Résultats de la recherche

219 résultats correspondent à LNE
Jeudi 14 octobre 2010
Rapport
Essai de comparaison interlaboratoires sur les Hydrocarbures Aromatiques Polycycliques (HAP) - Rapport intermédiaire
Dans le cadre de l’assistance aux Associations Agréées de Surveillance de la Qualité de l’Air (AASQA), un essai de comparaison interlaboratoires analytique a été organisé par l’INERIS en collaboration avec le LNE en avril 2010. Cet essai portait sur l’analyse du Benzo[a]Pyrène ([B[a]P) et des autres HAP concernés par la directive 2004/107/CE du 15 décembre 2004. L’objectif de cet essai était d’une part, d’estimer l’incertitude élargie pour l’analyse du B[a]P dans l’air ambiant selon la norme NF EN 15549[1] afin de savoir comment les différents laboratoires se situent par rapport aux exigences de la directive et de la norme, et d’autre part, de fournir aux AASQA des éléments comparatifs vis-à-vis des résultats obtenus lors des essais interlaboratoires précédents. De plus, la norme NF EN 15549 étant seulement applicable pour le B[a]P, les laboratoires ont mis en œuvre leurs propres méthodes analytiques pour les autres HAP de la directive, ce qui permettra d’obtenir des informations sur les performances analytiques des laboratoires et sur les améliorations possibles, et au final, de compléter les éléments de comparabilité des données au niveau national. Chaque participant a reçu les matériaux suivants : -        Quatre matériaux de référence certifiés (MRC) préparés par le LNE, constitués de quatre solutions étalons notées : Etalon 1, Etalon 2, Etalon 3 et Etalon 4, présentant des concentrations différentes ; -        Trois matériaux liquides (deux dans du dichlorométhane, un dans du toluène) préparés par l’INERIS à partir d'un prélèvement réel sur membrane en quartz, à analyser sans autre traitement, notés : Extrait 1, Extrait 2 et Extrait 3 ; Quatre matériaux solides (morceaux de filtre) contenus dans des boîtes de Pétri préparés par l’INERIS et issus de prélèvements réels effectués sur filtre en quartz à l'aide d'un préleveur grand volume de type ANDERSEN, équipé d'une tête PM10, à un débit de 60 m3/h. Chaque filtre était découpé avec un emporte-pièce en 16 morceaux de 47 mm de diamètre. Quatre filtres notés Filtre 1, Filtre 2, Filtre 3 et Filtre 4 ont ainsi été envoyés aux laboratoires. Comme lors de l’essai réalisé en 20082, cet exercice comprenait des matrices des concentrations très différentes afin de prendre en compte les gammes de travail habituelles des laboratoires travaillant sur des filtres issus des prélèvements haut débit ou bas débit. Suite aux conclusions de l’essai de 2008, l’analyse robuste des résultats selon les normes NF ISO 13528 et NF ISO 5725-5 a été mise en œuvre pour cet essai. Dans ce rapport intermédiaire sont présentés uniquement les résultats bruts ainsi que les résultats issus des tests statistiques en vue d’une diffusion rapide aux laboratoires afin que chacun examine ses propres résultats et puisse rapidement mettre en œuvre d’éventuelles mesures correctives. L’interprétation ainsi que la mise en perspective des résultats obtenus sera effectuée dans un rapport final qui sera publié fin 2010. [1]NF EN 15549. Qualité de l’air. Méthode normalisée pour le mesurage de la concentration du benzo[a]pyrène dans l’air ambiant. Juillet 2008. 2Rapport LCSQA 2009. Essais de comparaison interlaboratoires sur les Hydrocarbures Aromatiques polycycliques. Rapport final. Disponible sur www.lcsqa.org
Mercredi 11 août 2010
Rapport
Essai de comparaison interlaboratoires sur les Hydrocarbures Aromatiques Polycycliques (HAP)
  Dans le cadre de l’assistance aux Associations Agréées de Surveillance de la Qualité de l’Air (AASQA), un essai de comparaison interlaboratoires analytique a été organisé par l’INERIS en collaboration avec le LNE en avril 2008. Cet essai portait sur l’analyse du Benzo[a]Pyrène ([B[a]P) et des autres HAP concernés par la directive 2004/107/CE du 15 décembre 2004. L’objectif de cet essai était d’une part, d’estimer l’incertitude élargie pour l’analyse du B[a]P dans l’air ambiant afin de savoir comment les différents laboratoires se situent par rapport aux exigences de la directive et d’autre part, de fournir aux AASQA des éléments comparatifs vis-à-vis des résultats obtenus lors des essais interlaboratoires précédents. De plus, la norme NF EN 15549 n’ayant pas été publiée avant la réalisation de cet exercice, les laboratoires ont mis en œuvre leurs propres méthodes analytiques ce qui a permis d’obtenir des informations sur les performances analytiques des laboratoires et sur les améliorations possibles, et au final, de compléter les éléments de comparabilité des données au niveau