Résultats de la recherche

588 résultats correspondent à INERIS
Lundi 21 décembre 2020
Rapport
Stratégie de surveillance nationale de la concentration en nombre totale des particules (ultra)fines
  Référentiel technique national Ce document fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air ambiant. Il a été approuvé en CPS (comité de pilotage de la surveillance) du 15 décembre 2020. Mise en application : 1er janvier 2021         La note « Stratégie de surveillance nationale de la concentration en nombre totale des particules (ultra)fines » propose des éléments d’orientation de la stratégie de surveillance de la concentration en nombre des particules fines (PNC), majoritairement constituées de particules ultrafines (PUF), au sein du dispositif national. Il apparait primordial que les mesures issues de cette surveillance soient homogènes et comparables sur l’ensemble du dispositif national et, à plus long terme, avec les données recueillies par les autres Etats Membres. Une généralisation de la mesure de la distribution granulométrique en nombre des particules fines (dont les PUF) semble à ce jour prématurée, étant donné i) qu’aucun dispositif commercial disponible actuellement sur le marché ne permet de répondre strictement aux préconisations de la spécification technique CEN/TS 17434 (en cours de parution), qui détaille la configuration instrumentale optimale requise pour ce type de mesure ; et ii) que les discussions avec les acteurs sanitaires n’ont pas permis de statuer sur la pertinence avérée d’une surveillance de la concentration en nombre selon une gamme de taille précise et liée aux mesures de la distribution granulométrique en nombre. Ainsi, il est proposé à ce stade de privilégier la mesure de la concentration totale en nombre des particules fines à l’aide de CNC (compteurs à noyaux de condensation) répondant aux spécifications décrites dans la spécification technique CEN/TS 16976. Les sources primaires d’émission des PUF étant souvent similaires à celles des NOx, la stratégie proposée ici est tout d’abord inspirée de celle de la surveillance du NO2. Compte-tenu des équipements déjà disponibles, un premier objectif d’une vingtaine de sites équipés de CNC (conformes aux spécifications techniques de la CEN/TS 16976) semble un minimum requis à l’horizon fin 2021-début 2022 pour alimenter à court-terme les réflexions sur le volet sanitaire. A moyen terme, un parc instrumental d’environ 50 CNC répartis sur l’ensemble du territoire permettrait d’atteindre environ 10% du nombre total de stations actuellement équipées pour la mesure réglementaire du NO2. Afin d’alimenter les travaux sur les impacts sanitaires des PUF sur la base de jeux de données aussi complets que possible, il est notamment recommandé de combiner des mesures du PNC avec des mesures automatiques de carbone suie et/ou des composés chimiques majeurs au sein des particules fines sur l’ensemble des sites multi-instrumentés du programme CARA (https://www.lcsqa.org/fr/le-dispositif-cara). Ces éléments d’orientation stratégique pourront également être ajustés en fonction des développement métrologiques proposés par les constructeurs, ainsi que d’éventuelles futures recommandations de la part des autorités sanitaires.   National monitoring strategy for (Ultra)fine particles total number concentration This note proposes guiding elements for the monitoring strategy for the particles number concentration (PNC), mainly consisting of ultrafine particles (UFP), within the national system. It appears essential that the measures resulting from this monitoring be homogeneous and comparable across the entire national system and, in the longer term, with the data collected by other Member States. A generalization of the measurement of the particle size distribution in number of fine particles (including PUFs) seems to date premature, given i) that no commercial device currently available on the market makes it possible to strictly meet the recommendations of the technical specification CEN / TS 17434 (in press), which details the optimal instrumental configuration required for this type of measurement; and ii) that the discussions with the health actors did not make it possible to rule on the proven relevance of monitoring the number concentration according to a precise size range and linked to the measurements of the particle size distribution in number. Thus, it is proposed at this stage to favor the measurement of the total number concentration of fine particles using CPC (condensation Particles counters) meeting the specifications described in technical specification CEN / TS 16976. Since the primary sources of UFP emissions are often similar to those of NOx, the strategy proposed here is first of all inspired by that of NO2 monitoring. Taking into account the equipment already available, an initial objective of around twenty sites equipped with CPC (in accordance with the technical specifications of CEN / TS 16976) seems a minimum required by the end of 2021-beginning of 2022 to supply short- end the reflections on the health component. In the medium term, an instrument park of around 50 CPCs distributed throughout the country would make it possible to reach around 10% of the total number of stations currently equipped for the regulatory measurement of NO2. In order to feed the work on the health impacts of UFPs on the basis of data sets as complete as possible, it is in particular recommended to combine measurements of the PNC with automatic measurements of carbon soot and / or major chemical compounds within fine particles on all the multi-instrumented sites of the CARA program (https://www.lcsqa.org/fr/le-dispositif-cara). These elements of strategic orientation may also be adjusted depending on the metrological developments proposed by the manufacturers, as well as any future recommendations from the health authorities.
