Résultats de la recherche

280 résultats correspondent à Air ambiant
Mercredi 4 mai 2011
Rapport
Rédaction de guides pratiques de calcul d’incertitude et formation des AASQA (1/5)
Au niveau réglementaire, les directives européennes relatives à la surveillance de la qualité de l’air fixent des seuils d’incertitude sur les concentrations mesurées par les réseaux de surveillance de la qualité de l’air « au voisinage de la valeur limite appropriée ». En marge de ces directives, plusieurs normes décrivant des procédures d'estimation des incertitudes associées aux mesurages ont été répertoriées dans le domaine spécifique de la qualité de l’air. Une lecture attentive de ces normes montre qu’elles ne sont pas très faciles d’application et qu‘elles peuvent être interprétées de diverses façons, ce qui peut conduire à des résultats très différents. Par conséquent, pour répondre aux exigences des directives et pour permettre d’harmoniser les pratiques d’estimation des incertitudes au sein des AASQA, le LCSQA a proposé de rédiger un guide pratique pour estimer l’incertitude sur les mesures effectuées à l’air ambiant.L’approche est basée sur les normes et documents existants, et en particulier sur les méthodes de calcul proposées dans les normes européennes rédigées par les groupes de normalisation CEN TC 264/WG12 et CEN TC 264/WG13.L’objectif est donc de rédiger un guide pratique pour l’estimation des incertitudes associées aux différents types de mesures effectuées dans l’air ambiant.Ce guide est structuré en huit parties, correspondant chacune à une technique de mesure particulière applicable à un ou plusieurs composés.Une fois finalisées, les différentes parties sont validées en Commission de normalisation X43D « Air ambiant » de l’AFNOR et publiées sous forme de fascicules de documentation.L'estimation des incertitudes sur les mesurages automatiques de SO2, NO, NO2, NOx, O3 et CO réalisés sur site fait l'objet d'un fascicule de documentation AFNOR FD X 43-070-2 (cf. ci-dessus).Cependant, un retour d’expérience des AASQA et les sessions de formation organisées en 2008 et 2009 ont montré que certains points méritaient d’être plus détaillés pour que les AASQA puissent dérouler de façon autonome l’ensemble du calcul d’incertitude. Un guide de "recommandations techniques pour la mise en oeuvre de la partie 2 du guide d'estimation des incertitudes portant sur les mesurages automatiques de SO2, NO, NO2, NOx, O3 et CO réalisés sur site" complémentaire au fascicule de documentation AFNOR FD X 43-070-2 a donc été rédigé en 2009 par un sous-groupe de travail du GT "Incertitude" composé d'AIRPARIF, d'ATMO Franche Comté, d'ATMO PC et du LCSQA. Les objectifs de ce document sont d'apporter des recommandations basées sur le retour d’expérience sur : les essais à effectuer pour obtenir les données nécessaires à l'estimation de l'incertitude sur ces différentes contributions (modes opératoires), le traitement statistique des données associées, les données à utiliser concernant les caractéristiques métrologiques des analyseurs (valeurs tirées des rapports d’approbation de type disponibles), des plages de variation des paramètres d’influence sur la mesure (exemple : tension électrique d’alimentation). Ce document est finalisé et fait l'objet du rapport 5/5 intitulé "Rédaction de guides pratiques de calcul d’incertitude et formation des AASQA - XXX" de novembre 2010.  
Jeudi 26 avril 2012
Rapport
Suivi et optimisation de l’utilisation des TEOM-FDMS : Efficacité de séchage des modules FDMS
Depuis le 1er janvier 2007, les TEOM-FDMS sont très largement utilisés en routine par l’ensemble des associations agréées de surveillance de la qualité de l’air (AASQA) pour la surveillance des PM10 et des PM2.5.  Dans le cadre du déploiement et de la mise en œuvre de ces instruments, le LCSQA/INERIS est notamment chargé du suivi et de l’optimisation de leur utilisation au sein du dispositif national de surveillance de la qualité de l’air, ainsi que d'assurer la qualité des données produites en construisant une approche QA/QC basée sur celle décrite dans les normes utilisées pour la mesure des polluants gazeux inorganiques (O3, NOx, SO2, CO). Ce travail se concrétise notamment par la rédaction d’un guide pour l’utilisation du TEOM-FDMS, dont une nouvelle version a été élaborée en 2010, en partenariat avec les AASQA. En 2011, le LCSQA/INERIS a poursuivi son travail d’évaluation sur le terrain des TEOM-FDMSavec notamment pour objectif de vérifier la validité des critères définis par le guide d’utilisation dans le cas d’un environnement climatique « extrême » (i.e. chaud et humide). Le présent rapport restitue les principaux résultats de ces travaux, en portant l’accent sur les enseignements tirés de tests de terrain réalisés en Martinique en collaboration avec Madininair, permettant en outre d’étudier l’influence de l’humidité relative sur les performances du sécheur dans le cas d’un aérosol atmosphérique réel très humide (pour faire suite à des travaux réalisés en laboratoire en 2009). Ces résultats renforcent les recommandations préconisées par le guide d’utilisation de 2010. En particulier : -       Les oscillations des températures de point de rosée échantillon (en sortie de sécheur) sont corrélées aux oscillations constatées sur la température de la station (pour des températures de point de rosée ambiant stables). La température de fonctionnement des sécheurs FDMS a donc un impact direct sur l’efficacité de ces derniers et doit être surveillée/contrôlée attentivement, afin d’éviter un éventuel risque de surestimation de la concentration massique. -       L’utilisation de TEOM-FDMS présentant une dépression en amont de la pompe moins importante que -20 inHg (« pouces de mercure », unité utilisée par convention pour le TEOM-FDMS) peut conduire à une baisse rapide du rendement des sécheurs. Sur ce point, il est également à noter que différents retours d’expérience ont montré que le manomètre d’origine pouvait fortement dériver et, par ailleurs, présenter des fuites. Il est donc fortement conseillé de maintenir une dépression plus importante que -20 inHg, et de procéder à une vérification régulière du manomètre d’origine, voire de remplacer ce dernier (permettant en outre la mise en place d’un suivi de la dépression en routine). -       L’utilisation d’un TEOM-FDMS présentant une température de point de rosée échantillon autour de -5°C peut conduire à une légère surestimation de la concentration massique de PM (de l’ordre de 3 µg/m3dans le cas présent d’un environnement très humide). Il semble donc opportun de maintenir un seuil limite d’intervention de -4°C pour ce paramètre. Enfin, la surveillance de l’humidité relative en sortie de sécheur (non suivie jusqu’à présent) pourrait permettre d’identifier plus facilement une dégradation partielle de ce dernier
