Résultats de la recherche

588 résultats correspondent à INERIS
Jeudi 19 novembre 2020
Rapport
Evaluation de deux Q-ACSM équipés d’une lentille aérodynamique PM2,5
Depuis 2014, le réseau national pour la surveillance de la qualité de l’air s’est équipé d’ACSM (Aerosol Chemical Speciation Monitor).[1],[2] Ces instruments permettent de mesurer en continu la composition chimique des particules (nitrate, ammonium, sulfate, chlore et matière organique) contenu dans la fraction PM1. Depuis, plusieurs années, des travaux sont menés par le constructeur afin de mettre au point des ACSM permettant de mesurer la fraction PM2.5. Ces travaux visent notamment à modifier les lentilles aérodynamiques qui permettent l’échantillonnage des particules dans l’instrument, permettant une comparaison plus directe avec les mesures réglementaires de particules fines. L’Ineris, en tant que membre de l’ACMCC (Aerosol Chemical Monitor Calibration Centre), organise les CIL du réseau européen ACTRIS. Dans ce cadre, et dans le cadre du programme CARA, le LCSQA-Ineris a pu réaliser des tests sur deux ACSM équipés de lentilles aérodynamiques PM2,5, mis à disposition par le LSCE (Laboratoire des Science du Climat et de l’Environnement) et le EPA (Environmental Protection Agency, Irlande), afin de mieux appréhender les performances de ces instruments. Ce rapport reporte deux études menées par le LCSQA-INERIS pour évaluer les performances de deux ACSM équipés de lentilles aérodynamique PM2,5. La première a consisté à mesurer l’efficacité de transmission des lentilles PM2,5 entre 60 et 300nm pour les comparer à celle des lentilles PM1. Un autre test a consisté à comparer les mesures de l’air ambiant obtenues par deux Q-ACSM PM2,5 et d’un Q-ACSM PM1 colocalisés. Les résultats obtenus avec l’ACSM PM2,5 équipé d’un vaporiseur standard semblent confirmer les préconisations du constructeur, à savoir que l’utilisation de lentille PM2,5 doit absolument être couplée à l’utilisation d’un « capture vaporiser ». Les résultats obtenus avec l’ACSM équipé d’une lentille PM2,5 et d’un « capture vaporiser » sont cohérents avec ceux obtenus par l’ACSM PM1 et les mesures PM FIDAS, dans un contexte ou la majorité de la masse de particules étaient réparties dans les gammes de tailles les plus petites entre 100 et 500 nm et ou le rapport PM1/PM2,5 est proche de 1. Associés aux mesures de la transmission des lentilles aérodynamique en dessous de 300nm, ce résultat indique que les pertes dans ces gammes de tailles semblent négligeables. Néanmoins, à ce jour, il reste nécessaire de conduire d’autres études, notamment dans un contexte de plus forte concentration de PM2,5, avant de pouvoir conclure sur l’intérêt de ce type de configuration d’ACSM au sein du dispositif national de surveillance de la qualité de l’air.   [1] Rapport LCSQA 2011 : Méthodologies de détermination de la composition chimique des particules submicroniques en temps réel , O. Favez. [2] Rapport LCSQA 2014 : Description du Programme CARA, O.Favez et E.Leoz-Garziandia     Evaluation of two Q-ACSM equiped with a PM2,5 aerdodynamical lense Since 2014, some French regional air quality monitoring networks have been equipped with ACSM (Aerosol Chemical Speciation Monitor). These instruments allow continuous measurement of the chemical composition of the particles (nitrate, ammonium, sulphate, chlorine and organic matter) contained in the PM1 fraction. Using ACSM to measure the PM2,5 fraction would allow better comparison of ACSM measurements with regulatory ones. For several years, work has been carried out by the manufacturer in order to develop ACSMs allowing this fraction to be measured. This work aims in particular to modify the aerodynamic lenses system which allow the sampling of particles in the instrument. Ineris, as a member of ACMCC (Aerosol Chemical Monitor Calibration Centre), has been organising ACSM Inter-Laboratory Comparisons (ILCs) for the European ACTRIS program. In this context, and within the framework of the CARA program, the LCSQA-INERIS was able to test two ACSMs equipped with PM2,5 aerodynamic lenses, made available by the LSCE (Laboratoire des Science du Climat et de l’Environnement) and the EPA (Environmental Protection Agency, Ireland), in order to better understand the performance of these instruments. The first test aims to compare the PM2.5 lenses