dans le présent rapport permettent au LCSQA d’apporter au Dispositif National de   Surveillance   les   éléments   d'une   vision   d'ensemble  des   activités   de surveillance  de la qualité de l'air sur tout le territoire, et d’assurer leur cohérence avec les contraintes régaliennes, techniques en tenant compte de la réalité du terrain. Dans la continuité des années précédentes, les travaux du LCSQA en 2014 ont permis :   d’assurer une application homogène des textes de référence sur le territoire national en vue de leur respect, de contribuer aux choix stratégiques & économiques du Dispositif National, de valoriser la position française au niveau européen.   Ainsi, en 2014, les travaux du LCSQA en matière de normalisation & réglementation ont été les suivants :   participation aux travaux de normalisation européenne, nationale et internationale : normalisation européenne (8 GT du CEN TC 264 sur l’air ambiant extérieur et intérieur impliquant 9 experts du LCSQA), normalisation nationale (3 Commissions de l’AFNOR impliquant tous les experts du LCSQA). Il est à noter que l’année 2014 a vu la réactivation de 2 GT Ad Hoc dans le cadre de la révision de normes AFNOR (Normes sur les pesticides et sur l’étalonnage, impliquant 4 experts du LCSQA), normalisation internationale (3 GT de l’ISO TC 158 sur l’analyse des gaz, en lien avec la Commission AFNOR E29EG « Préparation et utilisation de mélanges de gaz en analyse » impliquant 2 experts du LCSQA) participation aux groupes d’expertise européens (AQUILA sur le plan technique et FAIRMODE sur le plan de la modélisation) mandatés par la Commission Européenne, impliquant 5  experts du LCSQA. Ces travaux vont dans la logique de convergence des approches  métrologiques  et  par  modélisation  souhaitée  par  la  Commission Européenne pour la surveillance de la qualité de l’air et dans le cadre du processus de révision des 2 Directives « qualité de l’air » qui devrait être lancé en 2014, participation aux échanges avec la Commission Européenne (ex : Contentieux en cours sur les PM10 et probable pour le NO2, suivi de l’IEM…), mise en application effective (ou par anticipation) des exigences ou recommandations découlant des points précédents, associées à l’arrêté du 21/10/11 et à la lettre annuelle de cadrage du MEDDE, etc …), se traduisant par : l’apport d’un appui technique pour l’élaboration des recommandations nationales  pour  le  dispositif  national  (note  de  cadrage, guide méthodologique…) et des propositions de résolutions faites dans le cadre des Commissions de Suivi, la vérification de leur application effective, au travers des actions de contrôle sur le terrain que les experts des équipes du LCSQA effectuent en audit chez les AASQA (5 audits en 2014), Tous ces travaux s’effectuent en collaboration avec les acteurs du Dispositif national de surveillance (MEDDE, LCSQA, AASQA), notamment dans le cadre des études menées par le LCSQA et de ses missions de coordination. L’ensemble des actions d’appui à la surveillance, à la planification et aux politiques territoriales est décrit sur le site du LCSQA (http://pro-lcsqa2.lcsqa.org/fr/).
Actualité
Mesure des métaux réglementés dans les PM10 – Nouvel exercice de comparaison inter-laboratoires 2015
Depuis environ 12 ans, le LCSQA organise régulièrement un exercice de comparaison inter-laboratoires pour la mesure des métaux réglementés dans les particules fines (PM10). Les métaux ciblés sont l’Arsenic (As), le Cadmium (Cd), le Nickel (Ni) et le Plomb (Pb). Les résultats obtenus lors de ces exercices permettent aux AASQA d’identifier les laboratoires d’analyse compétents pour la mesure de ces métaux selon des critères objectifs qualitatifs et techniques au regard des Directives 2004/107/EC et 2008/50/CE.