Mercredi 20 juillet 2011
Rapport
Surveillance du benzène : Développement de cartouches de référence de Carbograph 4, de Carbograph B et de Carbopack X pour les BTEX
Les  Matériaux  de  Référence  (MR)  permettent  d’assurer  la  traçabilité  des  mesures  et  de valider les méthodes analytiques. Or, actuellement, il n’existe pas de matériaux de référence,en  France,  disponibles  pour  la  mesure  du  benzène,  du  toluène,  de  l'éthylbenzène  et  des xylènes (BTEX) en air ambiant par prélèvement sur cartouches de Carbograph 4, Carbopack B et Carbograph X.  C’est pourquoi le LNE a proposé de développer une méthode de chargement de cartouches en BTEX à partir d’un matériau de référence gazeux en bouteille, afin de pouvoir disposer de cartouches de référence qui pourront être ensuite utilisées notamment pour l'étalonnage des systèmes analytiques et pour l’évaluation des performances des laboratoires à l’analyse des prélèvements de BTEX sur cartouches.  L'objectif final est de disposer des tubes chargés suivants :   des échantillonneurs actifs de type Carbopack X chargés en BTEX, des échantillonneurs passifs de type Radiello  – Carbograph 4 chargés en BTEX, des échantillonneurs passifs de type Perkin-Elmer – Carbopack B chargés en BTEX. L'étude  menée  en  2010  a  porté  dans  un  premier  temps  sur  le  développement  de  la méthode    d'analyse    des cartouches  chargées en BTEX avec le nouveau chromatographe en phase gazeuse ATD 350 / Clarus 600 (Perkin-Elmer). Après mise en place  et  optimisation  des  paramètres  et  des  conditions  opératoires,  les  performances métrologiques  de  la  méthode  d'analyse  des  cartouches  chargées  en  BTEX  ont  été déterminées sur ce nouvel appareil. Les  premiers  essais  de  répétabilité  et  de  linéarité  ne  conduisaient  pas  à  des  résultats satisfaisants.Cependant, grâce aux modifications apportées au système de prélèvement et à la correction de la valeur de la longueur de la  colonne paramétrée dans le Clarus 600, la répétabilité et la linéarité ont été significativement améliorées et correspondent à notre cahier des charges : la répétabilité est inférieure à 1% et le coefficient de linéarité (R2) est supérieur à 0,999.  Dans un second temps, des essais ont été effectués pour déterminer la justesse de la méthode et pour pouvoir valider l'ensemble du processus (chargement et analyse). Ces essais  ont  consisté  à  analyser  des  cartouches  chargées  en  BTEX  par  le  NPL.  Les  essais réalisés montrent des écarts significatifs entre les masses de BTEX certifiées par le NPL et les masses analysées par le LNE (de l'ordre de 10%). Des essais complémentaires menés au LNE n'ont pas permis d'apporter des explications aux écarts observés entre le NPL et le LNE. Pour poursuivre les investigations, le LNE s'est proposé d'impliquer deux autres laboratoires, à savoir le Laboratoire Interrégional de Chimie du réseau de surveillance de la qualité de l'air en  Alsace  (GIE-LIC)  et  l'Institut  National  de  l'Environnement  Industriel  et  des  Risques (INERIS). Des tubes chargés par le LNE ont été analysés par le NPL, par l'INERIS et le GIE-LIC et des tubes chargés par le NPL ont été analysés par l'INERIS et le GIE-LIC.Concernant  les  tubes  chargés  par  le  LNE,  les  résultats  obtenus  montrent  des  masses analysées par le NPL plus faibles que les masses chargées du LNE pour tous les composés avec  des  écarts  relatifs  allant  de  3%  pour  le  benzène  à  10%  pour  les  xylènes,  ce  qui confirment bien ceux obtenus précédemment. Par contre, les écarts obtenus entre les masses chargées  du  LNE  et  celles  analysées  par  l'INERIS  et  le  GIE-LIC  sont  faibles  (globalement inférieurs à 5 %) par rapport à ceux obtenus entre le LNE et le NPL (de l'ordre de 10 %).Concernant  les  tubes  chargés  par  le  NPL,  il  est  constaté  des  écarts  importants  entre  les masses chargées fournies par le NPL et celles analysées de l’INERIS et du GIE-LIC : ces écarts sont globalement de 10 %, comme ceux constatés entre le LNE et le NPL.Ces essais tendaient donc à montrer que le problème se situait au niveau du NPL. Les différents résultats ont été rapidement communiqués au NPL qui a effectué lui-même un certain nombre de vérifications. A la suite des recherches menées, il s'est avéré qu’ils appliquaient une double correction de la température  sur  le  débit  du mélange  gazeux  passant  à  travers  les  cartouches lors du chargement.  Le  NPL  a  déterminé  que  l'application  de  cette  double  correction  induisait  un écart de 8 à 11% sur les masses chargées. A la suite de ces investigations, dans le cas des tubes chargés par le NPL, les écarts relatifs ont été recalculés entre les masses chargées corrigées du NPL et les masses analysées de l’INERIS et du GIE-LIC : ces calculs conduisent à des valeurs globalement inférieures à 5 %. Les différents essais réalisés ont donc conduit à identifier la cause du problème au niveau du NPL. La correction de ce problème a permis d'obtenir des résultats cohérents entre le NPL, le LNE,  l'INERIS  et  le  GIE-LIC  au  vu  des  incertitudes  :  il  est  à  noter  que  le  NPL  donne  une incertitude de 5 % sur ses masses chargées de BTEX sur cartouches.   