national. Chaque participant a reçu les matériaux suivants : Quatre matériaux de référence certifiés (MRC) préparés par le LNE, constitués de quatre solutions étalons notées : Etalon 1, Etalon 2, Etalon 3 et Etalon 4, présentant des concentrations différentes ; Deux matériaux liquides (dans du dichlorométhane) préparés par l’INERIS à partir d'un prélèvement réel sur membrane en quartz, à analyser sans autre traitement, notés : Extrait 1 et Extrait 2 ; Quatre matériaux solides (morceaux de filtre) contenus dans des boîtes de Pétri préparés par l’INERIS et issus de prélèvements réels effectués sur filtre en quartz à l'aide d'un préleveur grand volume de type ANDERSEN, équipé d'une tête PM10, à un débit de 60 m3/h. Chaque filtre était découpé avec un emporte-pièce en 12 morceaux de 47 mm de diamètre. Quatre filtres notés Filtre 1, Filtre 2, Filtre 3 et Filtre 4 ont ainsi été envoyés aux laboratoires. L'utilisation de matériaux liquides (dont les MRC) permet de tester la chaîne analytique de chaque laboratoire, alors que l'utilisation de matériaux solides permet de tester l’ensemble de la chaîne analytique (extraction, concentration, purification si nécessaire et analyse) de chaque laboratoire. Cet exercice comprenait pour la première fois, des matrices de concentrations très différentes afin de prendre en compte les gammes de travail habituelles des laboratoires travaillant aussi bien sur des filtres issus des prélèvements haut débit que bas débit. En 2008 également, l’analyse robuste des résultats selon les normes NF ISO 13528 et NF ISO 5725-5 a été mise en œuvre pour la première fois. Ce traitement statistique est préconisé par la norme NF ISO 13528 pour le traitement des résultats des essais de comparaison interlaboratoires. Les principaux enseignements de cet essai interlaboratoires sont les suivants : Le choix de distribuer aux participants à cet essai des matrices de concentrations représentatives des prélèvements haut et bas débit, bien que très pertinent et plus équitable, pose cependant des problèmes lors de la préparation des matrices à analyser, ainsi que sur l’interprétation des résultats. Ainsi, il est important d’attirer l’attention des AASQA sur l’examen des résultats issus des essais interlaboratoires. En effet, les résultats obtenus doivent être regardés de façon spécifique en tenant compte des niveaux de concentrations habituellement rencontrés et non uniquement de façon globale. L’analyse robuste des résultats selon les normes NF ISO 13528 et NF ISO 5725-5 sera désormais mise en œuvre sur les prochains essais interlaboratoires organisés par le LCSQA pour les HAP. Il a cependant été constaté qu’en général lors de cet essai, toutes matrices confondues, les écarts-types de reproductibilité (SR) obtenus en réalisant les « analyses robustes » selon les normes NF ISO 13528 et NF ISO 5725-5, sont plus élevés et conduisent à estimer une incertitude élargie plus importante que celle obtenue avec le traitement statistique selon la norme NF ISO 5725-2. De ce fait dans les années à venir une attention toute particulière sera portée à l’interprétation des résultats afin de garantir le suivi historique ainsi que l’évolution des laboratoires. Cependant, par rapport aux années précédentes, une nette augmentation des coefficients de reproductibilité inter laboratoires (CVR) pour les étalons, ainsi que des résultats très médiocres et inexplicables pour les extraits ont également été observés. Les résultats obtenus pour les filtres sont encourageants et respectent pour la plupart d’entre eux les exigences en termes d’incertitudes. Il est donc à signaler une bonne maîtrise des laboratoires sur l’analyse des matrices mettant en œuvre toute la chaîne analytique (extraction, évaporation et analyse) même à de faibles concentrations. De plus, ces résultats satisfaisants ont été obtenus par tous les laboratoires travaillant aussi bien sur des filtres issus des prélèvements haut et bas débit. Une nette amélioration des limites de détection ainsi que des résultats autour des concentrations équivalentes à un prélèvement bas débit est à signaler. Cependant, les résultats obtenus sont moins bons pour des concentrations inférieures au seuil d’évaluation inférieur (0,4 ng/m3). D’une façon générale, les résultats obtenus cette année sont positifs mais des efforts d’optimisation et de validation des méthodes analytiques (changement de solvant, évaporation, identification et quantification des composés…) doivent encore être réalisés par les laboratoires afin de parvenir à des meilleurs résultats sur des matrices telles que les étalons et les extraits, lesquelles devraient normalement donner lieu à des meilleurs résultats que sur des filtres.