Vendredi 12 février 2010
Rapport
Intercomparaisons des stations de mesures : Première intercomparaison européenne PM10 (4/4)
Un essai européen d’intercomparaison monopolluant portant sur la mesure de particules en continu a été réalisé en octobre 2009 sur la station fixe de Creil. Il a réuni 5 participants : DCMR (Hollande) Atmo Picardie AEAT (Grande-Bretagne) ISSEP (Belgique) LCSQA/INERIS Constituant un parc de 5 analyseurs gravimétriques TEOM « 50°C » et un analyseur optique Grimm 180. Ce dernier n’a pas pu être retenu pour l’exercice suite aux tests préliminaires qui ont mis en évidence un principe de mesure inadapté au type de particules générées.Pour la réalisation de l’exercice, un système de dopage de particules développé au préalable par l’INERIS en collaboration avec LNIndustries et permettant une distribution homogène a été mis en oeuvre. La génération de particules est assurée par une combustion incomplète de propane.L’estimation de l’incertitude globale de mesure (ICR) du groupe d’analyseurs TEOM 50 °C équipés de tête PM10 et dont la constant e d’intégration était configurée à 1800s, a été estimée à 23,6 % dans les conditions de dopage à la valeur limite journalière, malgré une dispersion importante des données. Il en ressort que la qualité des mesures respecte les exigences de la Directive européenne en terme d’intervalle de confiance (25 %) à la valeur limite journalière.Ce résultat satisfaisant pourrait cependant être amélioré en constituant un panel de 6 participants afin de procéder à un traitement des données statistiquement plus représentatif et moins influencé par le poids des écarts de l’un des participants par rapport au groupe. Les écarts pourraient également être limités en veillant à la stabilité des analyseurs après un changement de filtres.Des tests complémentaires visant à caractériser la granulométrie des particules générées ont été réalisés à l’aide d’un granulomètre laser. Les résultats seront présentés courant 2010.En 2010, le concepteur du prototype du générateur LNIndustries procédera au contrôle de l’ensemble des éléments fluidiques et proposera leur l’intégration dans un boitier de protection ce qui devrait améliorer la stabilité et la répétabilité de la génération de particules.
Jeudi 21 février 2019
Rapport
Développement d’un dispositif de contrôle des appareils mesurant les concentrations massiques de particules
Le TEOM (Tapered Element Oscillating Microbalance) est un appareil de mesure très répandu au sein des Associations Agréées de Surveillance de la Qualité de l’Air (AASQA). Il est capable de mesurer en continu la concentration massique des particules en suspension dans l’air (en µg/m3), ce qui le rend préférable à la méthode gravimétrique qui nécessite des pesées postérieures au prélèvement. A l’heure actuelle, cet appareil est étalonné à l’aide de cales étalons raccordées au système international. Ces cales, ayant des masses de l’ordre de 80-100 mg, permettent de vérifier la constante d’étalonnage de la microbalance. Le contrôle de sa linéarité est effectué grâce à trois cales étalons ayant des différences de masses de l’ordre de la dizaine de mg. En considérant un débit volumique du TEOM-FDMS de 3 L/min, la valeur limite pour les PM10 (50 µg/m3 en moyenne journalière) représente une masse particulaire d’environ 2 µg sur 15 min de prélèvement. La différence de masse des cales étalons n’est donc pas représentative des masses particulaires atmosphériques prélevées sur un quart d’heure. De plus, l’utilisation de ces cales ne permet pas de prendre en compte un éventuel dysfonctionnement du système de prélèvement en amont de la mesure de la masse et du système de filtration intrinsèque à la microbalance. Par conséquent, le LNE a proposé de développer une méthode de contrôle en masse des TEOM-FDMS qui consiste à : Générer et prélever des particules ayant des concentrations connues et stables dans le temps (prélèvement de masses particulaires inférieures à 5 mg (gamme du « mg ») et à 100 µg (gamme du « µg ») sur une demi-heure de prélèvement), d'une part sur le filtre du TEOM-FDMS en passant par le système de prélèvement (hors tête de prélèvement), et d'autre part sur un filtre externe, Puis comparer les masses mesurées par le TEOM-FDMS avec les masses « vraies » mesurées par la méthode gravimétrique sur le filtre externe. Au regard de l’ensemble des éléments précités, cette méthode a été développée pour contrôler les TEOM-FDMS (1) - pour une gamme de masse inférieure à celle des cales étalons et (2) - réalisable dans des conditions proches de leur fonctionnement « normal ». Le protocole d’utilisation du générateur de particules (GARP), optimisé par les expériences menées sur le terrain entre 2013 et 2017, est de plus adapté au contrôle des jauges radiométriques, permettant une utilisation versatile du système. En 2018, afin de déterminer ses performances métrologiques en lien avec les mesures effectuées par les jauges radiométriques, le générateur a été caractérisé au laboratoire par l’utilisation de la méthode gravimétrique à un débit de prélèvement égal à celui des jauges radiométriques, soit 1 m3/h. Les résultats liés à cette caractérisation ont conduit à des écarts-types relatifs de reproductibilité compris entre 5,9 % et 16,9 %. De plus, afin de prendre en compte le retour d’expérience des AASQA à l’issue du déploiement du GARP sur le terrain en 2017, le dispositif a été optimisé pour le rendre plus léger et compact. Cette version miniaturisée est appelée mini GARP. La caractérisation du mini GARP à un débit de prélèvement de 1 m3/h a conduit à des écarts-types relatifs de reproductibilité proches de ceux obtenus pour la caractérisation du GARP à ce même débit de prélèvement. La version miniaturisée du GARP permet donc de conserver les critères de stabilité et de reproductibilité en termes de génération d’aérosol caractéristique du GARP dans le cas d’un temps de génération de 36 minutes, utilisé pour le contrôle des jauges radiométriques. En complément des TEOM-FDMS et des jauges radiométriques, on observe une utilisation croissante par les AASQA d’instruments optiques tels que le FIDAS 200 (PALAS) pour la mesure des concentrations massiques particulaires. Ainsi, dans une volonté de rendre ce système toujours plus versatile, le mini GARP a été couplé à un FIDAS 200. Ce couplage a montré que la distribution granulométrique en nombre de l’aérosol généré par le mini GARP est principalement située dans une gamme de taille non détectée par le FIDAS, à savoir dans une gamme de diamètres inférieurs à 180 nm. Par conséquent, le mini GARP, dans son état actuel, n’est pas utilisable pour le contrôle d’instruments optiques tels que le FIDAS 200 utilisé pour mesurer les concentrations massiques particulaires.