transmission efficiencies between 60 and 300 nm to those of PM1 lenses. Another test consisted of comparing the ambient air measurements obtained by two collocated Q-ACSM PM2.5 and a Q-ACSM PM1. Results obtained with ACSM PM2.5 equipped with a standard vaporizer seem to confirm recommendations given by the manufacturer, namely that the use of PM2.5 lenses shall be coupled with the use of a "capture vaporizer". The results obtained with the ACSM equipped with a PM2.5 lens and a "capture vaporizer" are consistent with those obtained by ACSM PM1 and PM FIDAS measurements, in an environment where the majority of the mass of particles were distributed in the smallest size ranges between 100 and 500 nm and the PM1/PM2.5 ratio is closed to 1. Combined with measurements of the aerodynamic lens transmission below 300nm, this result indicates that the losses in these size ranges seem negligible. However, it remains necessary to conduct further studies, especially with higher medium size particle (1-2,5µm) concentrations, in order to conclude on the possible interest of this type of ACSM configuration within regional air quality monitoring networks.
Mardi 28 janvier 2025
Rapport
Comparaison interlaboratoire 2023 pour les polluants gazeux mesurés en laboratoires mobiles
Un exercice de comparaison de moyens de mesures mobiles a été organisé par le LCSQA en mars 2023 sur le site de l’hippodrome de Parilly à Lyon. Il a réuni six participants (5 AASQA et le LCSQA/Ineris) et six moyens mobiles, constituant un parc de 36 analyseurs (12 NO/NOx, 7 SO2, 6 CO et 11 O3). Le déroulement de l’exercice a comporté 2 phases : la première phase consistant en une circulation de gaz étalon en aveugle visant à déceler la cohérence des raccordements entre les niveaux 2 et 3 de la chaîne nationale d’étalonnage et les éventuels défauts de linéarité des appareils et une seconde phase consistant à la réalisation de paliers de dopages pour l’ensemble des polluants. Lors de la circulation de gaz en aveugle, des écarts, par rapport à la tolérance de 4%, critère déduit des CIL inter-laboratoire organisées par le LNE, (5% dans le cas du NO2) sur la lecture de concentrations, sont constatés pour chaque gaz ; ils sont compris entre -29% et +9,6%. Pour certains de ces écarts, les causes ont été identifiées (utilisation du mauvais certificat d’étalonnage du générateur d’ozone ayant servi à l’étalonnage, dérive des analyseurs, problème de linéarité et problème d’étalonnage sur la bouteille NO2, C1). Ces écarts ont été observés immédiatement après l’étalonnage des analyseurs par les AASQA avec leurs propres gaz d’étalonnage de niveau 2 ou 3 (CO, Laboratoire 1 : écart de 8% sur la lecture de la basse concentration mais la lecture de leur propre étalon de CO est correcte ; O3, Laboratoire 3 : utilisation du mauvais certificat d’étalonnage de leur photomètre de référence lors de l’étalonnage ; NO2, Laboratoires 1,2 et 3 : les écarts observés sur la concentration C1 en NO2 sont probablement dus à une erreur lors de l’étalonnage de la bouteille par le LNE). En application de la norme NF ISO 5725-2, les intervalles de confiance de répétabilité et de reproductibilité ont été déterminés pour chaque polluant et les différents niveaux de concentration. On signalera que les valeurs isolées ont été conservées pour la suite du traitement statistique et que les valeurs exclues sont exclues sur avis d’expert avant le début du traitement statistique. L’examen des intervalles de confiance a conduit à des résultats satisfaisants pour les méthodes utilisées en termes de respect des recommandations des Directives Européennes (15 % d’incertitude de mesure aux valeurs limites réglementaires) : Pour le polluant CO, l’intervalle de confiance de reproductibilité est de 6,4 % à la valeur limite sur 8h ; Pour le polluant O3, cet intervalle est de 10,5 % à la valeur limite horaire ; Pour le polluant SO2, cet intervalle est de 9,4 % à la valeur limite horaire ; L’intervalle de confiance de reproductibilité est de 2,7 % à pour le NO et de 4,9 % pour le NO2 aux valeurs limites horaires correspondantes. D’une manière générale, les résultats du traitement statistique, suivant la norme NF ISO 13528 et permettant la détermination des z-scores, sont homogènes et très satisfaisants pour les participants, même si 3 laboratoires affichent un Z-score compris entre 2 et 3. Le