Résultats de la recherche

349 résultats correspondent à AASQA
Mercredi 14 décembre 2011
Rapport
Programme CARA - Bilan des travaux 2010
Le programme CARA, « caractérisation chimique des particules » a été mis en place depuis le début de l'année 2008, en réponse au besoin de compréhension et d'information sur l'origine des épisodes de pollution particulaire mis en évidence par les pics de PM10 du printemps 2007. Créé et géré par le LCSQA, ce programme aujourd’hui pérenne, fonctionne en étroite collaboration avec les AASQA mais également ponctuellement avec des laboratoires universitaires (LGGE, LCME, LSCE, LCPIRA…). Il est basé sur la spéciation chimique d’échantillons de particules atmosphériques prélevées sur filtre en plusieurs points du programme national de surveillance de la qualité de l’air. Il vise notamment à mieux comprendre l’origine des dépassements de valeurs limites de PM et à optimiser la prévision des épisodes de pollution particulaire par le système PREV’AIR. En 2010, les travaux du LCSQA dans le cadre de ce programme ont principalement portés sur : L’éruption du volcan Eyjafjallajökull au cours du mois d’Avril 2010 : cet épisode a été traité en en temps quasi-réel. L’évaluation de son impact sur la qualité de l’air a fait l’objet d’un rapport intermédiaire dès le mois de mai 2010 et d’un rapport final au mois de novembre 2010[1] Episode du 12 janvier 2010 : des dépassements de la valeur limite de 50 µg m-3 n’ont pas été prédits par PREV’AIR. Des filtres ont donc été récupérés et analysés afin de comparer les sorties du modèle avec les mesures et d’identifier la part des PM incorrectement prédite par le modèle. Episode du 24 janvier 2010 : à nouveau, des dépassements de la valeur limite de 50 µg m-3 n’ont pas été prédits par PREV’AIR en Rhône-Alpes. Des filtres ont donc été récupérés et analysés afin de comparer les sorties du modèle avec les mesures et d’identifier la part des PM incorrectement simulée par le modèle. Episodes en Martinique : des filtres ont été prélevés durant des épisodes supposés de poussières sahariennes afin de mieux les qualifier pour évaluer les prévisions disponibles dans PREV’AIR. Spéciation chimique des PM10 et PM2.5 en simultané sur l’ensemble de l’année sur un même site (Site urbain de Rouen). Le premier épisode ayant été décrit précédemment, le présent rapport traite des quatre autres. Une attention particulière est notamment portée aux comparaisons  entre mesures chimiques et sorties de modèles (CHIMERE pour les épisodes 2, 3 et 5, et du modèle MOCAGE pour l’épisode de 4). Les épisodes 2 et 3 sont des épisodes hivernaux marqués pour le premier par une forte augmentation de la part de matière organique dont la source majoritaire est le chauffage au bois, pour le second par une forte augmentation des espèces minérales secondaires. Au cours de ces épisodes, le modèle a correctement reproduit les concentrations en sulfate, nitrate et ammonium alors que les concentrations en matière organique ont largement été sous-estimées par le modèle. Cette sous-estimation explique en grande partie la sous-estimation des concentrations en PM10 pour l’ensemble des sites. Pour améliorer la prise en compte de la source chauffage au bois, l’INERIS travaille à mieux contraindre les émissions de matière organique notamment leur redistribution sur l’année en fonction de la température. L’épisode de Martinique a montré l’incapacité du modèle MOCAGE à quantifier précisément les concentrations en PM10 et en poussières minérales, même si la part de ces dernières sur la masse totale des PM est assez bien estimée. Enfin, les mesures en continu des PM10 et PM2.5 sur le site de Rouen, bien que encore parcellaires, confirment la tendance des modèles de prévision à la sous-estimation de la fraction organique, partiellement compensée par une sur-estimation globale des espèces inorganiques secondaires au sein des particules fines. Les résultats obtenus semblent également  indiquer une sur-estimation de la fraction grossière à Rouen. [1] Rapport LCSQA 2010, O. FAVEZ - A. COLETTE - L. CHIAPPINI Caractérisation chimique des particules : Premiers résultats relatifs à l’étude de l’impact sur la qualité de l’air des émissions particulaires du volcan Eyjafjallajökull au cours du mois d’Avril 2010
Jeudi 5 juillet 2012
Rapport
Observation des niveaux de concentration en pesticides dans l’air ambiant
