Résultats de la recherche

2246 résultats correspondent à PM10
Vendredi 6 mai 2011
Rapport
Rédaction de guides pratiques de calcul d’incertitudes et formation des AASQA - Estimation des incertitudes sur les mesurages de B[a]P réalisés sur site dans la fraction PM10 (3/5)
Mardi 14 juin 2011
Rapport
Suivi et optimisation de l’utilisation des TEOM-FDMS : Suivi de la conformité aux méthodes de référence NF EN 12341 et NF EN 14907 des TEOM-FDMS, anciennes (1400AB + 8500C) et nouvelles (1405F et 1405DF) versions
Depuis le 1erjanvier 2007, les TEOM-FDMS sont très largement utilisés en routine par l’ensemble des AASQA pour la surveillance des PM10 et des PM2.5.  Dans le cadre du déploiement et de la mise en œuvre de ces instruments, le LCSQA/INERIS est notamment chargé du suivi et de l’optimisation de leur utilisation au sein du dispositif national de surveillance de la qualité de l’air, ainsi que d'assurer la qualité des données produites en construisant une approche QC/QA basée sur celle décrite dans les normes utilisées pour la mesure des polluants gazeux inorganiques (O3, NOx, SO2, CO). Ce travail se concrétise notamment par la rédaction d’un guide pour l’utilisation du TEOM-FDMS, dont une nouvelle version a été élaborée en 2010, en partenariat avec les AASQA. En 2010, le LCSQA/INERIS a également poursuivi son travail d’évaluation sur le terrain des TEOM-FDMS « ancienne génération » (modules TEOM 1400ab + FDMS 8500c), ainsi que de nouvelles versions instrumentales (1405f et 1405df), par le biais d’exercices de comparaison à la méthode de référence (mesure manuelle selon les normes NF EN 12341 pour les PM10 et NF EN 14907 pour les PM2.5). Le présent rapport décrit et commente les résultats obtenus lors de ces essais d’inter-comparaison. Les résultats obtenus tendent à confirmer l’équivalence des anciennes générations de TEOM-FDMS aux méthodes de référence, et suggèrent que les nouvelles générations (1405f et 1405df), dont les premiers modèles présentaient d’importants défauts de conception, satisfont également à ces exigences normatives.   Il convient de souligner que ces exercices d’intercomparaison ne sauraient constituer des campagnes de démonstration d’équivalence, notamment en raison de l’utilisation d’un seul instrument candidat (i.e. TEOM-FDMS) et du nombre relativement limité de données disponibles pour chacun d'eux. En outre, il est également à noter que certains de ces tests ont été réalisés en marge d’études poursuivant un autre objectif que la vérification du bon fonctionnement du TEOM-FDMS. Ainsi, il n’a pas toujours été possible d’assurer l’installation des préleveurs (utilisés pour la mesure manuelle) dans des conditions optimales. Les résultats obtenus lors de ces derniers tests indiquent un écart significatif des concentrations de PM obtenues par méthodes automatique et manuelle, en raison notamment d’une perte de matière semi-volatile lors du stockage sur site des filtres prélevés pour la mesure gravimétrique. Ces résultats confortent la position du groupe de normalisation Européen pour la détermination des concentrations de PM dans l’air ambiant (GT 15 du CEN/TC 264) sur la nécessité de fixer une valeur limite de température de stockage des filtres sur site (vraisemblablement 23°C), dans le cadre de la révision de la norme EN 12341, à l’image de ce qu’il est déjà préconisé pour les PM2.5. Enfin, il est à souligner que ce groupe de normalisation Européen travaille également à la rédaction d’une norme sur la mise en œuvre des analyseurs automatiques de PM. Outre l’identification de critères techniques à respecter en vue d’une approbation par type et lors d’une utilisation en routine, cette norme préconisera la vérification régulière de l’équivalence des instruments utilisés, sur des sites représentatifs de l’ensemble du dispositif de surveillance. Ainsi, des exercices d’intercomparaison, sur le même principe que ceux présentés dans le présent rapport mais couvrant des périodes plus longues, devront vraisemblablement être mis en œuvre dès la publication de la révision de la Directive 2008/50/CE (prévue pour 2013). Dans un souci d’anticipation, le LCSQA propose de pérenniser la réalisation d’exercices de vérification d’équivalence à partir de 2011, en partenariat avec des AASQA volontaires.