Suite  aux  explications  fournies  par  le  NPL,  il  est  prévu  pour  début  2011  de  réaliser  de nouveaux chargements de cartouches au LNE et de les faire analyser par le NPL ; de même, le  NPL  propose  de  remplacer  les  tubes  que  nous  avions  achetés  par  de  nouveaux  tubes chargés en BTEX que le LNE analysera et comparera à des tubes chargés du LNE. L'objectif de ces essais est de finaliser la validation de l'ensemble du processus de mesure comprenant le chargement et l'analyse de  cartouches de BTEX développé par le LNE en 2010 dans le cas des 3 adsorbants (Carbopack X, Carbograph B et Carbograph 4). Les AASQA effectuent régulièrement des prélèvements de BTEX dans l'air ambiant sur des échantillonneurs actifs ou passifs qui sont ensuite analysés par des laboratoires d’analyse. En  2011,  le  LNE  propose  d'organiser  un  exercice  d'intercomparaison  qui  consistera  à  faire analyser par ces laboratoires, des tubes de Carbopack X, de Carbograph 4 et de Carbograph B chargés en BTEX.Deux séries de tubes devront être analysées par les laboratoires. Le LNE réalisera le chargement de cartouches par voie gazeuse à partir de mélanges gazeux de référence gravimétriques du LNE en mettant en œuvre la méthode développée au cours de l'année 2010.  Afin de mimer au mieux un prélèvement passif et de fournir aux laboratoires des matériaux d’essais  aussi  proches  que  possible  de  tubes  prélevés  par  diffusion,  des  tubes  seront exposés dans la chambre d’exposition de l’INERIS à une concentration  constante, maîtrisée et contrôlée (par analyseur en continu) de BTEX.
Mardi 3 mai 2011
Rapport
Suivi du parc instrumental des AASQA
1. Présentation des travaux La Directive européenne n°2008/50/CE de 2008 concernant la qualité de l’air ambiant et un air pur pour l’Europe a donné de nouvelles règles pour la surveillance de la qualité de l’air. Outre le fait d’ajouter les particules PM2.5 sur la liste des polluants à mesurer (à savoir SO2, NO/NOx/NO2, CO, O3, C6H6, les PM10 et le plomb), avec une valeur limite et un objectif de qualité des données à respecter, elle a fixé un échéancier de mise à conformité du parc d’appareils impliqués dans ce cadre régalien européen selon un timing spécifique.Cette conformité se réfère aux référentiels normatifs en vigueur depuis 2005, qui intègrent la notion d’approbation de type (donc d’homologation de matériel par l’Etat Membre). Le timing est le suivant : « Tous les nouveaux appareils achetés pour la mise en oeuvre de la présente directive doivent être conformes à la méthode de référence ou une méthode équivalente, au plus tard le 11 juin 2010. Tous les appareils utilisés aux fins des mesures fixes doivent être conformes à la méthode de référence ou à une méthode équivalente, au plus tard le 11 juin 2013. » La France est actuellement un des Etats Membres les plus équipés (avec plus de 3000 instruments répartis sur plus de 800 stations de mesures). Une telle configuration rend nécessaire un suivi permanent du parc instrumental, du comportement effectif des appareils sur le terrain et de la qualité de fabrication des appareils. Cela implique une connaissance exhaustive du parc et un échange d’informations, notamment : entre les utilisateurs sur le plan technique avec les constructeurs pour le retour d’expérience sur leurs produits avec les pouvoirs publics (MEEDDM, ADEME) pour l’élaboration du budget pour la mise en conformité du parc d’appareils selon les exigences réglementaires En réponse à ces besoins, le LCSQA - EMD suit l’état du parc d’appareils des AASQA au travers de son expertise dans le cadre de la base de données INVEST de suivi des équipements analytiques des AASQA (partie « inventaire national des équipements ») et joue depuis 2006 le rôle de point focal de centralisation des problèmes rencontrés sur les appareils au travers de l’animation de l’atelier sur la thématique «Appareils» qui est organisé chaque année lors des Journées Techniques des AASQA (en 2010 à Orléans, du 12 au 14 octobre). Le LCSQA-EMD sert également d’expert technique auprès des pouvoirs publics au travers de la connaissance du fonctionnement des équipements analytiques des AASQA et de la veille technologique, afin d’être une source d’informations dans le cadre de la gestion des demandes d’investissement de la part des AASQA.L’objectif du suivi des appareils est également de maintenir les échanges d’informations entre les utilisateurs et de pouvoir le cas échéant identifier les principaux défauts constatés sur une marque et un type d’appareillage. Un tel travail permet d’assurer la validité de la liste des appareils homologués en France, au travers d’une mise à jour régulière et argumentée.2. Principaux résultats obtenus Le questionnaire pour l’atelier «Forum Analyseurs » des Journées Techniques des AASQA du 12 au 14/10/2010 ainsi que les échanges qui s’y sont tenus ont mis en évidence le besoin pour les utilisateurs de négocier les prix d’achat des appareils, sur la base de la liste d’appareils « homologués par les pouvoirs publics » pour leur stratégie de renouvellement de parc en vue de répondre à l’exigence réglementaire européenne (mise en conformité des appareils vis à vis des méthodes de référence à l’horizon 2013).Compte tenu du contexte budgétaire de plus en plus contraint et du retour d’expérience (impliquant une hausse de l’exigence en terme de qualité de la part des usagers), les AASQA adoptent une démarche « pas à pas » vis à vis des constructeurs. Si Environnement SA reste le seul constructeur français présent dans le parc d’appareils des AASQA, il confirme (voire renforce) sa position au détriment des produits étrangers, que ce soit au niveau des analyseurs automatiques de particules avec sa jauge radiométrique ou des analyseurs de polluants gazeux inorganiques.L’explication a plusieurs origines : outre la simplification de la gestion des sources radioactives (cf. travaux du LCSQA sur la mesure des particules en suspension par absorption de rayonnement bêta), les problèmes techniques observés sur les microbalances à variation