Initiés en 2001, les premiers travaux méthodologiques de validation pour le prélèvement et l’analyse des pesticides reposaient sur une liste d’une trentaine de molécules. Depuis 2006, le LCSQA/INERIS a effectué annuellement des tests visant à valider l’efficacité de piégeage de nouvelles substances par la réalisation de dopages dynamiques selon la procédure décrite dans la norme NF XPX 43058. Les résultats de ces travaux sont compilés dans cette note.   Suite à la mise en évidence de l’inadaptation de la méthodologie de prélèvement décrite dans la norme NF XPX 43058 pour un certain nombre de substances présentant des caractéristiques de volatilité prononcées, des travaux de développement ont montré que l’utilisation de résine XAD2 permettait une nette amélioration de l’efficacité de piégeage pour la plupart de ces substances, sans toutefois se généraliser à l’ensemble. Depuis 2009, les travaux du LCSQA/INERIS se sont poursuivis dans l’optique de finaliser les tests de validation dans ces conditions de piégeage et en se focalisant principalement sur les substances présentant des résultats négatifs sur mousse PUF, non encore testées, ou particulièrement volatiles. Les résultats de ces travaux sont compilés dans cette note.   Au regard de ces résultats, il apparaît que la mise en œuvre d’un support « sandwich » constitué de mousse PUF et de résine XAD2, sans être infaillible, permet une amélioration sensible de l’efficacité de piégeage de la plupart des substances volatiles, parmi lesquelles on retrouve les plus recherchées par les AASQA (lindane, trifluraline, dichlorvos, chlorpyrifos,…), sans en dégrader celles des substances semi-volatile. Il convient donc d’envisager l’évolution de la méthode de prélèvement normalisée actuelle vers ce nouveau dispositif afin d’en élargir le champ d’application.
Lundi 25 février 2013
Rapport
Carbone élémentaire ou black carbon ?
Les particules de combustions contiennent une fraction « graphitisée », formée de trop peux d’hétéroatomes (tels que O, H, N, …) pour pouvoir être considérée comme organique. Cette fraction, appelée ici carbone suie, peut être séparée de la matière organique particulaire à l’aide de sa résistance thermique (puis analysé à plus haute température). Sa concentration peut également être estimée à l’aide de ces propriétés optiques. En effet le carbone suie constitue la principale espèce particulaire absorbant le rayonnement lumineux dans l’atmosphère. Cette double caractéristique physique lui confère une dualité conceptuelle inextricable : carbone élémentaire vs. black carbon. Le carbone élémentaire - EC - représente la partie réfractaire (jusqu’à 600-800 °C selon le taux d’oxygène) de l’aérosol carboné émis par combustion, alors que le black carbon - BC - représente la fraction (la plus) absorbante de ces émissions. Si, en première approche, ils peuvent être considérés comme alter ego, l’inhomogénéité des méthodes de mesures entraine un biais, plus ou moins important, entre ces deux sousespèces. D’une part, le degré de résistance thermique du carbone suie n’est pas proportionnel à son degré de capacité absorbante. D’autre part, la mesure du carbone élémentaire dépend fortement du protocole thermique (ou thermo-optique) utilisé tandis que la mesure du black carbon dépend fortement des hypothèses utilisées pour convertir une mesure d’absorbance en concentration massique ainsi que de possibles interférences avec d’autres espèces absorbantes (en fonction de la longueur d’onde utilisée). Bien que des documents normatifs soient en cours d’élaboration par le CEN, Il n’existe pas de méthode normalisée à ce jour pour la mesure de EC ni pour celle de BC. Par ailleurs, les hypothèses de conversion de l’absorption en concentration sont généralement basée sur des mesures d’EC, d’où de récentes propositions de faire plutôt référence à des mesures optiques d’Equivalent Black Carbon (EBC). La mesure du black carbon (équivalent) est plus automatisée, moins onéreuse et plus robuste que celle du carbone élémentaire. Il est à noter que ce type de mesure est réalisé depuis de nombreuses années dans les AASQA sous la forme de l’indice de Fumées Noires, qui utilise le même principe de mesure (absorbance). Cet indicateur est très largement utilisé par la communauté scientifique de la santé. Néanmoins, la mesure thermo-optique (de EC) permet également d’estimer la part de la fraction organique des PM.