Vendredi 30 novembre 2018
Rapport
Suivi du financement du dispositif national de surveillance de la qualité de l’air sur la période 2013-2016
L’article 27 de l’arrêté du 19 avril 2017 relatif au dispositif national de surveillance de la qualité de l’air ambiant dispose que le LCSQA effectue le suivi du coût total du dispositif national de surveillance de la qualité de l’air. Dans ce cadre, ce rapport analyse les évolutions budgétaires du dispositif depuis 2013. Le financement total du dispositif national de surveillance de la qualité de l’air s’élève en 2016 à 71,1 M€ (Tableau 1). Le financement du dispositif présente une hausse de 5,6% sur la période 2013-2016. En 2016, l’Etat finance le dispositif national de surveillance de la qualité de l’air par des subventions à hauteur de 33,2% et par des moindres recettes fiscales via la taxe générale sur les activités polluantes (TGAP) à hauteur de 39,1%. Le financement des AASQA représente 90,7% du financement total de la surveillance de la qualité de l’air en moyenne sur la période 2013-2016 et est en augmentation depuis 2013 (9 %). Néanmoins, cette augmentation tend à ralentir depuis 2015. Le financement du LCSQA représente 8,8% du total en moyenne sur la période 2013-2016 et est en baisse depuis 2013 (-25%) avec une accélération de la tendance à la baisse. Le financement de la mise en œuvre opérationnelle du système Prev’Air est de 345 k€ en moyenne sur la période 2013-2016 et représente 0,5% du financement total de la surveillance de la qualité de l’air entre 2013 et 2016.   En France, la surveillance de la qualité de l’air est obligatoire depuis 1996. Le ministère en charge de l’environnement définit la réglementation relative à la surveillance des polluants atmosphériques et est responsable de la coordination de la surveillance des polluants réglementés dans l’air. Il publie chaque année le bilan national de la qualité de l’air. Le Plan National de Surveillance de la Qualité de l’Air ambiant (PNSQA) définit les orientations organisationnelles, techniques et financières du dispositif national de surveillance de la qualité de l’air sur la période 2016-2021. Les missions confiées par l’Etat aux trois acteurs du dispositif national de surveillance sont définies dans le code de l’environnement et dans l’arrêté du 19 avril 2017 relatif au dispositif national de surveillance de la qualité de l’air. Ces acteurs sont : le Laboratoire Central de Surveillance de la Qualité de l’Air (LCSQA) les 18 Associations Agréées de Surveillance de la Qualité de l’Air (AASQA) le consortium Prev’Air  
Jeudi 22 novembre 2018
Rapport
Veille technologique sur les systèmes micro-capteurs pour les mesures de polluants de l’air ambiant
  Une version actualisée a été publiée en 2019 : consulter la version actualisée   Dans le domaine de la qualité de l’air, les citoyens sont de plus en plus demandeurs d’information en temps réel relatives aux polluants de l’air qu’ils respirent (nature, concentrations, etc.). Ainsi, les nouvelles technologies (internet, réseaux, blogs, vidéos …) permettent un partage d'informations en temps réel. Face à cette pression citoyenne à laquelle s’ajoutent un contexte réglementaire de plus en plus contraignant et un besoin de priorisation des actions et d’exigences de connaissances, une multitude de capteurs à coût réduit, pour certains couplés aux smartphones, permettent un recueil collaboratif des données et une démultiplication des observations afin de pouvoir réaliser un diagnostic rapide de la qualité environnementale. Certains capteurs se sont largement développés et ont été mis en œuvre par les Associations Agréées de la Surveillance de la Qualité de l’Air (AASQA) afin de disposer d’informations en temps réel sur l’évolution des mesures et des expositions humaines ainsi que sur les tendances à court et moyen termes. Ce rapport présente une synthèse de la veille technologique effectuée sur les micro-capteurs. Elle permet de réaliser d’une part, un inventaire aussi