Résultats de la recherche

398 résultats correspondent à AASQA
Lundi 25 juin 2012
Rapport
Surveillance des HAP - Synthèse des travaux du LCSQA menés sur les Hydrocarbures Aromatiques Polycycliques (1997-2011)
RESUME/ABSTRACT Le présent document a pour but de synthétiser les études entreprises par le LCSQA dans le cadre de la surveillance des Hydrocarbures Aromatiques Polycycliques (HAP) sur le territoire français. Celles-ci ont débuté en 1997 à la suite de l’adoption par le Conseil Européen de la directive 96/62/CE et ont dans un premier temps porté sur l’élaboration d’un protocole de mesure applicable aux associations agréées de surveillance de la qualité de l’air (AASQA) tant du point de vue technique que logistique et financier. Le LCSQA/INERIS a ainsi développé, en tenant compte des nombreux enseignements tirés du programme pilote HAP et des évolutions réglementaires, une stratégie métrologique adaptée au prélèvement et à l’analyse de ces composés par les AASQA.Dans un deuxième temps, le LCSQA/INERIS a préférentiellement orienté ses travaux dans une optique de surveillance des HAP : caractérisation des concentrations ambiantes selon la typologie de site ou l’environnement proche (étude de sources ponctuelles émettrices), évaluation de la contribution du chauffage au bois, prise en compte des évolutions réglementaires (mesure des HAP dans les dépôts) et des problématiques émergeantes (dérivés polaires des HAP). L’INERIS a également poursuivi sa mission de soutien et d’expertise métrologique en entreprenant plusieurs campagnes de terrain relatives à l’utilisation de « denuders » à ozone pour l’échantillonnage du B[a]P.Enfin, en parallèle de ces études, le LCSQA/INERIS a activement et continuellement participé aux travaux européens de normalisation (rédaction du « position paper », groupe CEN TC 264 WG 21) ainsi qu’aux groupes de travail (GT) et Commissions de suivi (CS) nationaux. The present report aims at summarizing the studies undertaken by the LCSQA within the frame of PAH monitoring on the French territory. The latter started in 1997 after the passing by the European Council of the 96/62/CE directive and were firstly focused on the preparation of a measurement method which could be applied to the French air quality monitoring network regarding the technical as well as the logistic and financial aspect. Thus, thanks to the knowledge learnt from the PAH pilot campaign and considering the regulatory evolutions, the LCSQA/INERIS developed a suitable metrological strategy for the measurement and analysis of these compounds by the monitoring network. Then, the LCSQA preferentially focused its works on the PAH monitoring in itself: characterization of ambient concentration according to the site type or to the close environment (study of emitting individual sources), evaluation of the wood heating contribution, consideration of the regulatory evolutions (PAH measurement in sediments) and emerging issues (polar PAH derivates). The LCSQA/INERIS also continues its mission of metrological support and expertise by undertaking a few field campaigns concerning the use of ozone scrubbers for the B[a]P sampling. At last, in parallel to these studies, the LCSQA/INERIS has actively and continuously participated to the European normalization works (writing of the “position paper”, CEN TC 264 WG 21) and to the National Working Groups.