de fréquence du constructeur américain Thermo (TEOM-FDMS et 1405 F) ont contribué à ce « retour en grâce » d’Environnement SA. De plus, le distributeur français ECOMESURE a dû faire face à des difficultés de gestion de ces soucis techniques (sous-estimation de la part de Thermo du temps de résolution technique, retard de livraison des pièces nécessaires aux interventions, personnel en nombre limité), en y incluant les fluctuations de prix dues aux variations du dollar.S’agissant des polluants inorganiques gazeux, Environnement SA bénéficie de sa position de constructeur, contrairement aux marques américaines Thermo et API (qui ne sont que distribuées sur le territoire français) ou à la marque japonaise HORIBA (dont la branche « qualité de l’air ambiant » est assurée par le secteur « mesure à l’émission »). Combinée à l’aspect financier (concernant notamment le prix des pièces détachées), la compétence technique est alors un élément prépondérant : les distributeurs français de marques étrangères semblent avoir atteint leur « seuil critique » en matière de SAV et la marque japonaise est pénalisée par un manque de maîtrise technique du SAV (a priori provisoire).Enfin, il est à noter qu’une démarche de négociation de tarif des appareils a été faite par les AASQA auprès des constructeurs. Outre un besoin d’homogénéité des prix, ce processus a permis d’obtenir des remises substantielles sur les appareils dont il faudra tenir compte dans le processus de demandes d’investissement.Concernant le benzène, les dispositifs commerciaux (tel que le préleveur Sypac de la société TERA Environnement) ne suscitent pas un engouement de la part des AASQA.Une journée d’échanges entre les utilisateurs de préleveurs actifs pour le benzène et TERA Environnement a été organisée le 02/03/2010 (cf. travaux LCSQA sur la surveillance du benzène), montrant que si ce type d’instrument peut être utilisé dans le cadre de la surveillance du benzène en site fixe, il est indispensable de suivre les préconisations du guide national de recommandations techniques ainsi que lesspécifications techniques du constructeur (notamment en ce qui concerne les opérations de maintenance). Il semble cependant que plusieurs AASQA s’orientent vers la conception de leurs propres préleveurs (sur la base du cahier des charges technique élaboré par Airparif). Cela nécessitera une homogénéisation des pratiques (principalement sur le choix des composants) afin de garantir des caractéristiques de performance comparables entre les produits « faits maison » et de contribuer à une validation de conformité vis à vis de la méthode de référence, aboutissant à une identification du produit en tant qu’ « appareil homologué ». Le processus français d’homologation des appareils se base actuellement sur une liste élaborée par le LCSQA. Cette liste est basée sur les exigences européennes fixées par la Directive unifiée (cf. annexe VI point E), sur l’expertise technique du LCSQA et sur le retour d’expériences des utilisateurs. Pour permettre une mise à jour régulière de la liste, il est donc primordial que la communication fonctionne, non seulement entre les différents partenaires du dispositif national de surveillance, mais aussi au niveau international avec les interlocuteurs techniques tels que les constructeurs et les représentants des autres Etats Membres. Ce fonctionnement en « réseau » rentre dans la mission de coordination technique que le LCSQA devra assurer à partir de 2011.
Mardi 12 juillet 2011
Rapport
Développement d’un dispositif d’étalonnage des appareils mesurant les concentrations massiques de particules
Le TEOM (Tapered Element Oscillating Microbalance) est un appareil de mesure très répandu au sein des réseaux de surveillance de la qualité de l’air. Il est capable de mesurer en continu la concentration massique des particules en suspension dans l’air (en µg/m 3 ), ce qui le rend préférable à la méthode gravimétrique qui nécessite des analyses postérieures au prélèvement.   A  l’heure  actuelle,  cet  appareil  est  étalonné  à  l’aide  de  cales  étalons  raccordées  au  système international.  Ces  cales,  de  masses  connues,  permettent  de  vérifier  aisément  la  constante d’étalonnage de l’appareil. Néanmoins, elles présentent deux inconvénients majeurs :   Leur masse est de l’ordre de 80 mg alors que les concentrations massiques de particules dans l’air ambiant sont plutôt de l’ordre de quelques µg. Un tel étalonnage ne permet pas de prendre en compte tout le système de prélèvement en amont de la mesure de la masse. Par conséquent, le LNE a proposé de développer une méthode d’étalonnage en masse du TEOM qui tienne compte des particularités décrites ci-dessus et qui consiste à : Injecter des particules ayant des concentrations connues et stables dans le temps d'une part, sur le filtre du TEOM en passant par le système de prélèvement (hors tête de prélèvement) et d'autre part, sur un filtre externe, Comparer  les  concentrations  massiques  mesurées  par  le  TEOM  avec  les  concentrations massiques « vraies » mesurées par la méthode de référence (méthode gravimétrique) sur le filtre. De  plus,  cette  méthode  doit  tenir  compte  des  spécificités  des  AASQA,  puisqu'elle  doit  pouvoir  être facilement mise en œuvre directement par les AASQA dans les stations de mesure pour l'étalonnage de leurs TEOM.  L’étude menée en 2005 a consisté à réaliser une bibliographie afin de faire un choix entre différents générateurs de particules proposés en fonction de leurs performances métrologiques et des conseils des fabricants.Ce  choix  s’est  porté  sur  le  générateur  CFG-1000  de  la  société  PALAS  distribué  par  la  société ECOMESURE.  Ce  générateur  comporte  deux  électrodes  de  graphite :  l’une  d’elle  est  reliée  à  la masse  tandis  que  l’autre  est  reliée  à  un  condensateur  haute  tension,  lui-même  alimenté  par  un dispositif haute tension réglable. Pour générer des particules, le condensateur est chargé jusqu’à sa tension de claquage. Une fois atteinte, le condensateur se décharge en formant une étincelle entre les électrodes.  