exhaustif que possible des micro-capteurs à fin octobre 2018 actuellement disponibles sur le marché ainsi que des techniques mises en œuvre, compte tenu des avancées technologiques et mises sur le marché permanentes de nouveaux appareils. D’autre part, elle a conduit à réaliser un premier recensement des utilisations de ces micro-capteurs par les AASQA. Grâce à cette étude, il a été répertorié de premiers éléments clés qu’un futur utilisateur doit connaître afin de déterminer quel micro-capteur utiliser en fonction de l’usage prédestiné. Dans la poursuite des travaux du LCSQA sur les micro-capteurs en 2018, il a été convenu de développer une base de données sur les micro-capteurs et les expérimentations qui y sont associées afin de permettre aux acteurs du dispositif, un accès simplifié (mise en place de requêtes) aux informations (caractéristiques techniques, retours d’expérience, essais métrologiques, évaluation sur le terrain, etc.) et une mise à jour rapide de la veille technologique. Le but final étant de pouvoir identifier quel capteur serait le mieux adapté pour un usage donné.
Jeudi 23 mai 2013
Rapport
Développement de matériaux de référence pour les métaux (Arsenic, Cadmium, Plomb et Nickel)
Conformément aux recommandations des directives européennes 2008/50/CE et 2004/107/CE, les Associations Agréées de Surveillance de la Qualité de l'Air (AASQA) effectuent régulièrement desprélèvements de métaux dans l'air ambiant sur des filtres qui sont ensuite analysés par des laboratoiresd’analyse.Tous les 2 ans, le LCSQA organise avec ces laboratoires d’analyse des campagnes d'inter comparaison en France au cours desquelles les laboratoires analysent les quatre métaux réglementés (arsenic, cadmium, nickel et plomb) : ·  D'une part, dans des solutions étalons issues d’une minéralisation de filtres impactés : cette étape a pour but de vérifier la partie "analytique" de l'analyse ; ·  D'autre part, directement sur des filtres impactés par des poussières atmosphériques : cette étapepermet de vérifier l'ensemble du processus de mesure, à savoir la partie "prélèvement", la partie "minéralisation" et la partie "analytique" de l'analyse.Dans le cas de l'analyse des solutions étalons, les résultats montrent que certains laboratoires déterminent des masses qui ne sont pas cohérentes avec la masse certifiée fournie par le laboratoire de référence. Cecimontre donc l'importance d'assurer une traçabilité des analyses, par exemple via l’utilisation de matériaux de référence certifiés (MRC) qui présentent l’avantage de pouvoir valider la méthode d’analyse, d’assurer lajustesse, la fidélité et d’établir la traçabilité métrologique des résultats obtenus aux unités internationales, pour pouvoir ensuite comparer les évolutions des concentrations de métaux dans le temps et dans l'espace.Une étude bibliographique ayant permis de mettre en évidence un manque de MRC pour les métaux sur lemarché, le LNE s’est proposé de développer des MRC pour les métaux réglementés. Le développement du Matériau de Référence Certifié (MRC) pour les métaux qui a été finalisé aucours de l’année 2012 a nécessité plusieurs étapes. La première étape a porté sur le choix des particules. Les résultats obtenus dans le cadre de ce projet ont montré que le matériau de cendres d’incinération urbaines envisagé pour la fabrication d’un Matériau de Référence Certifié (MRC) de filtres impactés de poussières s’est révélé être un bon candidat de par sa quantité disponible, la taille de ses particules après tamisage (PM10) et la teneur des 4 éléments réglementés par les directives européennes. La seconde étape a conduit à mettre en place une méthode d’imprégnation des particules sur les filtres en quartz : cette technique s’est avérée bien maîtrisée pour obtenir une bonne homogénéité entre filtres chargés en particules. La troisième étape a consisté à certifier les concentrations des quatre métaux réglementés par la méthode de référence primaire à savoir la dilution isotopique par