Laboratoire 3, quant à lui, se démarque par un total de 18 z-scores compris entre 2 et 3. Ainsi, les z-scores des participants sont donc compris entre +/-2 sauf pour :  Le Laboratoire 1 qui présente un dépassement en O3 (z=2,9) ; Le Laboratoire 6 qui présente un dépassement en NO2 (z=-6,5 sur le palier 1 et z=-4,7 sur le palier 2) ; Ce dernier devra mettre en place des actions préventives afin de résoudre tous les écarts constatés lors de cette comparaison. En effet, un laboratoire dont le score z est supérieur ou égal à 3,0 ou inférieur ou égal à -3,0 donne lieu à un « signal d’action », nécessitant une action corrective. Un score z supérieur à 2,0 ou inférieur à -2,0 donne lieu à un signal d’avertissement, nécessitant une surveillance ou une action préventive.   interlaboratory comparison 2023 for gaseous pollutants measured in mobile laboratories An exercise to compare mobile measuring equipment was organised by the LCSQA in Mars 2023 at the Parilly racecourse in Lyon. It brought together 6 participants (5 Air Quality Monitoring Associations (AASQA) and the LCSQA/Ineris) and 6 mobile measuring devices, making up a fleet of 36 analysers (12 NO/NOx, 7 SO2, 6 CO and 11 O3). The exercise was carried out in 2 phases: the first phase consisted of a blind circulation of standard gas aimed at detecting the consistency of the connections between levels 2 and 3 of the national calibration chain and any linearity faults in the equipment, and the second phase consisted of carrying out spiking stages for all the pollutants. During blind gas circulation, deviations from the tolerance of 4% (5% in the case of NO2) on concentration readings were observed for each gas; they ranged from -29% to +9.6%. The causes of some of these discrepancies have been identified (use of the wrong calibration certificate for the ozone generator used for calibration, analyser drift, linearity problem and calibration problem on the NO2 cylinder, C1). These discrepancies were observed immediately after the analysers had been calibrated by the AASQAs with their own level 2 or 3 calibration gases (CO, Laboratory 1: 8% discrepancy on the low concentration reading but the reading of their own CO standard is correct; O3, Laboratory 3: use of the wrong calibration certificate for their reference photometer during calibration; NO2, Laboratories 1, 2 and 3: the discrepancies observed on the C1 NO2 concentration are probably due to an error when the cylinder was calibrated by LNE). In accordance with standard NF ISO 5725-2, repeatability and reproducibility confidence intervals were determined for each pollutant and the different concentration levels. It should be noted that the isolated values were retained for further statistical processing and that the excluded values were excluded on the basis of expert opinion before the statistical processing began. Examination of the confidence intervals produced satisfactory results for the methods used in terms of compliance with the recommendations of the European Directives (15% measurement uncertainty at the regulatory limit values): - For the CO pollutant, the reproducibility confidence interval is 6.4% at the 8h limit value; - For the O3 pollutant, this interval is 10.5% at the hourly limit value; - For the SO2 pollutant, the interval is 9.4% at the hourly limit value; - The reproducibility confidence interval is 2.7% for NO and 4.9% for NO2 at the corresponding hourly limit values. Generally speaking, the results of statistical processing, in accordance with standard NF ISO 13528 and enabling z-scores to be determined, were homogeneous and very satisfactory for the participants, even though 3 laboratories had a z-score between 2 and 3. Laboratory 3 stood out with a total of 18 z-scores between 2 and 3. The participants' z-scores were therefore between +/-2 except for: - Laboratory 1, which had an O3 exceedance (z=2.9); - Laboratory 6, which has an NO2 exceedance (z=-6.5 on Tier 1 and z=-4.7 on Tier 2). This laboratory will have to take preventive action to resolve all the discrepancies observed during this comparison. A laboratory with a z-score greater than or equal to 3.0 or less than or equal to -3.0 gives rise to an ‘action signal’, requiring corrective action. A z-score greater than 2.0 or less than -2.0 gives rise to a warning signal, requiring monitoring or preventive action.