Celle-ci  est  suffisamment  énergétique  pour  vaporiser  le  carbone  à  l’extrémité  des électrodes. Le carbone sous forme vapeur est alors entraîné par un flux d’argon où il se condense en de  très  fines  particules  primaires  qui  coagulent  entre  elles  pour  former  de  plus  ou  moins  gros agglomérats (leur taille est fonction de la concentration en particules). Ces agglomérats sont ensuite évacués vers la sortie du générateur. Ce générateur a été réceptionné au LNE en février 2006.  Les essais réalisés en 2006 ont porté sur la caractérisation par la méthode gravimétrique de référence du générateur de particules GFG-1000, ce qui a permis de déterminer les valeurs des concentrations massiques de particules générées par le générateur de particules et de démontrer sa répétabilité, sa linéarité en fonction du temps et de la fréquence d’étincelles, ainsi que sa stabilité dans le temps. Cependant, ce générateur n’a pas pu être couplé avec le TEOM 50°C du LNE à cause d’un problème de colmatage trop rapide du filtre du TEOM 50°C.  L’étude 2007 a consisté à poursuivre les investigations pour résoudre le problème de colmatage : des essais réalisés avec la société ECOMESURE ont conduit à modifier  certains paramètres du TEOM 50°C,  à  savoir  le  débit  du  TEOM  50°C  et  le  temps  de  moyennage  pour  le  calcul  de  la  moyenne glissante et de la masse totale, ce qui a permis de ralentir considérablement le colmatage du filtre du TEOM  50°C  et  de  rendre  possible  le  dépôt  d’une  masse  conséquente  de  particules  sur  le  filtre  du TEOM 50°C pendant un laps de temps correct, sans que le phénomène de colmatage ne se produise. Les essais de couplage du générateur de particules avec le TEOM 50°C ont donc été repris afin de continuer  à  optimiser  la  procédure.  Toutefois,  les  essais  montraient  que  certaines  précautions devaient être prises pour obtenir un résultat fiable : de plus, un régulateur de débit massique (RDM) adéquat devait être utilisé, afin de réduire les  incertitudes de mesure et notamment la répétabilité.   Suite à la mise en place des stations de référence pour les PM dans chaque AASQA pour pouvoir ajuster les données PM des autres stations de mesure, il a été demandé au LNE de réorienter l'étude sur l'étalonnage des analyseurs automatiques de particules en étudiant le TEOM-FDMS à la place du TEOM 50°C.L'étude  2008  avait  donc  pour  objectif  de  reprendre  la  procédure  d'étalonnage  développée  pour  le TEOM 50°C et basée sur l'utilisation du générateur de particules GFG-1000 (PALAS) afin de l'adapter au TEOM-FDMS. Cependant, en reprenant les essais avec le TEOM-FDMS, toutes les avancées des deux dernières années sur le TEOM 50°C ont dû être remises en question. En effet, cet appareil a des paramètres fixes pour son fonctionnement, et qui ne peuvent pas être modifiés pour pouvoir le coupler avec le générateur GFG-1000 (PALAS). De ce fait, le filtre du TEOM-FDMS se colmatait rapidement avec une très petite quantité de particules. Pour  essayer  de  résoudre  le  problème,  plusieurs  hypothèses  de  génération  de  particules  ont  été émises et des essais ont été effectués pour chacune d’elles. Les résultats de ces essais montraient que le seul générateur compatible avec le TEOM-FDMS était le nébuliseur de brouillard salin AGK 2000  (PALAS)  qui  permet  de  générer  des  masses  de  particules  compatibles  avec  la  gamme d'étalonnage (0 à 1000 µg), sans colmatage prématuré du filtre du TEOM-FDMS. Son principe repose sur le barbotage d’air comprimé dans une solution saline de concentration connue : l’aérosol produit est ensuite séché pour obtenir des particules de NaCl. Des essais effectués sur deux exemplaires de ce  modèle  montraient  que  ces  appareils  étaient  linéaires  et  répétables,  mais  leurs  points  faibles étaient leur répétabilité et leur reproductibilité dans le temps.  L’étude menée en 2009 a donc porté sur l'optimisation de la méthode d'étalonnage du générateur AGK  2000  (PALAS)  et  sur  la  réalisation  de  premiers  essais  de  couplage  entre  ce  générateur  de particules et le TEOM-FDMS. Cette étude a permis de diminuer la répétabilité et la reproductibilité du protocole d’étalonnage du générateur AGK 2000 (PALAS) en utilisant un porte-filtre, un régulateur de débit  massique  (RDM)  et  des  filtres  de  protection.  Toutefois,  il  restait  à  apporter  des  améliorations pour  diminuer  le  taux  d'humidité  sur  les  filtres  placés  sur  le  porte-filtre.  De  premiers  essais  de couplage de ce générateur avec un TEOM-FDMS montraient des écarts significatifs entre les masses délivrées par le générateur et celles mesurées par le TEOM-FDMS (de l'ordre de 10 %).  En début 2010, la procédure d'étalonnage a dû être repensée à la suite des résultats obtenus en 2009 et des échanges techniques avec l’INERIS notamment sur le taux  d'humidité trop élevé de l'aérosol circulant dans le TEOM-FDMS et susceptible de l’endommager, ce qui a impliqué de nombreux essais et a retardé les essais initialement prévus à l’INERIS pour 2010 en 2011.   Les  essais  réalisés  en  2010  ont  essentiellement  porté  sur l’optimisation  de  la  méthode  de caractérisation du générateur de particules par impaction des particules  délivrées par le générateur sur un filtre externe pesé sur une balance de précision (méthode gravimétrique).   Les essais d’amélioration ont porté sur : l’utilisation d’un nouveau porte-filtre permettant de limiter les fuites, la faisabilité d'utiliser du sulfate d’ammonium à la place du chlorure de potassium pour diminuer l’agressivité du sel vis-à-vis du filtre, l’optimisation de la mise en œuvre du générateur (arrêt ou non du générateur entre les essais…), le test de différents systèmes de séchage de l’aérosol, Utilisation d’un sécheur type FDMS, Utilisation d'une chambre de sédimentation, Utilisation de filtres contenant du silicagel… différentes façons de combiner les éléments cités ci-dessus.