ICP/MS pour le cadmium, le nickel et le plomb ; la méthode mise en oeuvre pour l’arsenic a été la méthode des ajouts dosés. Enfin, la dernière étape a porté sur l’étude de la stabilité du MRC. Les différents évènements subis par les filtres, tels que des chutes, des chocs thermiques, des transports en avion n’ont pas montré de variation significative des teneurs des 4 métaux réglementés pour la qualité de l’air, ce qui permet de conclure à une bonne stabilité « mécanique » des particules sur les filtres en quartz. De même, les tests de stabilité au cours du temps permettent d’affirmer que les MRC produits sont stables durant au moins deux ans. Une comparaison bilatérale a été menée avec l’EMD sur un jeu de 9 filtres et a permis de conforter les conclusions du LNE concernant les valeurs certifiées, l’homogénéité de la production du lot et la bonne stabilité mécanique des MRC suite à leur acheminement par la poste. En conclusion, cette étude a permis de développer un Matériau de Référence Certifié (MRC) pour l’analyse des métaux réglementés (arsenic, cadmium, nickel, plomb) dans des particules PM10 en suspension dans l’air : il se présente sous la forme de particules contenant des métaux, déposées sur des filtres. Ce MRC est mis à disposition des laboratoires d’analyses afin qu'ils puissent améliorer la qualité des analyses de métaux dans les particules effectuées pour les AASQA en garantissant leur traçabilité aux étalons de référence.
Mardi 18 septembre 2018
Rapport
Rapport d'activité LCSQA 2017
Après une première partie retraçant les faits marquants de l'année 2017, le rapport d'activité présente l'ensemble des démarches mises en oeuvre et les actions réalisées en 2017 pour assurer la coordination du dispositif français de surveillance de la qualité de l'air selon les quatre principales orientations du contrat d'objectif : Assurer la qualité des données de l’observatoire et les adéquations avec les exigences européennes et les besoins de surveillance Assurer la centralisation au niveau national, l’exploitation et la mise à disposition des données produites par le dispositif de surveillance Améliorer les connaissances scientifiques et techniques du dispositif pour accompagner la mise en œuvre des plans d’action et anticiper les enjeux futurs du dispositif Assurer la coordination, l’animation et le suivi du dispositif national de surveillance Le rapport s'achève sur la présentation de l'organisation du LCSQA ainsi que des principaux chiffres clés, des indicateurs et jalons prioritaires.
Vendredi 24 août 2012
Rapport
Surveillance des métaux dans les particules en suspension - Benzène/HAP/Métaux - ETUDE 4/3
La grande majorité des AASQA effectuent depuis 2007 de façon continue ouponctuelle, l’évaluation et la surveillance du Pb, As, Cd et Ni dans les particulesatmosphériques PM10 dans le cadre de l'application des directives européennes (2008/50/CE et 2004/107/CE). Au sein du LCSQA, les objectifs de l'Ecole des Mines de Douai sont d'assurer un rôle de conseil et de transfert de connaissances auprès des AASQA, de procéder à desopérations pour garantir la qualité des résultats, de participer activement aux travaux de normalisation européens et de réaliser une veille technologique sur les nouvellesméthodes de prélèvement et d’analyse susceptibles d’optimiser les coûts. Au cours de l'année 2011, les travaux réalisés dans le cadre du LCSQA ont porté sur les actions suivantes : - Fourniture de filtres vierges en fibre de quartz. Des filtres sont achetés par lots etleurs caractéristiques chimiques sont contrôlées, avant d’être redistribués aux AASQAsur simple demande de leur part. En 2011, 5785 filtres en fibre de quartz (Pall etWhatman) ont été distribués auprès de 21 AASQA différentes. - Participation au comité de suivi « Benzène, métaux, HAP » faisant suite au GT « 4ième directive européenne » : nouveaux polluants » sur la stratégie de mesure de As, Cd, Ni, Pb dans l’air ambiant. - Bilan des mesures de métaux dans les PM10 issues