Mercredi 26 mars 2014
Rapport
Surveillance des métaux dans les particules en suspension
En France, une surveillance est effectuée par la plupart des AASQA depuis 2007 de façon continue ou ponctuelle, pour le Pb, As, Cd et Ni dans les PM10 afin de répondre aux directives européennes (2008/50/CE et 2004/107/CE). Les objectifs de Mines Douai, au sein du LCSQA, sont d'assurer un rôle de conseil et de transfert de connaissances auprès des AASQA, de procéder à des travaux permettant de garantir la qualité des résultats, de participer activement aux travaux de normalisation européens et de réaliser une veille technologique sur les nouvelles méthodes de prélèvement et d’analyse susceptibles d’optimiser les coûts tout en respectant les objectifs de qualité.Au cours de l'année 2013, les travaux réalisés dans le cadre du LCSQA ont porté sur les actions suivantes : -  Fourniture de filtres vierges en fibre de quartz. Des filtres sont achetés par lots et leurs    caractéristiques chimiques sont contrôlées, avant d’être redistribués aux AASQA sur simple    demande de leur part. En 2013, 3675 filtres en fibre de quartz (Pall et Whatman) ont été    distribués auprès de 16 AASQA différentes. - Participation au comité de suivi « Benzène, métaux, HAP » sur la stratégie de mesure de   As, Cd, Ni, Pb dans l’air ambiant et au groupe de travail « caractérisation chimique et sources   des PM ». -  Organisation d'un exercice de comparaison inter-laboratoires (Annexe 1). Cette année, 9    laboratoires indépendants ont participé à cet exercice : Laboratoire Carso (Lyon), Ianesco    Chimie (Poitiers), Laboratoire départemental de Haute-Garonne (Launaguet), Laboratoire de    Rouen (Rouen), Micropolluants Technologie (Thionville), Laboratoires des Pyrénées et des    Landes (Lagor), TERA Environnement (Crolles), INERIS (Creil) et LUBW (Allemagne). Les analyses préparatoires réalisées aux Mines de Douai sont inclues dans la présentation des résultats de cet exercice sous la forme d'un dixième laboratoire participant. Nous avons distribué à chaque laboratoire quatre filtres empoussiérés collectés pendant l’hiver 2012-2013, dont les teneurs en métaux correspondent à un site urbain de fond ainsi que 10 filtres vierges en fibre de quartz. Comme en 2011, une solution synthétique et une solution étalon produite à partir de filtres collectés à l’EMD puis minéralisés et analysés précisément par le Laboratoire National de Métrologie et d’Essais (LNE) ont également été introduites dans l’exercice d’intercomparaison afin de discriminer les erreurs liées à l’analyse proprement dite de celles liées à la phase de minéralisation. Un MRC contenant des particules déposées sur filtre produit par le LNE a également été distribué aux participants avec son certificat afin d’évaluer les taux de récupération en métaux lors de la minéralisation des PM10. Les résultats de cette intercomparaison sont globalement positifs (Annexe 1). Malgré les faibles teneurs contenues sur les filtres empoussiérés, les 10 laboratoires participant ont détecté les quatre métaux présents dans les échantillons impactés sur filtres. De plus, les laboratoires respectent globalement les objectifs de qualité des directives européennes (25 % pour Pb et 40 % pour As, Cd et Ni) au niveau des valeurs cibles avec des incertitudes moyennes (norme FD-X43-070) de 28% (As), 31% (Cd), 52% (Ni) et 28% (Pb). L’étape de minéralisation représente la plus importante source relative d’incertitude, comprise entre 43 et 56% de l’incertitude globale selon l’élément considéré. Il faut souligner que six laboratoires ayant participé aux cinq derniers exercices d’intercomparaison ont obtenu de bons résultats pour les quatre éléments visés par rapport aux critères de qualité requis, démontrant ainsi une bonne maîtrise sur le long terme de ce type d’analyses. Les résultats obtenus sur les solutions étalons synthétiques (Ech 4) et issues de minéralisation de filtres (Ech 5) sont globalement satisfaisants avec des écarts par rapport à la médiane inférieurs à 20%. La reproductibilité est de 5% pour le Pb et de 10 à 30% pour les autres métaux pour ces 2 échantillons. On observe un écart sur le dosage du plomb sur les deux solutions étalons pour certains laboratoires. Les écarts par rapport aux valeurs certifiées du MRC sont en moyenne de 7 à 