Mardi 30 octobre 2012
Rapport
Guide d’application pour la surveillance du formaldéhyde et du benzène dans les établissements d’enseignement, d’accueil de la petite enfance et d’accueil de loisirs
Le principe d’une surveillance obligatoire de la qualité de l’air intérieur dans les lieux clos recevant du public a été introduit lors du Grenelle Environnement et acté dans le second plan national santé-environnement (PNSE2) ainsi que dans la loi n°2010-788 du 12 juillet 2010 portant engagement national pour l'environnement (article 180). De ce fait, le Laboratoire central de surveillance de la qualité de l'air (LCSQA) a été missionné, en 2008, pour élaborer des protocoles de mesure pour différentes substances pouvant faire l’objet d’une surveillance. Ces protocoles visaient à préconiser, pour chacune d'entre elles, des méthodes de prélèvement et d’analyse ainsi que des stratégies d’échantillonnage permettant de renseigner des niveaux globaux de concentrations dans les lieux concernés. Ainsi, en 2008, des protocoles ont été élaborés par le LCSQA [LCSQA (2008)] pour la surveillance du formaldéhyde et du benzène. Dans un premier temps, ces travaux ont été consacrés aux lieux scolaires et d'accueil de la petite enfance. La construction de ces protocoles a été réalisée en collaboration étroite avec un groupe de suivi spécialement mis en place à cet effet et composé de nombreux experts des environnements intérieurs et acteurs de la surveillance de la qualité de l'air ambiant.  Par ailleurs, afin de définir les modalités d’une future surveillance à caractère réglementaire, une campagne pilote a été conduite au niveau national sur la période 2009-2011. Diligentée et financée par le ministère en charge de l’écologie, en lien avec les ministères chargés de la santé, de l’éducation nationale et de la famille, cette campagne a été menée avec l’appui technique et organisationnel, au niveau national, de l’Institut national de l’environnement industriel et des risques (INERIS), dans le cadre de ses missions au sein du Laboratoire central de surveillance de la qualité de l’air (LCSQA), et du Centre Scientifique et Technique du Bâtiment (CSTB). Les mesures ont été réalisées par les Associations agréées de surveillance de la qualité de l’air (AASQA). Des spécialistes en audit technique des bâtiments sont également intervenus pour le diagnostic technique des établissements. Au total, 316 établissements répartis sur l’ensemble du territoire ont été concernés entre 2009 et 2011. Lors de cette campagne, deux polluants prioritaires ont été mesurés : le formaldéhyde et le benzène. Par ailleurs, le niveau de confinement a été évalué et un diagnostic technique de chaque établissement a été réalisé afin de disposer d'une description précise du bâtiment et de son environnement proche (ventilation, systèmes de chauffage, revêtements et mobiliers …). Si cette campagne a permis de renseigner sur un plan national les niveaux de concentrations rencontrés dans les écoles et les crèches, elle a également été l’occasion de tester en conditions réelles les protocoles élaborés en 2008 et d’optimiser, via le retour d’expérience réalisé, la méthodologie et les modalités à mettre en œuvre dans la perspective d’une surveillance à caractère réglementaire. C’est sur cette base que le présent document a été établi, afin de fournir aux opérateurs de la surveillance un référentiel pour le formaldéhyde et le benzène concernant la stratégie d’échantillonnage ainsi que le positionnement des résultats obtenus. Pour mémoire, l’Observatoire de la Qualité de l’Air Intérieur poursuit ses actions de recherche sur les lieux de vie fréquentés par les enfants. A ce titre, une campagne nationale de mesures dans les écoles va débuter prochainement avec un objectif de connaissance des expositions des enfants à la pollution de l’air intérieur (large panel de composés visés
Mardi 12 juillet 2011
Rapport
Analyse des impuretés dans les gaz de zéro
Pour le réglage à zéro des analyseurs, les AASQA utilisent des gaz de zéro (Air zéro en bouteille…) pour lesquels on considère que les concentrations des impuretés sont inférieures au seuil de détection des analyseurs et de ce fait, sont données comme étant égales à zéro.Toutefois, ceci reste un postulat pouvant parfois être remis en cause par exemple lors des audits réalisés par le COFRAC. De plus, les normes européennes NF EN 14211, NF EN 14212, NF EN 14625 et NF EN 14626 portant sur l’analyse de SO2, de NO/NOx/NO2, CO et O3 fournissent des spécifications pour les gaz de zéro à utiliser. Toutefois, la chaîne d’étalonnage pour l’air zéro n’existant pas pour l’instant, il n’est pas possible de déterminer si les exigences normatives sont respectées.Enfin, la fabrication des mélanges gazeux de référence gravimétriques et la génération de mélanges