Vendredi 18 décembre 2020
Rapport
Guide méthodologique pour la mesure du « Black Carbon » par Aethalomètre multi longueur d’onde AE33 dans l’air ambiant (version2020) - Obsolète
  Référentiel technique national Ce document fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air ambiant. Il a été approuvé en CPS (comité de pilotage de la surveillance) du 15 décembre 2020. Mise en application : 15 décembre 2020     Ce document constitue la mise à jour du guide méthodologique LCSQA paru en 2018, relatif à l’utilisation de l’aéthalomètre multi-longueurs d’onde AE33 fabriqué par « Magee Scientific » en air ambiant. Cet instrument permet la mesure des concentrations de carbone suie (ou Black Carbon, BC), émis par les sources de combustion. Ce guide méthodologique ne constitue pas un mode opératoire ou un manuel d’utilisation. Le lecteur est invité à se reporter au manuel fourni par le distributeur pour les informations relatives au fonctionnement de l’instrument lui-même. Ce document s’attache à recenser les bonnes pratiques, les fréquences de maintenance, les différentes étapes inhérentes à la validation des données ainsi que les méthodes d’exploitation des données à travers notamment l’utilisation d’un modèle d’estimation des sources reliées aux combustions de biomasse ou de carburant fossile. Il a été rédigé sur la base des documents des constructeurs, des échanges avec le distributeur, de l’état de l’art scientifique. Il s’appuie aussi sur les retours d’expérience des utilisateurs des AASQA, émis notamment lors des réunions LCSQA du « Groupe Utilisateur AE33 » et du « Groupe de travail du programme CARA ». Enfin, il intègre les retours des séminaires techniques à destination des associations agrées pour la surveillance de la qualité de l’air (AASQA), organisées conjointement avec le constructeur, le distributeur français et le LCSQA. Ce guide pour l’utilisation des AE33 pourra être remis à jour en fonction des retours d’expériences des utilisateurs, des préconisations du constructeur ou des avancées de l’état de l’art scientifique.
Vendredi 18 décembre 2020
Rapport
Guide méthodologique pour le contrôle des paramètres critiques pour la mesure des analyseurs automatiques de PM
  Référentiel technique national   Ce guide fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air ambiant. Il a été approuvé en CPS (comité de pilotage de la surveillance) du 15 décembre 2020. Mise en application : 15 décembre 2020     L’objectif du présent document est de compléter les exigences de la norme NF EN 16450 « Air ambiant - Systèmes automatisés de mesurage (AMS) de la concentration de matière particulaire (PM10 ; PM2,5) » d’avril 2017 concernant le contrôle des paramètres dits « critiques » (c’est-à-dire ayant une influence majeure sur le résultat de mesure). La norme privilégie la température ambiante, la pression ambiante, l’humidité relative ambiante et le débit total de prélèvement. Il s’agit essentiellement de recommandations (voire de points de vigilance essentiels) pour chaque type d’appareil de mesure automatique (AMS) utilisé par les Associations Agréées pour la Surveillance de la Qualité de l’Air (AASQA) pour la surveillance réglementaire des particules en suspension. Si ce complément aux guides méthodologiques du RTN (Référentiel Technique National) s’appuie sur les critères d’exigence de la norme NF EN 16450, il est cependant possible de privilégier les exigences spécifiées par le constructeur pour les AMS déployés dans le réseau national de surveillance de la qualité de l’air avant la parution de cette norme. Pour certains AMS, le critère d’action fixé par le constructeur peut s’avérer moins exigeant que celui de la norme tout en permettant d’assurer a priori la bonne qualité des mesures. En effet, le suivi réalisé par le LCSQA de l’équivalence des AMS par rapport à la méthode gravimétrique de référence (selon la norme NF EN 12341 « Air ambiant - Méthode normalisée de mesurage gravimétrique pour la détermination de la concentration massique PM10 ou PM2,5 de matière particulaire en suspension » en vigueur) permet de vérifier le respect de l’objectif de qualité des données qui en terme d’incertitude relative des AMS doit être ≤ 25 % au niveau de la valeur limite journalière (Tableau 1 du chapitre 7.2 de la norme NF EN 16450). Ce document est intégré au RTN, les exigences associées se substituent à celles des guides méthodologiques spécifiques à chaque AMS dans l’attente de leur révision. Les révisions à venir des guides méthodologiques spécifiques à chaque type d’AMS s’appuieront également sur le retour d’expérience des AASQA dans la mise en œuvre des présentes recommandations.