10 % relatif pour As, Cd, Pb et 23% pour Ni. - Analyse des métaux, métalloïdes et éléments majeurs dans des échantillons de PM10 collectés dans le cadre du programme CARA à Nogent sur Oise pendant une année.L’application de traitement statistique (ACP) et de modèles source-récepteur en cours doit permettre l’identification des principales sources de particules affectant la zone (Aérosol secondaire, combustion de biomasse, trafic automobile, aérosol marin, poussière détritique,…). - Etude de faisabilité d’une comparaison inter-laboratoire portant sur les analyses de métaux dans les dépôts atmosphériques. Une CIL portant sur la partie analyse est envisageable sous une forme similaire à celle mise en place pour l’analyse des métaux réglementés dans les PM10. Pour la partie prélèvement fortement dépendante de la géographie et de la météorologie locale, seule une validation station par station permet de répondre aux recommandations de la norme.
Mercredi 15 octobre 2008
Page de livre
Thème 3 : Métrologie des particules PM10 et PM 2.5
Les actions relatives au thème "Métrologie des particules
Jeudi 11 septembre 2008
Page de livre
Thème 3 : Métrologie des particules PM10 et PM2.5
L'ensemble des actions relatives au thème 3 : métrologie des particules
Mercredi 4 novembre 2009
Rapport
Programme CARA : bilan des travaux de la première année (2008 - 2009)
Ce bilan synthétise les résultats obtenus pour l'analyse chimique des filtres prélevés entre janvier 2008 et janvier 2009. Les épisodes de pollution par les PM10 observés en France au printemps 2007 ont montré que le besoin de compréhension et d'information sur l'origine de ces pics était très fort. Ce besoin a conduit le LCSQA à déclencher une étude, basée sur une approche couplée entre la caractérisation chimique des particules (spéciation) et la modélisation (rapport LCSQA de juillet 2007 ). Cette étude a permis de faire des hypothèses sérieuses sur les sources de PM10 lors de ces épisodes de pollution importants. Afin d'anticiper d'éventuels futurs épisodes de ce type, et d'apporter des éléments sur les niveaux moyens de concentrations mesurés, le LCSQA a mis en œuvre, depuis le début de l'année 2008, un dispositif de caractérisation chimique des PM, appelé CARA. Ce dispositif consiste, en pratique, à effectuer des prélèvements de particules sur quelques sites en France, en vue de réaliser une spéciation chimique des particules sur une sélection de ces échantillons (épisodes de forte pollution ou situations de fond d’intérêt). Par ailleurs, la réalisation de cette spéciation chimique participe à la mise au point de méthodes de mesure de la composition chimique des PM2.5, homogènes avec ce qu’il est prévu de mettre en place dans les zones rurales en France, dans le cadre de l’application de la directive européenne (Directive 2008/50/CE 2008). L'objectif de ce rapport est de réaliser un bilan focalisé sur l'interprétation des données 2008 (interprétation directe et couplée à la modélisation), et sur les informations apportées ou non par le dispositif dans sa configuration actuelle. L'objectif est de donner les éléments de base à chacun pour définir l'orientation à donner à ce dispositif à partir de 2010. Parmi les résultats obtenus en 2008, on notera notamment que les profils chimiques mesurés par analyse des 87 échantillons correspondants à des dépassements du seuil de 50 µg.m-3 montre une contribution forte de la matière carbonée (1/3 des PM10) et des espèces inorganiques secondaires (nitrate, sulfate et ammonium). Ce profil est comparable aux profils annuels moyens rencontrés dans la littérature, et indique que les dépassements ne sont pas liés (en première approximation) à une montée en puissance d'une source spécifique, mais bien à des conditions de dispersion favorisant l'accumulation d'un ensemble de sources. Enfin, l'évolution saisonnière de ce profil est relativement faible. Concernant la confrontation avec les résultats de la modélisation, on notera que la matière carbonée est très largement sous-estimée par la modélisation. La sous-estimation des émissions de particules par les combustions de biomasse est soupçonnée de contribuer largement à cette lacune. Le nitrate d'ammonium, qui représente plus de la moitié de l'écart entre TEOM-FDMS et TEOM, est bien modélisé, ce qui renforce la