gazeux de référence dynamiques (dilution d’un mélange gazeux haute concentration par voie dynamique, mélange gazeux généré par perméation…) impliquent l’utilisation de gaz de zéro (azote ou air). Une des sources d’erreur dans le calcul de la concentration de ces mélanges gazeux de référence est la pureté des gaz de zéro utilisés, ce qui est soulevé de façon récurrente par les auditeurs techniques du COFRAC et lors des réunions sur les comparaisons européennes et internationales, car les laboratoires nationaux se doivent d’être capables de déterminer la pureté des gaz utilisés.L’objectif final de cette étude est de développer une méthode d'analyse de la pureté des gaz de zéro en caractérisant et en quantifiant les impuretés (NO, NO2, SO2 et CO) présentes dans les gaz de zéro.Ceci permettra à terme d’analyser et de comparer les gaz de zéro vendus par les fabricants de gaz afin de valider le choix des fournisseurs et de répondre aux exigences normatives. Les études menées en 2008 et en 2009 ont permis de développer la méthode d'analyse pour le NO et le NO2 en utilisant un spectromètre de type « Tunable Infrared Laser Absorption » de la société Aerodyne Research qui fonctionne selon le principe de l’absorption infrarouge.L’étude 2010 a été consacrée à : L’apprentissage du fonctionnement complexe du QC-Laser et à l’optimisation des réglages optiques de cet appareil afin d’obtenir les meilleurs résultats possibles; La détermination des caractéristiques métrologiques de cet appareil pour les mesures des impuretés de CO et de SO2 dans les gaz de zéro. Lors de la mise en service du QC-Laser en 2008, le fabricant avait formé le LNE sur le logiciel: cette formation s'était avérée suffisante pour le développement de la méthode de mesure pour le NO et le NO2. Cependant, les réglages effectués lors de cette étude ont été remis en cause lors du rajout des 2 lasers pour les mesures de CO et de SO2 en 2010, car il s'avère que d'autres réglages plus complexes sont à effectuer sur le QC-Laser si l'on veut disposer d'un appareil de mesure performant, surtout pour des mesures de concentrations inférieures à 1 nmol/mol. Le premier point critique a porté sur la maîtrise du remplissage des cellules de référence avec du CO et du SO2 purs afin de faciliter la reconnaissance en longueur d’onde des pics servant à la quantification des composés. Un mélange contenant ces deux gaz purs dans des proportions équivalentes a été effectué en amont pour rendre le remplissage plus aisé. Malgré cette opération préliminaire, le remplissage s'est avéré être une opération très délicate à réaliser en raison du système d’ouverture/fermeture de la cellule qui présente des problèmes d'étanchéité. Pour palier ces problèmes, les cellules seront remplies sur une rampe spécifique indépendante de l’appareil. Le second point critique a consisté à régler les tensions des lasers de mesure du QC-Laser. Avant de commencer l'étude, les tensions des lasers de mesure ont été relevées pour les différents trajets optiques et il a été constaté un signal très faible sur l'un d'eux. Les différents miroirs ainsi que les vis de réglage des lasers de mesure ont donc été réglés, ce qui a permis d'augmenter le signal et de caractériser le QC-Laser pour des mesures de concentrations de CO et du SO2 proches de 1 nmol/mol. La détermination des caractéristiques métrologiques du QC-Laser pour les mesures de concentrations de CO et de SO2 a conduit aux résultats suivants : La réponse de l’appareil est linéaire autour de 1 nmol/mol; La limite de détection de l’appareil est de 0,13 nmol/mol et la limite de quantification de 0,42 nmol/mol pour la mesure du CO dans l’air; La limite de détection de l’appareil est de 0,17 nmol/mol et la limite de quantification de 0,57 nmol/mol pour la mesure du SO2 dans l’air; La dispersion des mesures sur une journée (écart-type de répétabilité) est de l’ordre de 10 % pour le SO2 et inférieure à 10 % pour le CO, mais pouvait se dégrader jusqu'à obtenir des écarts-types de répétabilité de 56 % pour le CO et 85 % pour le SO2 ; le même réglage de l’appareil appliqué aux mesures de concentration de NO et de NO2 conduisait également à des résultats moins bons que ceux observés lors des études précédentes. Ces résultats élevés de répétabilité et donc de reproductibilité expliqués par des concentrations instables dans le temps nous ont donc amenés à retravailler sur le réglage du QC-Laser. Les nombreux essais de réglage ont permis de mettre en évidence que le fait de toucher aux miroirs et aux vis de réglage des lasers de mesure avait certes permis d'augmenter les tensions et donc le signal, mais avait également entraîné un désalignement des lasers qui n'avait pu être détecté que lors de la détermination de la reproductibilité des mesures. Par conséquent, sur les