Mardi 11 avril 2017
Rapport
Protocole de détermination des caractéristiques de performance métrologique des micro-capteurs - étude comparative des performances en laboratoire de micro-capteurs de NO2
Mise en ligne du rapport intitulé : "Validation du protocole de détermination des caractéristiques de performance métrologique des micro-capteurs pour la mesure indicative des polluants gazeux réglementaires – étude comparative des performances en laboratoire de micro-capteurs de NO2" L'objectif de ce travail est est de faire évoluer le protocole proposé dans sa première version en mars 2016 et qui permet d'évaluer la capacité de micro-capteurs de gaz "low cost" à mesurer la concentration des polluants gazeux réglementés de manière "indicative". La démarche proposée est de réviser pas à pas le processus simplifié du rapport d'étude de 2016 en tenant compte des contraintes spécifiques au contexte de ce travail. Ce rapport rend compte de l’évolution des réflexions menées sur les différentes étapes de la première version du protocole éditée en Mars 2016  : la définition des types de capteurs entrant dans le périmètre de la caractérisation y est révisée, tout comme la liste des paramètres métrologiques de caractérisation. Des précisions ont été apportées quant à la configuration optimale de la chambre d’exposition nécessaire à cette démarche. La pertinence, ainsi que la robustesse du protocole proposé ont été testées par des essais de validation de capteurs de dioxyde d’azote (NO2). Ce protocole pour l’évaluation métrologique de micro-capteurs pour la mesure indicative des polluants gazeux réglementaires, évoluera et sera remis à jour régulièrement en fonction des remarques et propositions des utilisateurs. Les modalités d'évolution de ce document sont à définir collectivement. Les micro-capteurs de gaz « low cost » constituent, depuis quelques années, des outils émergents qui permettraient par exemple d’obtenir des mesures indicatives de la qualité de l’air. Ces données sont particulièrement intéressantes pour les AASQA car, en complément des méthodes de référence, ces instruments permettraient une surveillance continue et spatialisée à coût modéré. En fonction des niveaux de concentrations relevés durant la phase d’évaluation préliminaire, la Directive européenne 2008/50/CE sur la qualité de l’air définit le nombre de points de mesure et le type de méthode à mettre en œuvre pour la détermination des teneurs en polluants gazeux et particulaires et leurs adéquation vis-à-vis des valeurs cibles et limites définis. Par exemple pour le dioxyde d’azote et les particules, si ces niveaux sont inférieurs au seuil d’évaluation supérieur (SES), des mesures indicatives ou par estimation objective peuvent être mises en place. Pour ce type de mesure, il doit être démontré que l’objectif de qualité des mesures ou l’incertitude relative élargie est inférieur à deux fois ce qui est permis pour les méthodes de référence. Le guide de démonstration d’équivalence (2010) [2] apporte des précisions sur la méthode à utiliser pour effectuer cette démonstration mais n’indique pas de protocole particulier destiné aux capteurs utilisés pour les mesures de qualité de l’air. Devant ces manques en matière de protocole de qualification, un groupe de travail au niveau du Comité Européen de Normalisation (CEN, WG 42 « Gas sensors ») s’est constitué pour travailler sur l’élaboration d’une spécification technique sur l’évaluation des performances des capteurs pour la détermination de la concentration des polluants réglementés dans l’air ambiant (gaz dans un premier temps). Les réflexions de ce groupe de travail s’inspirent des études menées par le JRC  depuis 2013, et seront également alimentées par la démarche simplifiée d’évaluation et du calibrage des capteurs de gaz low cost adaptée aux gaz réglementés pour le suivi de la pollution de l’air, sur laquelle le LCSQA travaille depuis 2015. Toutes les remarques peuvent être adressées directement par email à Nathalie Redon (nathalie.redon@imt-lille-douai.fr), ou Sabine Crunaire (sabine.crunaire@imt-lille-douai.fr).    