Mardi 24 mai 2011
Rapport
Suivi et optimisation de l’utilisation des TEOM-FDMS : Guide pour l’utilisation du TEOM-FDMS (OBSOLETE)
Attention : ce guide est obsolète - Une version révisée est disponible dans l'espace documentaire (rubrique Guides méthodologiques)   Le présent guide a pour objectif de fournir une aide aux utilisateurs des TEOM-FDMS (TEOM 1400 couplé à un module FDMS 8500) dans les AASQA. Il a été construit à partir des expériences de chacune des AASQA, rencontrées au cours des journées d'échange sur les TEOM-FDMS ayant eu lieu en 2008, 2009 et 2010. La rédaction de ce guide se nourrit également des échanges réalisés par le LCSQA avec les différents laboratoires européens de référence (notamment lors des réunions de l’AQUILA), le constructeur (Thermo Fisher Scientific) ainsi que le distributeur français (Ecomesure). Ce guide pour l’utilisation du TEOM-FDMS est élaboré en tenant compte de l’expérience de chacun des interlocuteurs participant à ces échanges. Il a vocation à évoluer, afin d'être remis à jour régulièrement. Toutes remarques et propositions de corrections sont les bienvenues, et peuvent être adressées directement au LCSQA (Aurélien Ustache, aurelien.ustache@ineris.fr; Olivier Favez, olivier.favez@ineris.fr). Nous observons, depuis 2007 (date de début d’utilisation des TEOM-FDMS pour la réalisation de mesures réglementaires des PM10 en France), une nette évolution dans la connaissance technique du fonctionnement de l’instrument, tant au niveau des solutions à apporter en cas de problème que des procédures à mettre en œuvre pour vérifier le fonctionnement de l'outil en routine. De ce fait, il est aujourd’hui possible de proposer cette nouvelle version du guide pour l’utilisation du TEOM-FDMS (version 2010), sous la forme d’un protocole d’assurance et de contrôle qualité des mesures en routine, qui reprend et complète les versions antérieurs. Le chapitre 2 de ce document est consacrée aux précautions à prendre lors de l’installation sur site (climatisation de la station de mesure, remplacement et optimisation de certaines pièces de l’instrument, choix des paramètres de fonctionnement d’intérêt à rapatrier au niveau du poste central). La chapitre 3 synthétise les audits et maintenances à réaliser en routine pour s’assurer de la bonne qualité des mesures. Dans cette partie, une attention particulière est notamment portée aux points névralgiques de l’instrument : étanchéité des circuits fluide, stabilité de la microbalance, dépression en amont de la pompe et efficacité du sécheur. Enfin, la dernière partie s’attache à décrire les paramètres d’intérêt à suivre en routine pour la validation des données obtenues à l’aide du TEOM-FDMS. Les modalités d'évolution de ce document sont à définir collectivement, et pourront être discutées en Commission de Suivi "Mesure des particules en suspension". Cette dernière remarque s’applique tout particulièrement aux processus de validations de données, aujourd’hui très disparates d’une AASQA à l’autre.
Lundi 24 janvier 2011
Rapport
Méthodologie de définition des zones sensibles
  Ce document fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air ambiant.   Les schémas régionaux Climat, Air et Energie instaurés par la Loi Grenelle 2 seront des documents d’orientation qui devront concilier des préoccupations parfois divergentes sur le changement climatique et la pollution atmosphérique. Pour chaque région française, l’état des lieux requis dans le projet de décret pour ces schémas impose de cartographier des zones ditessensibles, où les orientations destinées à prévenir ou à réduire la pollution atmosphérique seront renforcées. Si des arbitrages se révèlent nécessaires entre les objectifs définis pour la réduction des émissions de gaz à effet de serre et ceux pour la réduction des émissions de polluants dans l’air, une pondération des critères de choix s’imposera et sera fonction des zones plus ou moins sensibles à la qualité de l’air. Si ces zones sensibles se définissent principalement en fonction des dépassements de valeurs limites réglementaires, leur délimitation pose une question méthodologique à laquelle il convient de répondre de manière harmonisée. Un groupe de travail animé par le MEDDTL et comprenant des représentants de l’ADEME, du LCSQA et des AASQA a été constitué à cette fin. Il a eu pour mission d’élaborer dans des délais contraints une méthodologie simple, commune, aisément applicable à l’ensemble des régions, et qui assure la cohérence des zones sensibles sur tout le territoire. Pour mener à bien cette tâche, il s’est appuyé sur des travaux méthodologiques existants, réalisés par les AASQA ou le LCSQA, qu’il a réadaptés et développés en fonction des besoins et des contraintes propres aux zones sensibles. Chaque élément de la méthodologie a été soumis à de nombreux tests avant d’y figurer définitivement. Compte tenu des enjeux associés aux zones sensibles, les polluants retenus dans la définition de ces zones sont les PM10et le NO2 : pour ces composés, des dépassements de valeurs limites réglementaires sont constatés ou risquent de l’être étant donné les niveaux d’émission actuels ; les PM10 et le NO2 sont des polluants d’intérêt à la fois pour des problématiques climatiques, énergétique et de pollution de l’air ; les données de concentration et d’émission disponibles pour ces polluants sont suffisamment nombreuses et précises pour permettre une exploitation satisfaisante dans chaque région française. Les zones sensibles sont cartographiées progressivement selon une maille kilométrique. La première partie consiste à délimiter les zones de dépassement de valeurs limites aux échelles nationale et régionale (dépassements en situation de fond) puis de façon plus localisée (dépassements en situation de proximité). Ce travail tient compte des cinq dernières années de mesure, dans la limite des données disponibles. Pour la pollution de fond, et sauf cas particulier, les dépassements de la valeur limite relative aux concentrations journalières de PM10 constituent la principale problématique. L’identification des zones de dépassement repose sur la combinaison de données journalières d’observation et de modélisation et sur l’exploitation des estimations journalières ainsi obtenues. Pour la pollution de proximité, qu’il est plus complexe de cartographier, une approche simplifiée fondée sur les inventaires d’émissions de NOx a été mise au point. Les zones de dépassement sont délimitées selon un critère de surémission, c’est-à-dire d’excès d’émission par rapport à la moyenne nationale. De légers réajustements sont ensuite possibles pour garantir le bon accord de ces zones avec les dépassements réellement constatés. La deuxième partie fait ressortir les zones qui du fait de la présence de récepteurs peuvent révéler une plus grande sensibilité à la pollution atmosphérique. Les populations et les écosystèmes sont ici considérés. A partir des bases de données sur l’occupation des sols et le patrimoine naturel, on sélectionne ainsi les zones habitées (tissu urbain continu ou discontinu) et les espaces naturels protégés (zones de protection de biotope, parcs nationaux et régionaux, réserves naturelles). La dernière partie fait la synthèse des précédentes étapes. Toute maille incluse dans une zone de dépassement, du fait de la pollution de fond et/ou de proximité, et dont la sensibilité est accrue par la présence de populations ou d’espaces naturels protégés, est considérée comme sensible. Les zones sensibles sont finalement agrégées à l’échelle de la commune, premier niveau administratif de gestion de la qualité de l’air. Dès le début de l’année 2011, toutes les AASQA devront appliquer la méthodologie à leur domaine. Le LCSQA assurera un soutien technique dans cette mise en œuvre. Eléments essentiels des schémas régionaux Climat, Air et Energie, les zones sensibles seront également des outils utiles à la planification et pourront être présentées dans les Programmes de Surveillance de la Qualité de l’Air (PSQA).
Mardi 20 avril 2010
Rapport
Veille technologique et réglementaire sur la méthode par absorption de rayonnement beta pour la mesure des particules en suspension
Mercredi 20 janvier 2010
Rapport
Surveillance des métaux
Vendredi 17 juillet 2009
Rapport
Evaluation des zones touchées par les dépassements de valeurs limites (Note méthodologique / Version 1)
Jeudi 1 octobre 2009
Rapport
Suivi et optimisation de l'utilisation des TEOM-FDMS (1/2) : Guide pour l'utilisation du TEOM-FDMS (OBSOLETE)
Attention : ce guide est obsolète - Une version révisée est disponible dans l'espace documentaire (rubrique Guides méthodologiques)   Le présent guide a pour objet de fournir une aide aux utilisateurs des TEOM-FDMS dans les AASQA. Il a été construit à partir des expériences de chacune des AASQA, rencontrées au cours des journées d'échange sur les TEOM-FDMS ayant eu lieu en 2008 et 2009, et au cours desquelles l'ensemble des AASQA ont été consultées. Ce document est par définition évolutif, et toutes remarques, contributions, critiques… sont les bienvenues, et doivent être adressées directement au LCSQA (Aurélien Ustache, aurelien.ustache@ineris.fr) Nous observons, depuis 2007, une nette évolution dans la connaissance technique du fonctionnement du TEOM-FDMS, tant au niveau des solutions à apporter en cas de problème que des procédures à mettre en œuvre pour vérifier le fonctionnement de l'outil en routine : Concernant le premier point, le Tableau 1, présenté page 11, synthétise en grande partie l'état de notre connaissance. En particulier, une partie importante des premiers problèmes observés, qui sont notamment les fuites et les performances de la microbalance, sont désormais bien identifiés, et les solutions trouvées par chacun sont regroupées dans la partie 3 "Guide en cas de panne" de ce document. Ensuite, afin d'assurer la qualité des données produites par le TEOM-FDMS, il est essentiel de mettre en place un suivi du fonctionnement des appareils, basé sur la vérification à réception et périodique de différents critères de fonctionnement. L'ensemble des opérations QC/QA pouvant être mises en œuvre est présenté dans la quatrième partie de ce document "Contrôle qualité à réception et en routine". Le format est identique à celui des tableaux de "Fréquence requises pour l'étalonnage, les contrôles et la maintenance" des normes en vigueur pour la mesure des gaz "classiques" (cf tableau 6 de la norme EN14211 pour les NOx, par exemple). L'objectif est de créer un outil directement compatible et intégrable dans les projets de normes en cours d'élaboration au niveau du CEN.Nous recommandons de mettre en place le suivi de l'ensemble des paramètres du tableau  2. En particulier, nous recommandons très fortement de mettre en place le suivi des paramètres marqués en rouge et en gras dans ce tableau. Enfin, ce document a été élaboré  en tenant compte de l’expérience de chacune des  AASQA. Ce document a donc vocation à évoluer, afin d'être remis à jour. Les modalités d'évolution de ce document sont à définir collectivement, et pourront être discutées en Commission de Suivi "Mesure des particules en suspension".
Mercredi 1 avril 2009
Rapport
Exploitation de données PM - Etude de l’impact du trafic routier sur les teneurs en PM à partir de la base de données PM10 et PM2.5
Mercredi 1 avril 2009
Rapport
Surveillance des métaux