conseils du fabricant, des tests ont été de nouveau effectués pour optimiser d'une part, le réglage des lasers d'appoint et d'autre part, l’alignement des lasers de mesure sur ces mêmes lasers d’appoint.Ces nouveaux réglages ont permis de supprimer les dispersions anormales des mesures observées précédemment et d'obtenir des écarts-types de répétabilité de l’ordre de 10 % pour des mesures de concentrations de CO et SO2 voisines de 1 nmol/mol. Il est important de souligner que la procédure de mesure des concentrations de NO, NO2, CO et SO2 dans les gaz de zéro n'a pas pu être finalisée en 2010, car au fur et à mesure de la réalisation des essais, des problèmes sont survenus mettant en évidence que le QC-Laser est un appareil très complexe et très pointu d'utilisation. De plus, la localisation du fabricant aux Etats-Unis a compliqué la résolution des problèmes rencontrés. De ce fait, le LNE a été amené à se former lui-même sur cet appareil, ce qui a certes nécessité un certain temps pour acquérir des compétences et des connaissances pointues, mais qui à présent a permis au LNE de mieux connaître et de mieux maîtriser son principe et son fonctionnement intrinsèque. En effet, de nombreux essais ont été réalisés sur le QC-Laser afin de déterminer les contrôles et les réglages à effectuer pour pouvoir analyser les impuretés dans les gaz de zéro avec unejustesse et une reproductibilité suffisantes ainsi que de faibles incertitudes, surtout à des concentrations de NO, NO2, CO et SO2 inférieures à 1 nmol/mol. Grâce à ces essais, le LNE a pu mettre en place une procédure permettant le contrôle et le réglage de tous les éléments du QC-Laser qui sont susceptibles de se dérégler au cours du temps. Cette étude devra être poursuivie et finalisée en 2011 afin : D'optimiser la méthode d'analyse pour pouvoir mesurer simultanément de très faibles concentrations (inférieures à 1 nmol/mol) de NO, NO2, SO2 et CO dans un même gaz de zéro en utilisant l'ensemble des résultats obtenus lors des études menées de 2008 à 2010, De développer une procédure pour s'assurer de la stabilité des performances métrologiques de l'appareil dans le temps conformément aux exigences de la norme 17025 en terme d'assurance qualité, De réaliser de premiers raccordements "pilotes" de gaz de zéro de certains niveaux
Jeudi 5 juillet 2012
Rapport
Intercomparaisons des stations de mesures : Comparaison monopolluant Nox
Suite à l’observation à de multiples reprises de comportements anormaux de quelques analyseurs de NOx lors des campagnes d’intercomparaison des moyens mobiles, l’influence du sécheur échantillon (présence ou non, efficacité de séchage variable) a été avancée comme explication. Le LCSQA/INERIS a proposé de vérifier cette hypothèse en réalisant une intercomparaison d’analyseurs de NOx sur le polluant NO. Pour ce faire, les essais ont été réalisés dans un premier temps en laboratoire sur atmosphères reconstituées (concentration et humidité variables) puis dans un second temps sur atmosphère réelle sur la station fixe de Creil. Ces travaux ont pour objectif final de cerner l’influence du système de séchage sur l’incertitude de mesure des analyseurs de NOx. Plusieurs séries d’appareils ont été testées, équipées de sécheurs « neufs », de sécheurs d’âges différents, et non équipés de sécheurs.   Des essais réalisés en laboratoire, il ressort qu’un sécheur neuf n’est pas systématiquement garant d’une qualité de séchage élevée, et qu’il peut manifestement lui arriver d’être défaillant. On observe en effet qu’un sécheur considéré comme usagé (de par sa coloration) peut présenter le même niveau d’efficacité qu’un sécheur neuf. De plus, des appareils équipés de sécheurs d’origine (non usagés) peuvent présenter des profils de séchage très linéaires ou croissant avec la progression de l’hygrométrie.   Les conditions d’essais de terrain n’ont pas permis de reproduire les écarts et le comportement atypique des certains analyseurs rencontrés lors des intercomparaisons de moyens mobiles. Il convient de reprendre ces conclusions et de les confirmer lors d’essais en laboratoire. En particulier, il apparaît nécessaire d’approfondir les observations du comportement des sécheurs de qualités différentes et d’en tirer des prescriptions pour les utilisateurs en AASQA (durée de vie, qualité de séchage, délai avant stabilité du séchage, équivalence des lots,…). Une fois ces points précisés, des générations d’atmosphère de NO pourront être envisagées afin de définir si les comportements atypiques d’analyseurs est à attribuer au seul sécheur échantillon ou s’il s’agit de comportements inhérents à certains appareils (sensibilité accrue à l’humidité par exemple).   Ces discussions seront poursuivies au second semestre 2012 au sein de la nouvelle CS dédiée aux analyseurs en continu.