validité du modèle proposé pour la correction des données du passé. L'étude ultérieure de plusieurs épisodes d'intérêt, sur la base du travail réalisé pour les épisodes du printemps 2007, devrait permettre au cas par cas des interprétations diverses : mise en évidence d'une lacune dans les cadastres des émissions, étude d'une source (par exemple naturelle) ou de l'impact du transport longue distance… Par ailleurs, on  notera que 28 des 87 dépassements de seuil de 50 µg m-3 étudiés peuvent être attribués aux sources naturelles, au sens de la directive . Un travail spécifique sur la robustesse de ce résultat pourra être envisagé et faire partie des objectifs visés en cas d'évolution du format du dispositif. Enfin, le potentiel des études de sources sur la base d'une approche par profil de source type CMB, montrée dans ce rapport, permet d'envisager des études de sources précises, avec une valeur ajoutée importante sur l'origine des éléments toxiques des PM10 que sont les HAP. La commission européenne a évoqué son intérêt pour ce type de résultats (basé sur une méthodologie objective, et pouvant à terme faire l'objet de guides techniques voir de norme) couplé à une approche par modélisation pour mieux qualifier les différentes contributions lors des situations de pics (naturelles /  anthropiques, locales / transfrontières) a été évoqué, notamment dans le cadre de la future révision de la directive en 2013. 
Lundi 11 mars 2019
Rapport
Protocole harmonisé pour la campagne nationale exploratoire de surveillance des pesticides dans l’air ambiant
La mise en place d’une surveillance des résidus de pesticides dans l’air au niveau national est une priorité définie dans le cadre du plan d’action gouvernemental sur les produits phytopharmaceutiques et du plan national de réduction des émissions de polluants atmosphériques (PREPA) 2017-2021. A ce titre, l’ANSES a été saisie dès septembre 2014 pour proposer une liste de substances méritant d’être prioritairement surveillées ainsi que de faire des recommandations en matière de stratégie de surveillance pour évaluer l’exposition de la population. La rédaction du protocole harmonisé de surveillance sur l’ensemble du territoire national a été confiée à l’INERIS en tant que membre du LCSQA dans le cadre d’un financement de l’Agence Française de la Biodiversité (AFB) au sein du plan Ecophyto. Dans cet objectif, des travaux préliminaires ont été menés en 2017 par l’INERIS, dans le cadre de ses travaux pour le LCSQA, pour répondre aux recommandations de l’Anses. Ils comprenaient : •           la réalisation de campagnes métrologiques in situ en lien avec deux associations agréées de surveillance de la qualité de l'air (AASQA), Atmo Grand Est et Air PACA, afin d’arrêter les prescriptions métrologiques du prélèvement des échantillons jusqu’à leur analyse, •           la définition de la stratégie d’échantillonnage spatio-temporelle du protocole harmonisé, •           la liste des métadonnées à renseigner lors des prélèvements et de l’analyse, •           la réalisation de tests de performance de piégeage des dispositifs mis en œuvre vis-à-vis de certaines substances recherchées lors des campagnes métrologiques in situ. Ces tests font l’objet d’un rapport distinct (rapport LCSQA/INERIS DRC-18-152887-07108A).   Les principaux éléments du protocole harmonisé précisent les points suivants : •           un échantillonnage hebdomadaire sur préleveur Partisol équipé d’une coupure granulométrique PM10, •           une configuration de piégeage sur filtre et mousse PUF, •           la sous-traitance analytique des échantillons confiée à un seul laboratoire, •           une fréquence d’échantillonnage répartie sur l’année, variant de 1/mois à 1/semaine en fonction des traitements et du profil agricole du site considéré, •           les critères de sélection des sites de mesures répartis sur le territoire selon la production agricole (grande culture, viticulture, arboriculture, maraîchage, élevage) et les situations d’exposition (sites urbains/péri-urbains et sites ruraux) •           la liste des métadonnées à renseigner lors des prélèvements et de l’analyse, lors de la description des sites de mesures et des paramètres météorologiques.
Jeudi 23 janvier 2020
Procédure préfectorale
Procédure du 24/01/2020 - AIN - Alerte