Jeudi 17 décembre 2020
Rapport
Guide méthodologique validation des données de mesures à analyse différée
  Référentiel technique national Ce guide fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air ambiant. Il a été approuvé en CPS (comité de pilotage de la surveillance) du 24 septembre 2020. Mise en application : 1er janvier 2021     Ce document participe à la mise à jour du guide sur la validation et l’agrégation des données (ADEME, 2003). Ce dernier est désormais séparé en deux parties, l’une sur l’agrégation des données et l’autre sur la validation des données. La partie consacrée à l’agrégation des données a fait l’objet de travaux spécifiques en 2013/2014 et est actuellement abordée dans un document spécifique . La partie portant sur la validation des données est quant à elle divisée en deux sous-parties : •           L’une traitée en 2014-2015 dans le cadre d’un groupe de travail organisé au sein de la Commission de Suivi « Mesures automatiques » et qui porte sur la validation des données de mesures automatiques  ; •           L’autre traitée dans le cadre d’un groupe de travail organisé au sein de la Commission de Suivi « Benzène, HAP et métaux lourds » et qui porte sur la validation des données de mesures à analyse différée des polluants HAP, benzène, métaux lourds, NO2, et la spéciation des PM2.5 ; ces travaux font l’objet du présent document. Note : compte-tenu du constat actuel de l’absence de surveillance du mercure dans les dépôts en France, ce polluant n’est pas repris dans ce guide. Sa mesure dans les dépôts doit donc se conformer aux termes de la norme NF EN 15853 (Qualité de l’air ambiant – Méthode normalisée pour la détermination des dépôts de mercure). L’objectif principal de ce guide est de fournir aux acteurs de la qualité de l’air les informations nécessaires pour la validation et l’expertise des données issues de mesures à analyse différée afin de garantir le niveau de qualité souhaité ou exigé des informations produites par les Associations Agréées de la Surveillance de la Qualité de l’Air (AASQA) et d’harmoniser les pratiques au niveau national. Il explicite les prérequis et les connaissances que doivent maîtriser les personnes habilitées pour pouvoir effectuer la validation et l’expertise des données. Il détaille les différentes étapes du processus de validation et d’expertise. A partir de ces éléments généraux, ce guide décline également les règles et critères de validation et d’expertise applicables aux différents types de polluants à analyse différée couverts par la réglementation en vigueur.
Jeudi 26 janvier 2017
Rapport
Contrôle métrologique des analyseurs de mercure gazeux Tekran
Le LCSQA propose depuis 2012, deux types d’actions : de réaliser une série de contrôles métrologiques des analyseurs de mercure en laboratoire afin de vérifier leur bon fonctionnement et les qualifier au regard d’une série de tests définis, de procéder à des essais d’intercomparaison en laboratoire et en situation de terrain afin de déterminer et vérifier le respect de l’exigence de la Directive Européenne en matière d’incertitude de mesures. Les tests de linéarité (gamme 0-300 ng/m3), de dérive sur 7 jours (concentration stabilisée voisine de 50 ng/m3), de sensibilité à la variation de température (10°C ;-22°C ;-35°C) et de sensibilité à l’humidité (de 10% à 65%) ont été réalisés en laboratoire en septembre 2016 sur les analyseurs Tekran de Atmo Auvergne- Rhône-Alpes, Air Normand ainsi que sur 2 analyseurs du LCSQA/INERIS. Ils ont permis de constater que : les analyseurs Tekran sont linéaires le phénomène de dérive semble dépendre de la série de fabrication de l’analyseur (entre 2,6% et 3,4% pour la version A, 1%> pour la version B et de l’ordre de 6% pour la version X sur 7 jours). Dans ces conditions, le LCSQA recommande d’effectuer des étalonnages automatiques à fréquence bihebdomadaire la sensibilité à la température ambiante des appareils Tekran est plus élevée que celle mesurée en 2014 soit : + 1,1 à 1,6  ng/°C pour les versions A et B et 0,6 ng/m3 pour la version X pour les températures inférieures à la température ambiante, et      -1,1 à -1,6 ng/°C pour les versions A et B et 0,9 ng/m3 pour la version X pour les températures supérieures les appareils sont insensibles à la variation d’humidité de l’échantillon dans le domaine d’hygrométrie étudié.