Mardi 21 août 2012
Rapport
Surveillance du benzène 2/2 : la méthode de référence (échantillonnage actif)
En 2011, les travaux du LCSQA/EMD sur la surveillance du benzène ont consisté en des actions concernant la possibilité de mise en œuvre de cette  surveillance dans des zones géographiques couplant températures et taux d’humidité élevés avec la mise en place d’un échantillonnage par prélèvement actif sur 7 jours afin de confirmer les résultats obtenus lors des premiers essais en 2010. Lors de deux campagnes (une estivale et l’autre hivernale) de onze semaines chacun, des préleveurs actifs avec et sans membrane Nafion ont fonctionné en parallèle avec un analyseur automatique, ces deux techniques permettant la mise en place d’une méthode de référence pour la surveillance du benzène. En termes de fonctionnement, le préleveur équipé d’une membrane Nafion est tombé en panne au milieu de la deuxième campagne tandis que le préleveur sans membrane Nafion a fonctionné pendant l’ensemble de la durée des deux campagnes. Lors de la campagne estivale, des difficultés analytiques ont été rencontrées lors de l’analyse des tubes échantillonnés via le préleveur sans utilisation de la membrane Nafion tandis que pour les tubes échantillonnés via le préleveur avec membrane Nafion aucun problème d’analyse n’est apparu. L’explication à cette observation a été apportée lors de la mise en œuvre de la campagne hivernale : les difficultés analytiques rencontrées étaient liées à la présence en quantité importante d’eau dans l’un des tubes échantillonné avec l’utilisation du préleveur, quantité importante d’eau liée à la ligne d’échantillonnage. Une modification de la ligne d’échantillonnage lors de la campagne hivernale a permis l’analyse de l’ensemble des tubes échantillonnés quel que soit le préleveur (avec ou sans membrane) sans aucune difficulté. Pour les deux campagnes de mesure, les écarts constatés lors de la mesure du BENZENE avec et sans membrane Nafion sont globalement de l’ordre de ±25% pour des concentrations mesurées faibles (entre 0,7 et 2,4 µg/m3) (à une exception près). Ainsi, à la différence de ce qui avait été observé lors de la campagne 2010, il apparaît que pour l’ensemble des échantillonnages réalisés sur le site de Madininair, la mise en place de la membrane Nafion dans le circuit d’échantillonnage n’affecte pas de manière significative la mesure du benzène. Si on compare les teneurs mesurées via échantillonnage actif aux teneurs mesurées via analyseur automatique, il s’avère que les teneurs mesurées via l’analyseur automatique sont systématiquement inférieures aux teneurs mesurées via l’utilisation de l’échantillonnage actif (avec ou sans membrane Nafion). En dernier lieu, deux préleveur « identiques » (tous deux sans membrane Nafion, l’un appartenant au LCSQA/EMD, l’autre à l’AASQA MADININAIR ont été mis en parallèle pendant 9 semaines. Les écarts des teneurs en benzène mesurées par les deux préleveurs restent relativement faibles puisqu’ils varient entre -20% et +6%  au cours de 9 semaines pendant lesquelles des mesures en parallèle ont été menées. Ces écarts peuvent être considérés comme faibles au vu des teneurs mesurées qui n’ont pas excédées 2 µg/m3 et sont tout à fait en cohérence avec l’incertitude qui peut être associée à la mesure du benzène et qui est de 10% à une teneur de 5 µg/m3. Pour les deux campagnes de mesure, les écarts constatés lors de la mesure du TOLUENE avec et sans membrane Nafion sont inférieur à ±20% pour des concentrations mesurées plus fortes (entre 3 et 8 µg/m3) (à une exception près). Il apparaît que pour l’ensemble des échantillonnages réalisés sur le site de Madininair, la mise en place de la membrane Nafion dans le circuit d’échantillonnage n’affecte pas de manière significative la mesure du toluène. Si on compare les teneurs mesurées via échantillonnage actif aux teneurs mesurées via analyseur automatique, il s’avère que les teneurs mesurées via l’analyseur automatique sont assez cohérentes avec les teneurs mesurées via l’utilisation de l’échantillonnage actif (avec ou sans membrane Nafion) et aucune tendance systématique n’a été observée mais il est important de rappeler que les concentrations mesurées sont environ 3 fois plus importantes en toluène qu’en benzène. En dernier lieu, Les écarts des teneurs en toluène mesurées par les deux préleveurs « identiques » sont particulièrement faibles puisqu’ils varient entre -3% et +5%  au cours de 9 semaines pendant lesquelles des mesures en parallèle ont été menées (à une exception près).
Mercredi 27 octobre 2010
Rapport
Observation des niveaux de concentration en pesticides dans l’air ambiant (2/2)
Ce document présente les différents travaux réalisés sur la thématique « pesticides » pour le LCSQA en 2009 : l’exploitation de la base de données de mesure des AASQA, les tests de validation de nouvelles substances vis-à-vis de la méthode de prélèvement normalisée, le développement d’une méthode de prélèvement adaptée aux substances volatiles, l’évolution de la méthode normalisée la campagne exploratoire de comparaison entre préleveurs classiques et capteurs passifs, les actions menées au sein du GT pesticides.