Mardi 19 février 2019
Rapport
Intercomparaison de moyens mobiles – INERIS 2018
La directive européenne 2008/50/CE du 21 mai 2008 dédiée à la qualité de l’air appelle au respect de valeurs limites ou valeurs cibles, en leur associant une exigence en termes d’incertitude maximale sur la mesure. Les associations agréées de surveillance de la qualité de l'air (AASQA) sont tenues de participer aux essais d'intercomparaison (destinées aux organismes agréés de surveillance de la qualité de l’air) mis en place dans le cadre du Laboratoire Central de Surveillance de la Qualité de l'Air (article 9 de l’arrêté du 21 octobre 2010). Dans l’objectif de vérifier le respect des exigences de la directive européenne 2008/50/CE, le LCSQA propose annuellement aux AASQA une intercomparaison de moyens mobiles pour les polluants SO2, O3, NO, NO2 et CO à différents niveaux de concentration et tout particulièrement au voisinage des seuils horaires d’information ou d’alerte pour les polluants NOx, O3, SO2, et de la valeur limite sur 8h pour le CO. Un exercice d’intercomparaison de moyens de mesures mobiles a été réalisé en mars 2018 sur le site de l’INERIS à Verneuil en Halatte. Il a réuni 5 participants (4 AASQA et le LCSQA/INERIS) et 6 moyens mobiles (Atmo Haut de France, venu avec 2 moyens mobiles et 1 personne par moyen mobile, a tenu à ce que ses moyens mobiles soient considérés comme indépendant) constituant un parc de 39 analyseurs. Les résultats de cette intercomparaison permettent d’évaluer la qualité de mise en œuvre des méthodes de mesures par les AASQA en conditions réelles. Ce type d’exercice permet d’identifier des dysfonctionnements comme celui rencontré par le Laboratoire 6 qui reste cependant un cas isolé. L’exercice a permis de détecter un problème sur une tête de prélèvement dont l’influence a été mise en évidence avec l’ozone. Une suspicion d’influence de la tête serait à préciser dans le cas du SO2. D’une manière générale, les résultats du traitement statistique suivant la norme NF ISO 13 528 et permettant la détermination des z-scores sont homogènes et très satisfaisants pour les participants, malgré leur faible nombre. Tous les z-scores sont compris entre ±2 sauf pour le Laboratoire 4 qui a un z-score de 2,1 sur le palier 4 du NO. On notera que depuis 2008, les résultats obtenus en termes d’incertitude de mesure sont conformes aux exigences de la Directive Européenne et confirment dans la durée la fiabilité du système de mesure national.  