de l’évaluation ou de la surveillance effectué par les AASQA depuis 2005. La quasi-totalité des AASQA (àl’exception d’ORA Guyane) ont entrepris une évaluation préliminaire des teneurs enmétaux réglementés sur leur territoire. Ces mesures sont effectuées principalementsur sites urbains/périurbains (83), industriels (61), trafics (13) ou ruraux (10). Au total,près de 162 sites ont subi une évaluation par l’intermédiaire de mesures indicatives (14% du temps ou plus) ou fixes (50 à 100% du temps) durant la période 2005-2011.Aucun élément ne fait apparaître de dépassements de seuils en moyenne annuellesur l’ensemble des stations mais certains échantillons présentent des valeurs en As, Cd, Ni ou Pb qui excédent les SEI, SES ou valeurs cibles. C’est notamment le cas desmesures en proximité de sites industriels bien que d’autres typologies soient aussiaffectées. - Organisation d'un exercice de comparaison inter-laboratoires (Annexe 1). Cetteannée, 10 laboratoires indépendants ont participé à cet exercice : Laboratoire Carso (Lyon), Ianesco Chimie (Poitiers), Laboratoire départemental de Haute-Garonne (Launaguet), Laboratoire de Rouen (Rouen), Micropolluants Technologie SA (Thionville), Laboratoires des Pyrénées (Lagor), TERA Environnement (Crolles),ISSEP (Liège) et LUBW (ex UMEG) (Allemagne). Les analyses préparatoires réalisées à l'Ecole des Mines de Douai sont inclues dans la présentation des résultats de cet exercice sous la forme d'un dixième laboratoire participant. Nous avons distribué à chaque laboratoire quatre filtres empoussiéréscollectés pendant l’hiver 2010-2011, dont les teneurs en métaux correspondent à un site urbain de fond ainsi que 10 filtres vierges en quartz. Comme en 2009, une solution synthétique et une solution étalon produite à partir de filtres collectés à l’EMDpuis minéralisés et analysés précisément par le Laboratoire National de Métrologie etd’Essais (LNE) ont également été introduites dans l’exercice d’intercomparaison afin de discriminer les erreurs liées à l’analyse proprement dite de celles liées à la phase de minéralisation. Les résultats de cette intercomparaison sont globalement positifs (Annexe 1). Malgré les faibles teneurs contenues sur les filtres empoussiérés, les 10 laboratoires participant ont détecté les quatre métaux présents dans les échantillons impactés surfiltres. De plus, les laboratoires respectent globalement les objectifs de qualité des directives européennes (25 % pour Pb et 40 % pour As, Cd et Ni au niveau desvaleurs cibles) avec des incertitudes moyennes (norme FD-X43-070) de 29% (As), 30% (Cd), 36% (Ni) et 22% (Pb) alors que les concentrations mesurées sont bieninférieures. L’étape de minéralisation représente la plus importante sourced’incertitude, allant jusqu’à 56% selon l’élément considéré. Il faut souligner que six laboratoires ayant participé aux exercices d’intercomparaison en 2005, 2007, 2009 et 2011 ont obtenu de bons résultats pour les quatre élémentsvisés par rapport aux critères de qualité requis, démontrant ainsi une bonne maîtrisesur le long terme de ce type d’analyses. Les résultats obtenus sur les solutions étalons synthétiques (Ech 3) et issues deminéralisation de filtres (Ech 4) sont globalement satisfaisants avec unereproductibilité inter-laboratoires de 3 % pour le Pb et entre 10 et 25% pour l’As, Cd et Ni (norme 5725-2) quelque soit l’échantillon (valeur aberrante en As dans l’Ech 3 dulaboratoire L4 écartée). Les concentrations ne montrent pas de biais systématiques par rapport à la valeur de référence LNE sauf dans le cas du Ni pour l’Ech 4 (-10% enmoyenne). Il ne semble donc pas que la minéralisation des filtres (Ech 4) ait provoqué un effet de matrice important lors de ces essais. Les éléments les plus problématiquesinduisant un écart par rapport à la valeur de référence LNE de plus de 20% pour leséchantillons Ech 3 ou Ech 4 sont dans l’ordre, le Ni (6 laboratoires obtenant un écart de plus de 20%) l’As (4 laboratoires), le Cd (3 laboratoires).