Mardi 12 juillet 2011
Rapport
Développement de matériaux de référence pour les métaux (Arsenic, Cadmium, Plomb et Nickel)
Conformément aux recommandations des directives européennes 2008/50/CE et 2004/107/CE, les Associations Agréées de Surveillance de la Qualité de l'Air (AASQA) effectuent régulièrement desprélèvements de métaux dans l'air ambiant sur des filtres qui sont ensuite analysés par des laboratoires d’analyse. Le LCSQA organise tous les 2 ans des campagnes d'inter comparaison en France avec ces laboratoires d’analyse.Lors de ces campagnes, les laboratoires analysent les quatre métaux : D'une part, dans des solutions étalons issues d’une minéralisation de filtres impactés : cette étape a pour but de vérifier la partie "analytique" de l'analyse ; D'autre part, directement sur des filtres impactés par des poussières atmosphériques : cette étape permet de vérifier l'ensemble du processus de mesure, à savoir la partie "prélèvement", la partie "minéralisation" et la partie "analytique" de l'analyse. Dans le cas de l'analyse des solutions étalons, les résultats montrent que certains laboratoires déterminent des masses qui ne sont pas cohérentes avec la masse certifiée fournie par le laboratoire de référence.Ceci montre donc l'importance d'assurer une traçabilité des analyses, par exemple via l’utilisation de matériaux de référence certifiés (MRC) qui présentent l’avantage de pouvoir valider la méthode d’analyse, d’assurer la justesse, la fidélité et d’établir la traçabilité métrologique des résultats obtenus aux unités internationales, pour pouvoir ensuite comparer les évolutions des concentrations de métaux dans le temps et dans l'espace.Une étude bibliographique a permis de mettre en évidence un manque de MRC pour les métaux sur le marché. C'est pourquoi, le LCSQA-LNE s’est proposé de développer des MRC pour les métauxréglementés. L'objectif final de cette étude est de mettre à disposition des laboratoires d'analyses, des matériaux de référence certifiés (MRC) pour les métaux (Arsenic, Cadmium, Plomb et Nickel) afin qu'ils puissent améliorer la qualité des analyses de métaux dans les particules effectuées pour les AASQA en garantissant leur traçabilité aux étalons de référence.Ces MRC se présenteront sous la forme de particules dopées avec des métaux déposées sur des filtres. Les essais préliminaires menés sur un lot candidat de cendres d’incinération de déchets domestiques sont très encourageants tant au niveau de la granulométrie des particules que de l’homogénéité chimique des quatre métaux réglementés (Arsenic, Cadmium, Nickel et Plomb). Les teneurs de ces métaux coïncident pour la plupart aux valeurs cibles de la directive cadre sur l’air, ce qui correspond à des sites industriels pollués. La matrice chimique des cendres est proche de celle des particules atmosphériques à l’exception du carbone. On peut donc considérer qu’avec la quantité de matériau disponible, le lot de cendre collectée convient pour le développement d’un MR de particules sur filtres.Cette étude préliminaire a permis de développer une technique innovante pour déposer les particules sur les filtres et a montré qu’elle était reproductible et relativement simple à mettre en oeuvre. On peut donc raisonnablement penser que l’on va pouvoir passer au stade de fabrication de ce type de Matériau de Référence.
Mercredi 4 mai 2011
Rapport
Réglementation & normalisation, appui à la surveillance, la planification et aux politiques territoriales
En tant que Laboratoire de Référence dans le domaine de la Qualité de l’Air notifié par le Ministère en charge de l’environnement, le LCSQA joue un rôle actif dans les instances  normatives  et  réglementaires  nationales  et  européennes,  lui  permettant d’assurer  son  action  d’expertise  au  niveau  national  concernant  l’application  des directives. Sur le plan normatif, dans le cadre du processus de révision de normes EN  existantes  ou  lors  de  l’élaboration  de  nouvelles normes par le CEN, l’action du LCSQA  s’effectue  à  deux  niveaux  (en  Commission  AFNOR  X43D  « Air  ambiant » dont le LCSQA assure la présidence et dans les Comités de Suivi concernés tels que la Commission de Suivi « Particules en Suspension »). Une valorisation des travaux du LCSQA est effectuée au travers de la participation aux  divers  workshops  et  groupes  de  travail  européens  et  nationaux  en  vue  de l’application de la réglementation européenne sur le territoire.L’objectif est d’assurer une présence active de la France lors de la préparation des normes,  la  participation  d’experts  français  aux  groupes  de  travail  européens  et internationaux est donc indispensable. Par ailleurs, l’association des laboratoires de référence AQUILA ainsi que le comité d’experts sur les modèles (FAIRMODE -Forum for AIR quality MODElling), se révèle un bon moyen de défendre la position française auprès de la DG Environnement, et le LCSQA doit y être actif.