Actualité
Nouvelles zones de surveillance de la qualité de l’air : présentation au Conseil National de l’Air - 28 mai 2025
Le LCSQA a présenté le futur zonage de la surv
Actualité
Réunion technique d’experts européens sur la normalisation des méthodes de caractérisation de la qualité de l’air – 18 et 19 juin 2024
L’IMT Nord Europe et l'Ineris, en tant que membres du LCSQA, ont participé avec l’AFNOR à la réunion annuelle du CEN TC 264 "Qualité de l’air" organisée par le VDI* à Düsseldorf (Allemagne).
Mercredi 2 février 2022
Rapport
Tests d’une méthode d’analyse LC/MS/MS du glyphosate et ses métabolites sans dérivation et extension au fosétyl-al
Le glyphosate, son produit de dégradation l’acide aminométhylphosphonique (AMPA) et le glufosinate font partie de la liste des substances cibles de la campagne nationale exploratoire sur les pesticides (CNEP) réalisée par l’Anses, le réseau des AASQA et l’Ineris en tant que membre du LCSQA, entre juin 2018 et juin 2019. Le fosétyl-Al quant à lui est un composé polaire dont l’analyse dans l’air ambiant reste encore peu maîtrisée. Ainsi, l’objectif de ces travaux était de tester une nouvelle méthode d’analyse permettant d’analyser simultanément l’ensemble de ces 4 composés, par chromatographie liquide couplée à un spectromètre de masse, sans nécessité de passer par une étape de dérivation. La méthode développée en LC/MS2 par le LCSQA-Ineris met en œuvre une colonne de chromatographie en mode mixte à interaction hydrophile (HILIC) et d’échange anionique faible (WAX : weak anion exchange). Cette méthode permet de s’affranchir de l’étape de dérivation, d’injecter en direct l’extrait, et d’atteindre des LQ de 50 pg/mL pour le glufosinate, l’AMPA et le fosétyl-Al, et de 100 pg/mL pour le glyphosate. Ces essais ont également permis de mettre en évidence que l’extraction des filtres quartz pouvait être réalisée aussi bien par de l’eau ultrapure acidifiée pH2 (0,9% d’acide formique) (EMQ pH2) que par de l’eau ultrapure (EMQ). Cette méthode permet à la fois de faciliter le traitement d’échantillon et de réduire le temps et le coût d’analyse. Les rendements d’extraction obtenus, quel que soit le milieu d’extraction choisi (EMQ ou EMQ pH2), sont supérieurs à 94% pour l’ensemble des composés. Les performances de la méthode d’analyse sont les suivantes :   LQ LC/MS2 (pg/mL) Rendement Extraction (%) LQ méthode (ng) DA 80 -24H LQ (ng/m3) DA 80-48H LQ (ng/m3) Partisol LQ (ng/m3)     EMQ EMQ pH2           Glyphosate 100 99 100 5 0,007 0,003 0,030   AMPA 50 101 115 2,5 0,004 0,002 0,015   Glufosinate 50 100 101 2,5 0,004 0,002 0,015   Fosétyl-Al 50 98 98 2,5 0,004 0,002 0,015     Volume d’air prélevé 720 m3 1440 m3 168 m3     Durée du prélèvement 24h 48h 1 semaine                           Les résultats de l’étude de stabilité des extraits de filtres quartz conservés à +4°C pendant 14 jours, montrent que le glyphosate, l’AMPA, le glufosinate et le fosétyl-Al sont stables dans l’extrait acidifié. Concernant les extraits aqueux, les 4 composés sont stables 14 jours, avec une légère perte pendant les 7 derniers jours de stockage à +4°C, autour de 10 %, pour la teneur la plus basse (168 ng) en glyphosate.     