Mercredi 26 mars 2014
Rapport
Surveillance des métaux dans les particules en suspension
En France, une surveillance est effectuée par la plupart des AASQA depuis 2007 de façon continue ou ponctuelle, pour le Pb, As, Cd et Ni dans les PM10 afin de répondre aux directives européennes (2008/50/CE et 2004/107/CE). Les objectifs de Mines Douai, au sein du LCSQA, sont d'assurer un rôle de conseil et de transfert de connaissances auprès des AASQA, de procéder à des travaux permettant de garantir la qualité des résultats, de participer activement aux travaux de normalisation européens et de réaliser une veille technologique sur les nouvelles méthodes de prélèvement et d’analyse susceptibles d’optimiser les coûts tout en respectant les objectifs de qualité.Au cours de l'année 2013, les travaux réalisés dans le cadre du LCSQA ont porté sur les actions suivantes : -  Fourniture de filtres vierges en fibre de quartz. Des filtres sont achetés par lots et leurs    caractéristiques chimiques sont contrôlées, avant d’être redistribués aux AASQA sur simple    demande de leur part. En 2013, 3675 filtres en fibre de quartz (Pall et Whatman) ont été    distribués auprès de 16 AASQA différentes. - Participation au comité de suivi « Benzène, métaux, HAP » sur la stratégie de mesure de   As, Cd, Ni, Pb dans l’air ambiant et au groupe de travail « caractérisation chimique et sources   des PM ». -  Organisation d'un exercice de comparaison inter-laboratoires (Annexe 1). Cette année, 9    laboratoires indépendants ont participé à cet exercice : Laboratoire Carso (Lyon), Ianesco    Chimie (Poitiers), Laboratoire départemental de Haute-Garonne (Launaguet), Laboratoire de    Rouen (Rouen), Micropolluants Technologie (Thionville), Laboratoires des Pyrénées et des    Landes (Lagor), TERA Environnement (Crolles), INERIS (Creil) et LUBW (Allemagne). Les analyses préparatoires réalisées aux Mines de Douai sont inclues dans la présentation des résultats de cet exercice sous la forme d'un dixième laboratoire participant. Nous avons distribué à chaque laboratoire quatre filtres empoussiérés collectés pendant l’hiver 2012-2013, dont les teneurs en métaux correspondent à un site urbain de fond ainsi que 10 filtres vierges en fibre de quartz. Comme en 2011, une solution synthétique et une solution étalon produite à partir de filtres collectés à l’EMD puis minéralisés et analysés précisément par le Laboratoire National de Métrologie et d’Essais (LNE) ont également été introduites dans l’exercice d’intercomparaison afin de discriminer les erreurs liées à l’analyse proprement dite de celles liées à la phase de minéralisation. Un MRC contenant des particules déposées sur filtre produit par le LNE a également été distribué aux participants avec son certificat afin d’évaluer les taux de récupération en métaux lors de la minéralisation des PM10. Les résultats de cette intercomparaison sont globalement positifs (Annexe 1). Malgré les faibles teneurs contenues sur les filtres empoussiérés, les 10 laboratoires participant ont détecté les quatre métaux présents dans les échantillons impactés sur filtres. De plus, les laboratoires respectent globalement les objectifs de qualité des directives européennes (25 % pour Pb et 40 % pour As, Cd et Ni) au niveau des valeurs cibles avec des incertitudes moyennes (norme FD-X43-070) de 28% (As), 31% (Cd), 52% (Ni) et 28% (Pb). L’étape de minéralisation représente la plus importante source relative d’incertitude, comprise entre 43 et 56% de l’incertitude globale selon l’élément considéré. Il faut souligner que six laboratoires ayant participé aux cinq derniers exercices d’intercomparaison ont obtenu de bons résultats pour les quatre éléments visés par rapport aux critères de qualité requis, démontrant ainsi une bonne maîtrise sur le long terme de ce type d’analyses. Les résultats obtenus sur les solutions étalons synthétiques (Ech 4) et issues de minéralisation de filtres (Ech 5) sont globalement satisfaisants avec des écarts par rapport à la médiane inférieurs à 20%. La reproductibilité est de 5% pour le Pb et de 10 à 30% pour les autres métaux pour ces 2 échantillons. On observe un écart sur le dosage du plomb sur les deux solutions étalons pour certains laboratoires. Les écarts par rapport aux valeurs certifiées du MRC sont en moyenne de 7 à 10 % relatif pour As, Cd, Pb et 23% pour Ni. - Analyse des métaux, métalloïdes et éléments majeurs dans des échantillons de PM10 collectés dans le cadre du programme CARA à Nogent sur Oise pendant une année.L’application de traitement statistique (ACP) et de modèles source-récepteur en cours doit permettre l’identification des principales sources de particules affectant la zone (Aérosol secondaire, combustion de biomasse, trafic automobile, aérosol marin, poussière détritique,…). - Etude de faisabilité d’une comparaison inter-laboratoire portant sur les analyses de métaux dans les dépôts atmosphériques. Une CIL portant sur la partie analyse est envisageable sous une forme similaire à celle mise en place pour l’analyse des métaux réglementés dans les PM10. Pour la partie prélèvement fortement dépendante de la géographie et de la météorologie locale, seule une validation station par station permet de répondre aux recommandations de la norme.