Jeudi 10 décembre 2020
Rapport
Etat de l’art et analyse critique des méthodes de mesure de pesticides - Premières recommandations
Un travail documentaire sur une liste socle de Substances Actives (SA) couramment surveillées par les AASQA a permis de dresser un état de l’art analytique ainsi qu’une feuille de route des besoins métrologiques et également de formuler des premières recommandations. La diversité des substances actives surveillées notamment en termes de propriétés physicochimiques permet d’ores et déjà de conclure que des méthodes spécifiques devront être développées pour disposer de données de surveillance dont la qualité sera compatible avec les objectifs de la surveillance. De plus, les études réalisées confirment le besoin d’harmonisation et de validation des méthodes disponibles à ce jour, de développement pour des substances orphelines et de mise en place d’un cadre règlementaire plus précis. Le LCSQA doit renforcer ses travaux métrologiques sur les pesticides, en forte interaction avec les laboratoires d’analyse opérant dans la surveillance afin de mettre en place les références indispensables et d’en garantir l’acceptation et le caractère opérationnel pour assurer, à terme, la bancarisation de données de qualité et exploitables.
Mardi 24 janvier 2017
Rapport
Episode de pollution particulaire de janvier 2017 (24 janvier 2017)
D’importants épisodes de pollution particulaire ont d’abord touchés la pointe nord de la France et le bassin méditerranéen (17-18 janvier), puis se sont généralisés à la quasi-totalité de la métropole à partir du 20 janvier. La présente note synthétise un ensemble de résultats disponibles au 23 janvier obtenus par des analyseurs automatiques de la composition chimique des PM implantés sur différentes stations du dispositif national. Cette note résulte notamment du travail et de la réactivité des équipes d’Atmo Nouvelle-Aquitaine, Atmo Auvergne-Rhône-Alpes, d’Atmo Grand-Est, d’Air Pays de la Loire, d’air PACA, d’Air Normand, d’Atmo Hauts-de-France, du SIRTA/LSCE (site de recherche de l’Institut Pierre Simon Laplace, sur le plateau de Saclay, Essonne), de l’IMT Lille Douai (sur la station AERONET de Villeneuve d’Ascq, Hauts de France) et de l’INERIS. A ce stade, ces épisodes ressemblent globalement à ceux ayant eu lieu en décembre 2016, sous l’effet de conditions météorologiques stables et froides (régime anticyclonique), et l’ensemble des résultats obtenus pour l’instant indiquent la prédominance des aérosols carbonés, en lien avec l’accumulation des émissions de combustion (chauffage résidentiel et transport routier). Toutefois, une part significative des aérosols secondaires (et en particulier de nitrate d’ammonium) témoigne également de l’influence des mécanismes de transformations physico-chimiques. Les résultats présentés ici sont issus de mesures réalisées en temps réel dont l’interprétation sera consolidée par des analyses chimiques en différé. A noter enfin que ces résultats sont représentatifs de stations de fond (péri-)urbain. Par conséquent, ils ne correspondent pas aux endroits où sont enregistrés les maxima de concentrations, en particulier sur les stations de proximité automobile.