Testing of a LC/MS/MS method of analysis of glyphosate and its metabolites without derivatization and extension to fosetyl-al   Glyphosate, its degradation product aminomethylphosphonic acid (AMPA) and glufosinate are part of the list of target substances of the national exploratory campaign on pesticides (CNEP) carried out by ANSES, the AASQA network and Ineris as member of LCSQA, between June 2018 and June 2019. Fosetyl-Al is a compound whose analysis in ambient air remains poorly documented. Thus, the objective of this work was to test a new analytical method to analyze simultaneously these 4 compounds, without the need to derivatize glyphosate and other compounds, by liquid chromatography coupled to a mass spectrometer. The method developed in LC / MS2 by LCSQA-Ineris shows that the use of a mixed mode chromatographic column with hydrophilic interaction (HILIC) and weak anion exchange (WAX: weak anion exchange), enables to by-pass the derivatization step, to inject directly the extract, and to achieve LOQs of 50 pg / mL for glufosinate, AMPA and fosetyl-Al and of 100 pg / mL for glyphosate. These tests also demonstrated that the extraction of the quartz filters could be carried out both by acidified ultrapure water pH2 (0.9% formic acid) (EMQ pH2) and by ultrapure water (EMQ). This method facilitates sample processing and reduces the time and the cost of analysis. The extraction yields obtained, regardless of the medium chosen (EMQ or EMQpH2), are greater than 94% for the 4 compounds. The performances of the analytical method are as follows:   LoQ LC/MS2 (pg/mL) Extraction efficiency (%) LoQ méthod (ng) DA 80-24H LoQ (ng/m3) DA 80-48H LoQ (ng/m3) Partisol LoQ (ng/m3)     EMQ EMQ pH2         Glyphosate 100 99 100 5 0,007 0,003 0,030 AMPA 50 101 115 2,5 0,004 0,002 0,015 Glufosinate 50 100 101 2,5 0,004 0,002 0,015 Fosetyl-Al 50 98 98 2,5 0,004 0,002 0,015   Air volume sample 720 m3 1440m3 168 m3   Sampling time 24h 48h 1 week                     The results of the stability study of extracts from quartz filters stored at + 4 ° C for 14 days, show that glyphosate, AMPA, glufosinate and fosetyl-Al are stable in acidified extract. Regarding the aqueous extracts, the 4 compounds are stable for 14 days, with a slight loss during the last 7 days of storage at + 4 ° C, around 10%, for the lowest content (168 ng) of glyphosate
Actualité
25 ans de l’observatoire atmosphérique SIRTA : le LCSQA et l’Ineris participent au colloque anniversaire
A l'occasion des 25 ans de
Mercredi 20 juillet 2011
Rapport
Surveillance du benzène : Développement de cartouches de référence de Carbograph 4, de Carbograph B et de Carbopack X pour les BTEX
Les  Matériaux  de  Référence  (MR)  permettent  d’assurer  la  traçabilité  des  mesures  et  de valider les méthodes analytiques. Or, actuellement, il n’existe pas de matériaux de référence,en  France,  disponibles  pour  la  mesure  du  benzène,  du  toluène,  de  l'éthylbenzène  et  des xylènes (BTEX) en air ambiant par prélèvement sur cartouches de Carbograph 4, Carbopack B et Carbograph X.  C’est pourquoi le LNE a proposé de développer une méthode de chargement de cartouches en BTEX à partir d’un matériau de référence gazeux en bouteille, afin de pouvoir disposer de cartouches de référence qui pourront être ensuite utilisées notamment pour l'étalonnage des systèmes analytiques et pour l’évaluation des performances des laboratoires à l’analyse des prélèvements de BTEX sur cartouches.  L'objectif final est de disposer des tubes chargés suivants :   des échantillonneurs actifs de type Carbopack X chargés en BTEX, des échantillonneurs passifs de type Radiello  – Carbograph 4 chargés en BTEX, des échantillonneurs passifs de type Perkin-Elmer – Carbopack B chargés en BTEX. L'étude  menée  en  2010  a  porté  dans  un  premier  temps  sur  le  développement  de  la méthode    d'analyse    des cartouches  chargées en BTEX avec le nouveau chromatographe en phase gazeuse ATD 350 / Clarus 600 (Perkin-Elmer). Après mise en place  et  optimisation  des  paramètres  et  des  conditions  opératoires,  les  performances métrologiques  de  la  méthode  d'analyse  des  cartouches  