Mardi 14 juin 2011
Rapport
Suivi et optimisation de l’utilisation des TEOM-FDMS : Suivi de la conformité aux méthodes de référence NF EN 12341 et NF EN 14907 des TEOM-FDMS, anciennes (1400AB + 8500C) et nouvelles (1405F et 1405DF) versions
Depuis le 1erjanvier 2007, les TEOM-FDMS sont très largement utilisés en routine par l’ensemble des AASQA pour la surveillance des PM10 et des PM2.5.  Dans le cadre du déploiement et de la mise en œuvre de ces instruments, le LCSQA/INERIS est notamment chargé du suivi et de l’optimisation de leur utilisation au sein du dispositif national de surveillance de la qualité de l’air, ainsi que d'assurer la qualité des données produites en construisant une approche QC/QA basée sur celle décrite dans les normes utilisées pour la mesure des polluants gazeux inorganiques (O3, NOx, SO2, CO). Ce travail se concrétise notamment par la rédaction d’un guide pour l’utilisation du TEOM-FDMS, dont une nouvelle version a été élaborée en 2010, en partenariat avec les AASQA. En 2010, le LCSQA/INERIS a également poursuivi son travail d’évaluation sur le terrain des TEOM-FDMS « ancienne génération » (modules TEOM 1400ab + FDMS 8500c), ainsi que de nouvelles versions instrumentales (1405f et 1405df), par le biais d’exercices de comparaison à la méthode de référence (mesure manuelle selon les normes NF EN 12341 pour les PM10 et NF EN 14907 pour les PM2.5). Le présent rapport décrit et commente les résultats obtenus lors de ces essais d’inter-comparaison. Les résultats obtenus tendent à confirmer l’équivalence des anciennes générations de TEOM-FDMS aux méthodes de référence, et suggèrent que les nouvelles générations (1405f et 1405df), dont les premiers modèles présentaient d’importants défauts de conception, satisfont également à ces exigences normatives.   Il convient de souligner que ces exercices d’intercomparaison ne sauraient constituer des campagnes de démonstration d’équivalence, notamment en raison de l’utilisation d’un seul instrument candidat (i.e. TEOM-FDMS) et du nombre relativement limité de données disponibles pour chacun d'eux. En outre, il est également à noter que certains de ces tests ont été réalisés en marge d’études poursuivant un autre objectif que la vérification du bon fonctionnement du TEOM-FDMS. Ainsi, il n’a pas toujours été possible d’assurer l’installation des préleveurs (utilisés pour la mesure manuelle) dans des conditions optimales. Les résultats obtenus lors de ces derniers tests indiquent un écart significatif des concentrations de PM obtenues par méthodes automatique et manuelle, en raison notamment d’une perte de matière semi-volatile lors du stockage sur site des filtres prélevés pour la mesure gravimétrique. Ces résultats confortent la position du groupe de normalisation Européen pour la détermination des concentrations de PM dans l’air ambiant (GT 15 du CEN/TC 264) sur la nécessité de fixer une valeur limite de température de stockage des filtres sur site (vraisemblablement 23°C), dans le cadre de la révision de la norme EN 12341, à l’image de ce qu’il est déjà préconisé pour les PM2.5. Enfin, il est à souligner que ce groupe de normalisation Européen travaille également à la rédaction d’une norme sur la mise en œuvre des analyseurs automatiques de PM. Outre l’identification de critères techniques à respecter en vue d’une approbation par type et lors d’une utilisation en routine, cette norme préconisera la vérification régulière de l’équivalence des instruments utilisés, sur des sites représentatifs de l’ensemble du dispositif de surveillance. Ainsi, des exercices d’intercomparaison, sur le même principe que ceux présentés dans le présent rapport mais couvrant des périodes plus longues, devront vraisemblablement être mis en œuvre dès la publication de la révision de la Directive 2008/50/CE (prévue pour 2013). Dans un souci d’anticipation, le LCSQA propose de pérenniser la réalisation d’exercices de vérification d’équivalence à partir de 2011, en partenariat avec des AASQA volontaires.