Mardi 10 juillet 2018
Rapport
Faisabilité de la mise en œuvre d'un protocole pour l'évaluation en laboratoire de micro-capteurs pour la mesure des concentrations massiques particulaires
Cette note technique rend compte de l’opportunité d’établir un protocole pour la caractérisation métrologique en laboratoire de micro-capteurs pour la mesure indicative des particules. Ce travail sera complété en 2018 pour aboutir le cas échéant à un protocole opérationnel qui prendra en compte les remarques et propositions des utilisateurs et des membres du groupe de travail « Micro-capteurs pour l’évaluation de la qualité de l’air ». Les micro-capteurs constituent, depuis quelques années, des outils émergents qui pourraient par exemple être utilisés pour obtenir des mesures indicatives des polluants gazeux et particulaires réglementés au titre de la Directive européenne 2008/50/CE sur la qualité de l’air [1]. Ces données sont particulièrement intéressantes pour le dispositif national car, en complément des méthodes de référence, ces instruments permettraient une surveillance continue et spatialisée à coût modéré. La Directive 2008/50/CE définit le nombre de points de mesure et le type de méthode à mettre en œuvre par chaque Etat Membre pour la détermination des teneurs en polluants gazeux et particulaires et leur adéquation vis-à-vis des valeurs cibles et limites définies. Pour les particules, si ces niveaux sont inférieurs au seuil d’évaluation supérieur (SES), des mesures indicatives ou par estimation objective peuvent être mises en place. Pour ce type de mesure, il doit être démontré que l’objectif de qualité des mesures présente une incertitude relative élargie inférieure à deux fois celle imposée pour les méthodes de référence. Le guide de démonstration d’équivalence (2010) [2] apporte des précisions sur la méthode à utiliser pour effectuer cette démonstration mais n’indique pas de protocole particulier destiné aux capteurs utilisés pour les mesures de qualité de l’air. Devant ces manques en matière de protocole de caractérisation, un groupe de travail au niveau du Comité Européen de Normalisation (CEN, WG 42 « Gas sensors ») s’est constitué pour travailler sur l’élaboration d’une spécification technique sur la caractérisation des performances des capteurs pour la détermination de la concentration des polluants réglementés dans l’air ambiant (gaz dans un premier temps). Les réflexions de ce groupe de travail s’inspirent des études menées par le JRC [3] depuis 2013, et sont également alimentées par la démarche simplifiée de caractérisation en laboratoire des capteurs de gaz adaptée pour le suivi de la pollution de l’air aux polluants gazeux et particulaires réglementés, sur laquelle le LCSQA travaille depuis 2015 [4].   [1] - Note technique LCSQA Episodes de pollution particulaire de mi-Janvier 2017  - Eléments de compréhension à partir des mesures automatiques (période du 18 au 23 janvier 2017), le 24 Janvier 2017 Olivier Favez - Tanguy Amodéo (INERIS), Ref. INERIS-DRC-17-159637-00915A [2] – Guide to the demonstration of equivalence of ambient air monitoring methods – Jan 2010 - http://ec.europa.eu/environment/air/quality/legislation/pdf/equivalence… [3] - Protocol of evaluation and calibration of low-cost gas sensors for the monitoring of air pollution – L. Spinelle, M. Aleixandre, M. Gerboles, JRC Technical Reports, 2013 [4] - LCSQA n°2200997038 / Validation du protocole métrologique micro-capteurs polluants gazeux réglementaires- N. REDON, F. DELCOURT, S. CRUNAIRE, N. LOCOGE - Mars 2017
Lundi 14 mai 2018
Evénement
Séminaire technique micro-capteurs - 23 novembre 2018