Mardi 1 décembre 2020
Rapport
Synthèse bibliographique sur les métriques d’évaluation de la toxicité des PM : mesure du potentiel oxydant pour l’évaluation du stress oxydant
L’évaluation de l’exposition des populations basée sur la mesure règlementaire de la concentration massique des particules (PM) est limitée car toutes les PM n’ont pas une toxicité équivalente. La mesure de la génération d’espèces réactives de l’oxygène (reactive oxygen species : ROS) par les PM (ROS-PM), déterminée par la mesure du potentiel oxydant (PO) à partir de tests acellulaires, pourrait être une métrique alternative, ou complémentaire à la mesure de la masse des PM pour mieux rendre compte de leur impact sanitaire. Cette thématique est en plein essor et l’objectif de ce rapport est de réaliser une synthèse bibliographique des connaissances sur le PO et les ROS en termes de représentativité sanitaire, de méthodes de mesures et de modélisation, de comparabilité des tests, de liens entre PO et ROS-PM avec la composition chimique, la granulométrie et les sources de PM. Une discussion est également proposée quant aux prérequis à l’utilisation de ce type de mesures de manière harmonisée et à leur intégration au sein des observatoires nationaux (dispositifs CARA et MERA) afin de conduire, en premier lieu, des études à grande échelle visant à améliorer les connaissances sur le PO. Les résultats de la littérature montrent des liens positifs entre les effets sur la santé (effets respiratoires et cardiovasculaires) et le PO, même si le nombre d’études épidémiologiques reste encore limité. La mesure de PO est probablement plus pertinente que la détermination des ROS-PM afin de rendre compte de l’impact sanitaire des PM. Les métaux (cuivre, manganèse et fer), les composés organiques (hydrocarbures aromatiques polycycliques (HAP), oxy-HAP (quinones)) et composés organiques oxydés), sont les espèces qui participent le plus au PO et à la génération de ROS-PM. Les sources majeures contributrices sont la combustion de biomasse, les émissions véhiculaires, notamment hors échappement, et les aérosols organiques secondaires (AOS), notamment d’origine anthropique. L’impact de la granulométrie des PM sur le PO et les ROS-PM demande encore à être étudié plus en profondeur. De façon générale, il existe une nécessité à optimiser et normaliser les méthodes de détermination du PO et des ROS-PM afin de pouvoir comparer les résultats obtenus et d’approfondir les connaissances. Compte tenu de la différence de sensibilité chimique des tests de mesure du PO, une mise en œuvre de façon systématique de différents tests de détermination du PO sur des échantillons identiques est plus appropriée. Etant donné leur plus grande pertinence dans les études sanitaires et sensibilités chimiques complémentaires, les tests PODTT (dithiothreitol) et POGSH (glutathione) semblent les plus adaptés et seraient probablement à compléter avec le test POAA (ascorbic acid). Dans tous les cas, l’utilisation d’un fluide pulmonaire simulé (surrogate lung fluid, SLF) semble indiquée pour l’extraction des échantillons. En amont d’un déploiement à plus grande échelle, il semble essentiel d’apporter des premiers éléments d’assurance et contrôle qualité pour ce type de mesures qui peuvent ensuite contribuer à un processus de normalisation. Cette démarche inclurait l’organisation d’une comparaison inter-laboratoires (CIL) comprenant l’analyse de différents matériaux d’essai. Par la suite, un déploiement sur quelques sites d’intérêt choisis au sein des observatoires nationaux avec un coût de l’ordre de 5 k€/an/site (hors coût d’exploitation et d’interprétation des données). Ce déploiement à grande échelle permettrait de fournir des données essentielles pour des études épidémiologiques/toxicologiques visant à rendre compte plus explicitement des liens pouvant exister entre PO et effets sanitaires et biologiques des PM. Les résultats obtenus seront à mettre en lien avec ceux acquis à travers différentes initiatives de recherche lancées par ailleurs. L’ensemble des données permettrait d’alimenter la réflexion à plus long terme de la pertinence d’une potentielle mise en œuvre d’une surveillance de la qualité de l’air par la mesure du PO en complémentarité avec la mesure de la masse des particules. Cette approche en deux temps permettrait d’une part de répondre aux besoins d’harmonisation des méthodes de mesures du PO et de recherche sur son caractère prédictif des PM en termes d’effet sur la santé exprimés par l’ANSES, 2019. D’autre part, compte tenu de l’intérêt que pourrait représenter son utilisation pour l’étude des effets des PM sur la santé mais aussi en termes de surveillance de la qualité de l’air, cette approche permettrait de disposer en amont de futurs discussions normatives ou réglementaires de données valides si la mesure du PO devait être discutée au niveau de groupes de travail européens et en particulier du CEN.