Mardi 3 mai 2011
Rapport
Surveillance du benzène 2/2 : la méthode de référence (échantillonnage actif) et la méthode indicative (échantillonnage passif)
En  2010,  les  travaux  ont  été  poursuivis  à  la  fois  pour  ce  qui  concerne l’échantillonnage actif mais aussi l’échantillonnage passif.   Concernant  la  mesure  du  benzène  sur  le  terrain  en  présence  de  taux  d’humidité et de température élevés, plusieurs actions ont été conduites mettant en parallèle plusieurs techniques d’échantillonnage actif du benzène.Neuf  échantillonnages  ont  été  réalisés  sur  le  site  de  Madininair.  La mise en place de la membrane Nafion dans le circuit d’échantillonnage affecte de manière significative la mesure du benzène et du para+méta-xylènes avec des   teneurs   mesurées   via   le   préleveur   avec   membrane   Nafion   très sensiblement   supérieures   aux   teneurs mesurées  via  le préleveur sans membrane  Nafion.  Une  des  hypothèses  pour  expliquer  cette  différence  pour  le benzène  serait  un  phénomène  de  claquage  lorsque  l’échantillonnage  a  lieu  sur  le préleveur  non  équipé  d’une  membrane  Nafion  et  l’ajout  de  la  membrane  Nafion entrainerait  la  disparition  de  ce  phénomène.    En  effet,  pour  le  toluène,  les  écarts entre  les  teneurs  évaluées  par  chacun  des  préleveurs  ne  dépassent  pas  27% indiquant  donc  l’absence  d’un  phénomène  de  claquage  significatif  pour  le  toluène même sur le préleveur non équipé d’une membrane Nafion. Afin  d’expliquer  ces résultats,  les  préleveurs  ont  été  rapatriés  à  l’EMD,  leurs circuits fluidiques vérifiés, une pompe d’échantillonnage échangée et des essais ont été repris en parallèle sur le site de Douai. Il apparaît, au travers de quatre semaines successives  d’échantillonnage  d’air  ambiant,  une  relativement  bonne  cohérence entre  les  teneurs  en  benzène,  toluène  et  para+méta-xylènes    mesurées  via échantillonnage  actif  que  le  préleveur  permettant  soit  équipé  ou  non  d’une membrane  Nafion et  donc  que  l’utilisation  de  la  membrane  Nafion  dans  le circuit d’échantillonnage  n’a  pas  d’influence  significative  sur  la  mesure  de  ces  composés  dans les conditions environnementales   rencontrées   sur   le   site   de   Douai.Néanmoins, à la différence de ce qui avait été mesuré lors de l’échantillonnage sur le site de MADININAIR,  les  teneurs  mesurées  via  le  préleveur  avec utilisation   de la  membrane   Nafion   sont   systématiquement   légèrement inférieures  aux  teneurs  mesurées  via  le  préleveur  sans  membrane  Nafion  et les  écarts  semblent  plus importants  pour  les  xylènes  (composés  mesurés présentant  une  masse  molaire  plus  importante)  que  pour  le  benzène  et  le toluène.    Afin  d’expliquer  les  écarts  antérieurement  mis  en  évidence  sur  le  site  de Madininair  et  de  Douai,  des  tests  de  comparaison  des  résultats  d’échantillonnage actif  (avec  et  sans  membrane  Nafion)  d’une  matrice  synthétique  alliant  taux d’humidité et de température élevés ont été conduits.  Il est apparu une forte sous-estimation des teneurs mesurées via le préleveur équipé d’une membrane Nafion et ce quel que soit le composé et une bonne cohérence entre teneurs mesurées via le préleveur  sans  membrane  Nafion  et  analyseur  automatique.  Une  analyse  fine  du circuit  fluidique  a  permis  de  mettre  en  évidence  un  tube  « polymère »  transparent dans  le  préleveur  équipé  d’une  membrane  Nafion.  Le  remplacement  de  ce  tube « polymère » par un tube téflon a donc été réalisé et les essais conduits ensuite ont mis en évidence une très bonne cohérence entre les teneurs mesurées via les deux préleveurs et à l’aide d’un analyseur automatique.  Une  seconde  étude  a  porté  sur  l’évaluation  de  la  contamination  des  tubes d’échantillonnage  lors  de  leur  installation  sur  le  préleveur  sans  prélèvement.  Ces essais  avaient  pour  but  d’évaluer  si  une  éventuelle  contamination  des  tubes d’échantillonnage lors de leur positionnement sur les préleveurs pouvait apparaître. Les résultats ont indiqué qu’une contamination en benzène est possible lorsque le tube d’échantillonnage est laissé en place pendant une durée de 7 jours sur le  préleveur,  que  ce  dernier  soit  en  fonctionnement  ou  à  l’arrêt.  Cette contamination  est  variable  selon  les  positions  du  tube  sur  le  préleveur  et  peut atteindre  une  masse  de  l’ordre  de  50ng  mais  cette  contamination  est  liée  à  un élément constitutif du préleveur et non pas à un dysfonctionnement de ce dernier (tel qu’un débit résiduel – via une électrovanne non totalement étanche par exemple –sur une voie non utilisée).  Une  troisième  étude   portant   sur   la   conservation   des   cartouches  avant échantillonnage a été conduite au travers de tests de conservation des cartouches remplies de 500mg de Carbopack X pendant une durée de stockage de 30, 60 et 90 jours.  Ainsi  les  cartouches  peuvent  être  conservées  après  conditionnement sans contamination notable pendant une durée de 90 jours.  Compte  tenu  des  résultats  antérieurement  obtenus  lors  de  l’utilisation  de tubes   Radiello   exposés   à   des   conditions   météorologiques   particulières (faibles températures combinées à des humidités élevées > 80%), une étude a été menée afin de permettre l’optimisation des conditions analytiques (splits) les  mieux  adaptées  à  l’analyse  de  tubes  Radiello  en  chambre  d’exposition.    Les principaux enseignements des séries d’essais sont les suivants : Les  problèmes  de  mesures  des  tubes  Radiello  rencontrés  pour  des  périodes hivernales spécifiques (faibles températures combinées à des humidités élevées > 80%) sont essentiellement liés aux conditions analytiques utilisées, Les  méthodes  utilisant  une  colonne  à  gros  diamètre  donnent  des  résultats  en accord  avec  les  valeurs des analyseurs automatiques (biais max avec une  répétabilité  des  mesures  satisfaisante  de  l’ordre  de  6  %  conforme  à celle habituellement obtenue pour une méthode d’échantillonnage passif.    Les  préconisations  pour  l’analyse  des  tubes  Radiello  exposés  à  ces  conditions hivernales spécifiques qui peuvent être déduites de ces essais sont les suivantes :   Dans le cas où l’analyse est effectuée sur une colonne de faible diamètre (0,25mm),  deux  splits  (outlet  split  et  inlet  split)  sont  nécessaires  pour  abaisser  la teneur en eau arrivant au détecteur, Dans le cas où l’analyse est effectuée sur une colonne de gros diamètre (0,53mm), 1 ou 2 splits (outlet split ou outlet split et inlet split) peuvent être utilisés. En  conclusion,  le  tube  Radiello  reste  utilisable  en  période  hivernale  pour  la mesure   du   benzène   à   condition   d’adopter   les   conditions   analytiques appropriées précitées.
Mardi 27 avril 2010
Rapport
Expertise technique de préleveurs séquentiels à bas débit pour les particules en suspension dans l'air ambiant