Lundi 24 janvier 2011
Rapport
Méthodologie de définition des zones sensibles
  Ce document fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air ambiant.   Les schémas régionaux Climat, Air et Energie instaurés par la Loi Grenelle 2 seront des documents d’orientation qui devront concilier des préoccupations parfois divergentes sur le changement climatique et la pollution atmosphérique. Pour chaque région française, l’état des lieux requis dans le projet de décret pour ces schémas impose de cartographier des zones ditessensibles, où les orientations destinées à prévenir ou à réduire la pollution atmosphérique seront renforcées. Si des arbitrages se révèlent nécessaires entre les objectifs définis pour la réduction des émissions de gaz à effet de serre et ceux pour la réduction des émissions de polluants dans l’air, une pondération des critères de choix s’imposera et sera fonction des zones plus ou moins sensibles à la qualité de l’air. Si ces zones sensibles se définissent principalement en fonction des dépassements de valeurs limites réglementaires, leur délimitation pose une question méthodologique à laquelle il convient de répondre de manière harmonisée. Un groupe de travail animé par le MEDDTL et comprenant des représentants de l’ADEME, du LCSQA et des AASQA a été constitué à cette fin. Il a eu pour mission d’élaborer dans des délais contraints une méthodologie simple, commune, aisément applicable à l’ensemble des régions, et qui assure la cohérence des zones sensibles sur tout le territoire. Pour mener à bien cette tâche, il s’est appuyé sur des travaux méthodologiques existants, réalisés par les AASQA ou le LCSQA, qu’il a réadaptés et développés en fonction des besoins et des contraintes propres aux zones sensibles. Chaque élément de la méthodologie a été soumis à de nombreux tests avant d’y figurer définitivement. Compte tenu des enjeux associés aux zones sensibles, les polluants retenus dans la définition de ces zones sont les PM10et le NO2 : pour ces composés, des dépassements de valeurs limites réglementaires sont constatés ou risquent de l’être étant donné les niveaux d’émission actuels ; les PM10 et le NO2 sont des polluants d’intérêt à la fois pour des problématiques climatiques, énergétique et de pollution de l’air ; les données de concentration et d’émission disponibles pour ces polluants sont suffisamment nombreuses et précises pour permettre une exploitation satisfaisante dans chaque région française. Les zones sensibles sont cartographiées progressivement selon une maille kilométrique. La première partie consiste à délimiter les zones de dépassement de valeurs limites aux échelles nationale et régionale (dépassements en situation de fond) puis de façon plus localisée (dépassements en situation de proximité). Ce travail tient compte des cinq dernières années de mesure, dans la limite des données disponibles. Pour la pollution de fond, et sauf cas particulier, les dépassements de la valeur limite relative aux concentrations journalières de PM10 constituent la principale problématique. L’identification des zones de dépassement repose sur la combinaison de données journalières d’observation et de modélisation et sur l’exploitation des estimations journalières ainsi obtenues. Pour la pollution de proximité, qu’il est plus complexe de cartographier, une approche simplifiée fondée sur les inventaires d’émissions de NOx a été mise au point. Les zones de dépassement sont délimitées selon un critère de surémission, c’est-à-dire d’excès d’émission par rapport à la moyenne nationale. De légers réajustements sont ensuite possibles pour garantir le bon accord de ces zones avec les dépassements réellement constatés. La deuxième partie fait ressortir les zones qui du fait de la présence de récepteurs peuvent révéler une plus grande sensibilité à la pollution atmosphérique. Les populations et les écosystèmes sont ici considérés. A partir des bases de données sur l’occupation des sols et le patrimoine naturel, on sélectionne ainsi les zones habitées (tissu urbain continu ou discontinu) et les espaces naturels protégés (zones de protection de biotope, parcs nationaux et régionaux, réserves naturelles). La dernière partie fait la synthèse des précédentes étapes. Toute maille incluse dans une zone de dépassement, du fait de la pollution de fond et/ou de proximité, et dont la sensibilité est accrue par la présence de populations ou d’espaces naturels protégés, est considérée comme sensible. Les zones sensibles sont finalement agrégées à l’échelle de la commune, premier niveau administratif de gestion de la qualité de l’air. Dès le début de l’année 2011, toutes les AASQA devront appliquer la méthodologie à leur domaine. Le LCSQA assurera un soutien technique dans cette mise en œuvre. Eléments essentiels des schémas régionaux Climat, Air et Energie, les zones sensibles seront également des outils utiles à la planification et pourront être présentées dans les Programmes de Surveillance de la Qualité de l’Air (PSQA).