Jeudi 17 février 2011
Rapport
Etat des lieux des niveaux de benzène en air intérieur
En 2007, le Grenelle de l'Environnement a énoncé la nécessité d’une surveillance de la qualité de l’air intérieur dans les établissements recevant du public, passant par le suivi d’un certain nombre de composés d’intérêt sanitaire, dont le benzène. Règlementé et surveillé dans l’air extérieur depuis 2000, le benzène fait ainsi l’objet depuis 2008 de la rédaction de protocoles « lieux scolaires et petite enfance ». Il est mesuré, avec le formaldéhyde, dans le cadre de la campagne pilote nationale lancée par Chantal JOUANNO, Secrétaire d’État à l’Écologie, en septembre 2009 afin de définir les modalités de la surveillance obligatoire de la qualité de l’air intérieur prévue par le projet de loi dit « Grenelle 2 », à partir de 2012, dans certains établissements recevant du public comme les écoles et les crèches. Ainsi, environ 300 établissements sont concernés par ces mesures entre 2009 et 2011. Dans ce contexte, cette étude a pour but de réaliser un état des lieux des concentrations en benzène communément mesurées dans les établissements recevant du public. Cette étude est centrée sur les environnements intérieurs dans lesquels les AASQA pourraient intervenir afin d’identifier des lieux potentiellement intéressant à intégrer dans cette démarche de surveillance, au regard des concentrations qui y sont rencontrées. Ainsi, les lieux documentés dans cette étude sont les écoles, les crèches, établissements recevant du public les transports en commun et les halls d’aéroport. Cependant, pour recueillir un maximum d’information sur les sources de benzène en air intérieur, les résidences de particuliers ainsi que les bureaux ont également été étudiés. Cette étude, ciblée sur la France, l’Europe mais aussi élargie aux Etats-Unis et à l’Asie afin de disposer d’éléments de comparaison, a permis d’établir les conclusions suivantes : Les niveaux en benzène les plus élevés sont observés en Asie (concentrations supérieures à 10 µg m-3), De manière générale, les environnements présentant les concentrations les plus élevées (> 5 µg m-3) sont les bureaux, les immeubles recevant du public ainsi que les résidences de particuliers. En Europe, les niveaux les plus élevés sont mesurés dans les villes du sud (Athènes, Madrid, Thessalonique, Catania….), En Europe, les périodes hivernales sont marquées par des niveaux de benzène en air intérieur plus importants qu’en période estivale, En Europe, dans 80 % des cas, les concentrations moyennes mesurées sont inférieures à la valeur limite de surveillance en air ambiant de 5 µg m-3, En France, dans 100 % des études considérées, les valeurs moyennes sur l’ensemble des mesures réalisées au cours de chaque étude, sont inférieures à 5 µg m -3. En France et en Europe, ponctuellement, les concentrations en benzène peuvent atteindre des valeurs supérieures à 5 µg m-3 (12 µg m-3 ont par exemple été atteints dans une école au cours de la campagne pilote nationale) Même si globalement les niveaux restent faibles en air intérieur et en particulier en France, le benzène n’en reste pas moins une substance d’intérêt majeur sur le plan sanitaire. Le benzène est en effet un composé cancérogène sans seuil d’innocuité et l’objectif doit donc être la réduction maximale de ses concentrations en particulier dans le cas de populations sensibles A ce titre, le Haut Conseil de santé Publique (HCSP) a publié, en juin 2010, un avis relatifà l’établissement de valeurs repères d’aide à la gestion des niveaux de benzène en air intérieur. Cette surveillance est en effet nécessaire afin de s’assurer, sur le long terme, que la tendance de réduction de concentrations initiée par la règlementation européenne et la règlementation sur les produits de consommation, se poursuit. Elle ne doit en revanche pas faire oublier la surveillance d’autres composés tels les particules, préoccupants d’un point de vue sanitaire et dont les niveaux peuvent atteindre des concentrations considérables en air intérieur.