chargées  en  BTEX  ont  été déterminées sur ce nouvel appareil. Les  premiers  essais  de  répétabilité  et  de  linéarité  ne  conduisaient  pas  à  des  résultats satisfaisants.Cependant, grâce aux modifications apportées au système de prélèvement et à la correction de la valeur de la longueur de la  colonne paramétrée dans le Clarus 600, la répétabilité et la linéarité ont été significativement améliorées et correspondent à notre cahier des charges : la répétabilité est inférieure à 1% et le coefficient de linéarité (R2) est supérieur à 0,999.  Dans un second temps, des essais ont été effectués pour déterminer la justesse de la méthode et pour pouvoir valider l'ensemble du processus (chargement et analyse). Ces essais  ont  consisté  à  analyser  des  cartouches  chargées  en  BTEX  par  le  NPL.  Les  essais réalisés montrent des écarts significatifs entre les masses de BTEX certifiées par le NPL et les masses analysées par le LNE (de l'ordre de 10%). Des essais complémentaires menés au LNE n'ont pas permis d'apporter des explications aux écarts observés entre le NPL et le LNE. Pour poursuivre les investigations, le LNE s'est proposé d'impliquer deux autres laboratoires, à savoir le Laboratoire Interrégional de Chimie du réseau de surveillance de la qualité de l'air en  Alsace  (GIE-LIC)  et  l'Institut  National  de  l'Environnement  Industriel  et  des  Risques (INERIS). Des tubes chargés par le LNE ont été analysés par le NPL, par l'INERIS et le GIE-LIC et des tubes chargés par le NPL ont été analysés par l'INERIS et le GIE-LIC.Concernant  les  tubes  chargés  par  le  LNE,  les  résultats  obtenus  montrent  des  masses analysées par le NPL plus faibles que les masses chargées du LNE pour tous les composés avec  des  écarts  relatifs  allant  de  3%  pour  le  benzène  à  10%  pour  les  xylènes,  ce  qui confirment bien ceux obtenus précédemment. Par contre, les écarts obtenus entre les masses chargées  du  LNE  et  celles  analysées  par  l'INERIS  et  le  GIE-LIC  sont  faibles  (globalement inférieurs à 5 %) par rapport à ceux obtenus entre le LNE et le NPL (de l'ordre de 10 %).Concernant  les  tubes  chargés  par  le  NPL,  il  est  constaté  des  écarts  importants  entre  les masses chargées fournies par le NPL et celles analysées de l’INERIS et du GIE-LIC : ces écarts sont globalement de 10 %, comme ceux constatés entre le LNE et le NPL.Ces essais tendaient donc à montrer que le problème se situait au niveau du NPL. Les différents résultats ont été rapidement communiqués au NPL qui a effectué lui-même un certain nombre de vérifications. A la suite des recherches menées, il s'est avéré qu’ils appliquaient une double correction de la température  sur  le  débit  du mélange  gazeux  passant  à  travers  les  cartouches lors du chargement.  Le  NPL  a  déterminé  que  l'application  de  cette  double  correction  induisait  un écart de 8 à 11% sur les masses chargées. A la suite de ces investigations, dans le cas des tubes chargés par le NPL, les écarts relatifs ont été recalculés entre les masses chargées corrigées du NPL et les masses analysées de l’INERIS et du GIE-LIC : ces calculs conduisent à des valeurs globalement inférieures à 5 %. Les différents essais réalisés ont donc conduit à identifier la cause du problème au niveau du NPL. La correction de ce problème a permis d'obtenir des résultats cohérents entre le NPL, le LNE,  l'INERIS  et  le  GIE-LIC  au  vu  des  incertitudes  :  il  est  à  noter  que  le  NPL  donne  une incertitude de 5 % sur ses masses chargées de BTEX sur cartouches.   