Vendredi 7 octobre 2016
Page
Procédure pour le rapportage
Jeudi 26 avril 2012
Rapport
Suivi et optimisation de l’utilisation des TEOM-FDMS : Efficacité de séchage des modules FDMS
Depuis le 1er janvier 2007, les TEOM-FDMS sont très largement utilisés en routine par l’ensemble des associations agréées de surveillance de la qualité de l’air (AASQA) pour la surveillance des PM10 et des PM2.5.  Dans le cadre du déploiement et de la mise en œuvre de ces instruments, le LCSQA/INERIS est notamment chargé du suivi et de l’optimisation de leur utilisation au sein du dispositif national de surveillance de la qualité de l’air, ainsi que d'assurer la qualité des données produites en construisant une approche QA/QC basée sur celle décrite dans les normes utilisées pour la mesure des polluants gazeux inorganiques (O3, NOx, SO2, CO). Ce travail se concrétise notamment par la rédaction d’un guide pour l’utilisation du TEOM-FDMS, dont une nouvelle version a été élaborée en 2010, en partenariat avec les AASQA. En 2011, le LCSQA/INERIS a poursuivi son travail d’évaluation sur le terrain des TEOM-FDMSavec notamment pour objectif de vérifier la validité des critères définis par le guide d’utilisation dans le cas d’un environnement climatique « extrême » (i.e. chaud et humide). Le présent rapport restitue les principaux résultats de ces travaux, en portant l’accent sur les enseignements tirés de tests de terrain réalisés en Martinique en collaboration avec Madininair, permettant en outre d’étudier l’influence de l’humidité relative sur les performances du sécheur dans le cas d’un aérosol atmosphérique réel très humide (pour faire suite à des travaux réalisés en laboratoire en 2009). Ces résultats renforcent les recommandations préconisées par le guide d’utilisation de 2010. En particulier : -       Les oscillations des températures de point de rosée échantillon (en sortie de sécheur) sont corrélées aux oscillations constatées sur la température de la station (pour des températures de point de rosée ambiant stables). La température de fonctionnement des sécheurs FDMS a donc un impact direct sur l’efficacité de ces derniers et doit être surveillée/contrôlée attentivement, afin d’éviter un éventuel risque de surestimation de la concentration massique. -       L’utilisation de TEOM-FDMS présentant une dépression en amont de la pompe moins importante que -20 inHg (« pouces de mercure », unité utilisée par convention pour le TEOM-FDMS) peut conduire à une baisse rapide du rendement des sécheurs. Sur ce point, il est également à noter que différents retours d’expérience ont montré que le manomètre d’origine pouvait fortement dériver et, par ailleurs, présenter des fuites. Il est donc fortement conseillé de maintenir une dépression plus importante que -20 inHg, et de procéder à une vérification régulière du manomètre d’origine, voire de remplacer ce dernier (permettant en outre la mise en place d’un suivi de la dépression en routine). -       L’utilisation d’un TEOM-FDMS présentant une température de point de rosée échantillon autour de -5°C peut conduire à une légère surestimation de la concentration massique de PM (de l’ordre de 3 µg/m3dans le cas présent d’un environnement très humide). Il semble donc opportun de maintenir un seuil limite d’intervention de -4°C pour ce paramètre. Enfin, la surveillance de l’humidité relative en sortie de sécheur (non suivie jusqu’à présent) pourrait permettre d’identifier plus facilement une dégradation partielle de ce dernier
Jeudi 13 octobre 2011
Rapport
Intercomparaisons des stations de mesures (1/4) : Intercomparaison des moyens mobiles nationaux (Besançon 2010)
La directive européenne 2008/50/CE du 21 mai 2008 dédiée à la qualité de l’air appelle au respect de valeurs limites ou valeurs cibles, en leur associant une exigence en terme d’incertitude maximale sur la mesure. Les associations agréées de surveillance de la qualité de l'air sont tenues de participer aux essais d'intercomparaison mis en place par le Ministère chargé de l’environnement, dans le cadre du Laboratoire Central de Surveillance de la Qualité de l'Air (Article 9 de l'arrêté du 17 mars 2003). Dans l’objectif de vérifier le respect des exigences de la directive européenne 2008/50/CE, le LCSQA propose annuellement aux AASQA une intercomparaison de moyens mobiles pour les polluants SO2, O3, NO, NO2 et CO à différents niveaux de concentration et tout particulièrement au voisinage des seuils horaires d’information ou d’alerte pour les