Mardi 12 juillet 2011
Rapport
Contrôle Qualité de la chaîne nationale d’étalonnage
L'objectif de cette étude est d’effectuer des comparaisons interlaboratoires au niveau national pour s’assurer du bon fonctionnement de la chaîne nationale d’étalonnage et pouvoir détecter d’éventuelles anomalies auxquelles il conviendra d’apporter des actions correctives. Contrôle qualité du bon fonctionnement de la chaîne d’étalonnage en NO/NOx, en CO et en SO2 : Le but est de faire circuler des mélanges gazeux de concentration inconnue (NO/NOx de l’ordre de 200 nmol/mol, CO de l’ordre de 9 μmol/mol et SO2 de l’ordre de 100 nmol/mol) dans les niveaux 2 et 3 pour valider les différents raccordements effectués dans le cadre de la chaîne nationale d’étalonnage. En 2010, des mélanges gazeux de NO2 de l’ordre de 200 nmol/mol ont été rajoutés.Ces mélanges gazeux ont été titrés par le LNE puis envoyés à des niveaux 3.Ces niveaux 3 ont ensuite déterminé la concentration de ces mélanges gazeux avant et après réglage de l’analyseur de station avec l’étalon de transfert 2-3, puis les ont renvoyés au LNE qui les a titrés de nouveau. En 2010, 3 campagnes d'intercomparaison ont été réalisées : Avec les réseaux de mesure ATMO PC, LIG'AIR, ATMO Drôme Ardèche, ATMO Lorraine Nord et AIRBREIZH de mars à juin 2010, Avec les réseaux de mesure ATMOSF'air Bourgogne, AIR NORMAND, ATMO CA, ATMO PACA, ATMO Franche Comté et AIRAQ de juin à novembre 2010, Avec les réseaux de mesure LIMAIR, ORAMIP, ATMO Auvergne, ASPA et AIR COM de septembre à novembre 2010. En règle générale, les AASQA communiquent au LNE les concentrations mesurées soit sans les incertitudes élargies associées, soit avec des incertitudes de mesure inexploitables (inférieures à celles du LNE, valeurs très élevées…). Dans ces conditions, il n'est pas possible de traiter les résultats par des méthodes statistiques. Par conséquent, dans le présent document, le traitement des données est effectué en s'appuyant sur l'ensemble des résultats obtenus depuis 2002 lors des campagnes précédentes qui ont conduit à définir des intervalles maximum dans lesquels doivent se trouver les écarts relatifs entre les concentrations déterminées par le LNE et celles déterminées par les niveaux 3 après élimination des valeurs jugées aberrantes.Globalement, en 2010, lorsque les concentrations aberrantes sont éliminées, les écarts relatifs entre le LNE et les niveaux 3 restent dans ces intervalles qui sont les suivants : ± 7 % avant et après réglage pour une concentration en SO2 voisine de 100 nmol/mol ; ± 6 % avant et après réglage pour des concentrations en NO/NOx voisines de 200 nmol/mol ; ± 6 % avant réglage et ± 4 % après réglage pour des concentrations en CO voisines de 9 μmol/mol. Les résultats montrent que : Globalement la chaîne nationale d'étalonnage mise en place pour assurer la traçabilité des mesures de SO2, de NO/NOx et de CO aux étalons de référence fonctionne correctement. Le fait de régler l’analyseur avec l’étalon de transfert 2-3 améliore de façon significative les écarts relatifs, ce qui met en évidence une dérive de la réponse des analyseurs au cours du temps. Concernant le composé NO2, les intervalles n’ont pas pu être définis, car les comparaisons n’ont débutées qu’en 2010. Les résultats obtenus en 2010 montrent que les écarts relatifs entre les concentrations déterminées par le LNE et celles déterminées par les niveaux 3 sont globalement de ± 7 % avant et après réglage de l’analyseur, ce qui est comparable à l’intervalle de ± 6 % défini pour les composés NO/NOx. Contrôle qualité du bon fonctionnement de la chaîne d’étalonnage en O3 : Comme pour les composés SO2, NO/NOx, CO et NO2, le but est de faire circuler, dans les niveaux 3, un générateur d’ozone portable délivrant un mélange gazeux à une concentration voisine de 100 nmol/mol pour valider les différents raccordements effectués dans le cadre de la chaîne nationale d’étalonnage. La présente campagne d'intercomparaison a été effectuée avec 7 niveaux 3 en 2009, à savoir : MADININAIR, AIR PL, AIRPARIF, AIR COM, AIRFOBEP, ATMO NPDC et ATMO Auvergne. Les résultats obtenus en 2010 montrent que les écarts relatifs entre les concentrations en O3 déterminées par les 7 réseaux de mesure et celles déterminées par le LNE sont compris entre +3% et –9%. La plage dans laquelle se situent les écarts est plus faible que celle obtenue en 2009 ; par contre, l’écart maximum constaté est légèrement supérieur (écarts 2009 de ±7%). De plus, les résultats d’étalonnage montrent que durant la comparaison, les écarts de concentration sont globalement négatifs : ceci pourrait s’expliquer par des mesures effectuées pour des temps de génération inférieurs à celui spécifié dans le protocole (soit 1h30). Pour pouvoir argumenter ce point, il sera demandé aux participants de spécifier le temps de génération lors de la prochaine comparaison en 2011.