Jeudi 19 novembre 2020
Rapport
Evaluation de l’efficacité de la mesure de la concentration totale en nombre de l’UFP3031
Depuis 2019, les travaux du comité européen de normalisation (CEN) ont abouti à la publication d’un document normatif pour la mesure du nombre total de particules (CEN/TS 16976). Ce document préconise l’utilisation d’un Compteur à Noyau de Condensation (CNC) permettant de mesurer les particules à partir de 7 nm de diamètre. Depuis quelques années, plusieurs Associations agréées de surveillance de la qualité de l’air (AASQA) se sont équipées d’UFP 3031 afin de répondre à des demandes locales de mesures de la granulométrie des particules. Ainsi, il est apparu intéressant de confronter la mesure du nombre total issu de cet instrument à la mesure d’un CNC considéré comme mesure de référence, afin d’établir si la donnée du nombre total des UFP 3031 est exploitable. Dans ce but, trois AASQA, Atmo Auvergne - Rhône-Alpes, Atmo Grand-Est et Atmo Nouvelle-Aquitaine, ont partagé des données de comparaison d’un CNC et d’un UFP3031, générées dans leur station urbaine de fond de Lyon centre, Strasbourg Clémenceau et Talence. Les résultats de comparaison de l’UFP3031 par rapport au CNC ont mis en avant une sous-estimation, attribuée principalement à la différence des gammes de mesure des deux instruments. De plus, les coefficients de corrélations présentent une forte variabilité d’un jeu de données à l’autre. Ainsi, il est recommandé de renforcer prioritairement l’utilisation de CNC, selon les modalités actuelles de mise en œuvre définies par la TS 16976 pour la mesure de la concentration en nombre des particules fines (PNC).   Evaluation of the UFP3031 total number concentration measurement effectiveness Since 2019, the work of the European Committee for Standardization (CEN) has resulted in the drafting of a normative document for the measurement of the particles total number concentration (CEN / TS 16976). This document recommends the use of a Condensation Particle Counter (CPC) to measure the number concentration of particles with diameter bigger than 7 nm. In recent years, several AASQA have been equipped with UFP 3031 in order to meet local demands for particle size measurements. Thus, it appeared interesting to compare the measurement of the total number resulting from this instrument with the measurement of a CPC considered as a reference instrument, in order to establish whether the data of the total number of UFP3031 can be used. To this end, three AASQA, Atmo Auvergne - Rhône-Alpes, ATMO Grand Est and Atmo Nouvelle-Aquitaine, shared comparison data from a CPC and a UFP3031, generated in their background urban station in Lyon center, Strasbourg Clémenceau and Talence. The comparison results of the UFP3031 against the CNC showed an underestimation, certainly due to the difference in the measurement ranges between the two instruments. In addition, the correlation coefficients show variability depending on the data sets used. Thus, it is recommended to strengthen the use of CNC as a priority, according to the current implementation methods defined by TS 16976 for the measurement of the number concentration of fine particles (PNC).  
Mercredi 16 septembre 2020
Rapport
Performances Prev’air en 2017 et 2018
Ce rapport synthétise l’ensemble des actions menées dans le cadre de la plateforme Prev’Air (www.PrevAir.org) pour répondre aux besoins des AASQA (associations agréées de surveillance de la qualité de l’air). Cela concerne les développements visant aussi bien à étendre les capacités du système de prévision qu’à rendre ses performances plus élevées. La première partie du rapport fournit une estimation du comportement général des outils via des indicateurs statistiques classiques permettant de comparer les résultats de modélisation aux observations validées de la base de données nationale alimentée par les AASQA. Une attention particulière est portée à l’évaluation des performances de Prev’Air concernant la détection des épisodes de pollution. Cet exercice a pour objectif de répondre à un souci de transparence sur les aptitudes des modèles à prévoir et à estimer la qualité de l'air. Ce rapport traite de l’ozone pour les étés 2017 et 2018 et des particules pour les années 2017 (à partir d’avril) et 2018 en France métropolitaine. A noter que cette évaluation porte sur des calculs nouvelle génération mis en place sur Prev’Air depuis avril 2017 incluant la haute résolution. En effet, lors de la migration du système sur une nouvelle plateforme de calcul haute performance (à Météo France), de nombreuses modifications ont été opérées sur le système, dont un changement de version de CHIMERE et la mise à jour des post-traitements (incluant les procédures d’adaptation statistique). L’évaluation des épisodes est effectuée dans un premier temps sur les prévisions brutes de Prev’Air et montre une discontinuité avec les années passées pouvant s’expliquer par les changements de version des outils. Ensuite, elle est réalisée sur les calculs de l’adaptation statistique, processus correctif reposant sur les prévisions brutes et mis en place pour accroitre la performance des prévisions. Les gains résident dans la capacité du modèle statistique à corriger le biais sur les concentrations lors des épisodes. Ce rapport intègre pour la première fois des évaluations pour les régions et départements d’outre-mer car un système de prévision de la qualité de l’air dédié à ces zones (appelé Prev’Air DROM) est entré en production au premier trimestre 2018 avec une configuration très proche de celle de la prévision de Prev’Air en métropole. Le système Prev’Air DROM comporte un grand domaine sur l’Atlantique Ouest et trois petits domaines pour inclure la Guyane, Martinique et Guadeloupe. L’évaluation porte essentiellement sur les PM10 car les DROMs sont fréquemment exposés à l’arrivée de poussières désertiques de grosse taille transportées à travers l’océan Atlantique à partir du Sahara.