polluants NOx, O3, SO2, et de la valeur limite sur 8h pour le CO. Un essai d’intercomparaison de moyens de mesures mobiles a été réalisé en mars 2010 en collaboration avec ATMO Franche Comté. Il a réuni 11 participants et entités de mesures, constituant un parc de 69 analyseurs. Durant cette intercomparaison, le système de dopage permettant une distribution homogène des gaz sur 3 directions a été mis en œuvre, tout en respectant des temps de résidence inférieurs à 5 secondes pour les oxydes d’azote et l’ozone. Des dysfonctionnements divers mais peu nombreux ont été identifiés en cours d’exercice sur différents analyseurs et pour la plupart résolus sur place. Lors de la circulation de gaz pour étalonnage en aveugle, la majorité des écarts constatés était nettement inférieure à l’incertitude tolérée sur la mesure des analyseurs (4%). On constate que les écarts importants sont peu fréquents pour l’ensemble des polluants, la plupart ne dépassant pas 6%. Le décompte des écarts significatifs se limite, en fin de campagne et pour la seule basse concentration, à 8 analyseurs SO2, aucun analyseur d’O3, 1 analyseur de NOx en NO et 6 en NO2, aucun analyseur de CO, sur les 69 analyseurs présents sur le site. On rappellera que cet exercice de circulation est maintenant mieux encadré ce qui conduit à des répercussions positives sur cette phase préliminaire de l’intercomparaison dont les résultats sont déterminants au final sur les niveaux d’incertitude calculés. En application de la norme NF ISO 5725-2, les intervalles de confiance de répétabilité et de reproductibilité ont été déterminés pour chaque polluant et différents niveaux. On signalera que l’application des tests statistiques de Cochran et Grubbs a conduit à l’élimination de 28 données quart-horaire, et que l’élimination sur avis d’expert a écarté 188 données quart-horaires sur un total de plus de 6200 mesures tous polluants confondus. Les intervalles de confiance de reproductibilité (assimilables aux incertitudes de mesures) nettement inférieurs au seuil de 15 % ont été obtenus pour les polluants suivants : SO2 (10,2 %) O3 (4,1 %) CO (6,1 %) NO (6,1 %) NO2 seul (5,6 %). Comme en 2009, l’influence du NO sur l’incertitude de mesure du NO2 a été mise en évidence et a été estimée à +0,85% par 100 ppb de NO avec un seuil d’effet situé dès la centaine de ppb. D’une manière générale, les résultats du traitement statistique suivant la norme ISO 13 528 et conduisant aux z-scores sont homogènes et globalement satisfaisants pour tous les participants. Une large majorité des z-scores sont compris entre ±2 voire ±1. On aura dénombré 21 actions préventives à entreprendre (z>2), dont dix pour le participant n°1, sept pour le participant n°11, deux pour le participant n°7, une pour le participant n°4 et le participant n°8. Trois actions correctives (z>3) ont été recensées dont deux pour le participant n°1 et une pour le participant n°4. Les résultats de cette intercomparaison permettent d’évaluer la qualité de mise en œuvre des méthodes de mesures par les AASQA. On notera que l’exercice 2010 vient confirmer l’amélioration des résultats obtenus depuis 2008 et peut s’expliquer par la réalisation des essais sous de bonnes conditions climatiques et d’alimentation électrique, sans oublier la phase préliminaire de circulation de gaz étalon en aveugle qui est incontournable pour la compréhension des écarts de mesures entre analyseurs et représente désormais une part conséquente du temps consacré à l’intercomparaison. Cet exercice aura également permis la mise en évidence de l’influence, sur l’estimation de l’incertitude de mesure globale, qu’un seul appareil dont les mesures sont décalées par rapport au reste peut avoir sur une population constituée d’une quinzaine d’analyseurs. L’évolution de ces essais vers un nouveau dispositif de dopage englobant la tête de prélèvement, l’extension à d’autres polluants, l’ajout de tests spécifiques lors des phases de circulation ou de dopage,… seront à inscrire aux propositions des futurs programmes du LCSQA, en concertation avec le groupe consultatif. La réalisation d’exercices réguliers d’intercomparaison doit permettre une amélioration globale du dispositif de surveillance national et notamment d’enrichir les procédures de maintenance périodique et de transfert. Dans cet objectif, une planification des exercices a été effectuée sur plusieurs années en intégrant les contraintes géographiques afin de permettre à chaque AASQA d’y participer périodiquement.