Suite  aux  explications  fournies  par  le  NPL,  il  est  prévu  pour  début  2011  de  réaliser  de nouveaux chargements de cartouches au LNE et de les faire analyser par le NPL ; de même, le  NPL  propose  de  remplacer  les  tubes  que  nous  avions  achetés  par  de  nouveaux  tubes chargés en BTEX que le LNE analysera et comparera à des tubes chargés du LNE. L'objectif de ces essais est de finaliser la validation de l'ensemble du processus de mesure comprenant le chargement et l'analyse de  cartouches de BTEX développé par le LNE en 2010 dans le cas des 3 adsorbants (Carbopack X, Carbograph B et Carbograph 4). Les AASQA effectuent régulièrement des prélèvements de BTEX dans l'air ambiant sur des échantillonneurs actifs ou passifs qui sont ensuite analysés par des laboratoires d’analyse. En  2011,  le  LNE  propose  d'organiser  un  exercice  d'intercomparaison  qui  consistera  à  faire analyser par ces laboratoires, des tubes de Carbopack X, de Carbograph 4 et de Carbograph B chargés en BTEX.Deux séries de tubes devront être analysées par les laboratoires. Le LNE réalisera le chargement de cartouches par voie gazeuse à partir de mélanges gazeux de référence gravimétriques du LNE en mettant en œuvre la méthode développée au cours de l'année 2010.  Afin de mimer au mieux un prélèvement passif et de fournir aux laboratoires des matériaux d’essais  aussi  proches  que  possible  de  tubes  prélevés  par  diffusion,  des  tubes  seront exposés dans la chambre d’exposition de l’INERIS à une concentration  constante, maîtrisée et contrôlée (par analyseur en continu) de BTEX.
Jeudi 20 février 2025
Rapport
Comparaison d'une méthode automatique d'analyse de métaux dans l'air à la méthode de référence
Le dispositif national de surveillance de la qualité de l’air s’est équipé depuis 2022 d’analyseurs automatiques de métaux. Dans ce contexte, le LCSQA accompagne le déploiement de ces instruments, en travaillant à la mise en place de méthodes de validation des données et à une harmonisation au niveau national des mesures et des pratiques des Associations agréées de surveillance de la qualité de l’air (AASQA). Dans ce cadre, une campagne de mesures comparatives d’un mois a été réalisée entre deux analyseurs d’éléments-traces métalliques dans les aérosols par fluorescence X (Xact625i Cooper) et un prélèvement sur filtre selon la méthode de référence. Cette campagne a été réalisée à Strasbourg par l’IMT Nord Europe, Atmo Grand Est et l’Ineris et avait pour but d’évaluer la performance de l’Xact625i dans des conditions de faibles concentrations en éléments-traces métalliques. Les résultats montrent que pour les éléments Ag, Bi, Cd, Co, Cs, Hg, La, Mo, Ni, Pd, Sb, Sn et Tl, les concentrations étaient trop basses pour être détectées convenablement. Les mesures des éléments Cu, Mn, Pb, Rb, Se, Sr et V concordent avec la méthode de référence, tandis que celles d'Al, As, Ba, Ca, Cr, Fe, K, Si, Ti et Zn demandent plus de précautions lors de l’interprétation. En outre, les éléments Br et Cl montrent une bonne répétabilité entre les Xact625i, mais n’ont pas été comparés aux filtres car ils ne sont pas quantifiables par spectrométrie de masse par plasma à couplage inductif (ICP-MS). Les écarts observés pour As et Zn pourraient indiquer une contamination de la bande de prélèvement, ce qui nécessiterait des analyses ICP-MS complémentaires. La poursuite des échanges dans le groupe utilisateurs (GU « Fluo X ») et la rédaction d’un guide technique, déjà amorcée à l’échelle européenne, dans le cadre du projet européen RI URBANS, sont recommandées pour harmoniser les pratiques.      
Actualité
Visite d'Hawa Mayotte
Ce lundi 26 juin, Le LCSQA a eu le plaisir d'accueillir au sein des locaux d'Ineris la nouvelle Présidente d'Hawa Mayotte,