Mardi 19 juillet 2016
Rapport
Evaluation du potentiel technique et scientifique des analyseurs en continu de métaux dans les PM10 par fluorescence X
Les instruments de mesures automatiques de la composition chimique des particules atmosphériques (PM10, PM2.5) permettent une caractérisation avec une plus grande résolution temporelle que les méthodes par prélèvement sur filtres suivi d’une analyse au laboratoire. C’est notamment le cas pour les ACSM (Aerosol Chemical Speciation Monitor) et Aethalomètres (analyses du Black Carbon) actuellement mis en œuvre par les AASQA sur le territoire national. La méthode de mesure automatique et en continu par Fluorescence X présentée dans cette note pourrait avantageusement compléter ces méthodes car elle permet la caractérisation d’un large panel d’éléments métalliques non mesurés par les instruments précités. Les premiers résultats issus des différents instruments actuellement commercialisés sont encourageants pour un certain nombre d’éléments métalliques majeurs (K, Cu, Zn, Pb, Mn, Fe, …) mais des essais plus poussés devraient être entrepris pour mieux évaluer les limites techniques et les contraintes (coût d’achat et d’exploitation, moyens humains, limite de détection, justesse de mesure, incertitudes, …) de cette technique. L’application la plus adaptée pour ce type d’instrument parait être la caractérisation chimique et l’identification de sources de pollutions particulaires par l’implémentation des données ainsi recueillies dans des modèles de type source-récepteurs (PMF, ME-2, …) en complément des mesures par ACSM et aethalomètre. L’utilisation d’un analyseur par Fluorescence X pour un suivi en continu des métaux réglementés (As, Cd, Ni, Pb) n’est pas conseillée du fait de limites de détection insuffisantes, notamment pour l’As et le Cd. Les éventuelles contraintes liées à la réglementation nationale relative à l’utilisation de sources de rayonnements ionisants sont à prendre en considération.
Samedi 25 septembre 2004
Rapport
Guide de calcul des indices ATMO et IQA et site internet de chaque AASQA (OBSOLETE)
    Attention : Ce guide de 2004 est obsolète ; il a fait l'objet d'une révision en 2020 applicable au 1er janvier 2021. Lire "Indice ATMO guide de calcul en application de l'arrêté du 10 juillet 2020"
Mercredi 20 juillet 2016
Rapport
Usage et performances des outils Vigilance et Prev'air Urgences - Retour d'expérience
Résumé de la note "Usage et performances des outils Vigilance et Prev'air Urgences - Retour d'expérience" Afin de répondre aux exigences de l’arrêté du 26 mars 2014 concernant le déclenchement des procédures d’information et d’alerte, les Associations Agréées de Surveillance de la Qualité de l’Air doivent être en mesure d’estimer sur leur territoire de compétence les surfaces et populations potentiellement touchées par des dépassements de seuil. Pour les accompagner dans cette tâche, le LCSQA a mis en place les outils Vigilance (initialement nommé Alerte) et PREv’Air-urgence. Ce dernier concerne des développements spécifiques ont été réalisés à partir de la chaine de modélisation nationale PREV’AIR. La chaîne de calcul dédiée aux épisodes a été mise en place, dédiée à la prévision des dépassements des valeurs limite de qualité de l’air et PREV’AIR-Urgence est désormais opérationnel. La présente note en décrit le fonctionnement et les performances obtenues en 2015. En parallèle, les travaux de développement d’un nouvel outil VIGILANCE ont été lancés fin 2014. Il a été présenté aux acteurs concernés (MEEM, DREAL, AASQA) en mars 2015, et déployé officiellement le 15/04/2015 sur le site web du LCSQA. Une notice utilisateur rédigée par le LCSQA est également disponible sur le site. Dans le présent document, les grands principes de l’outil sont rappelés, ainsi qu’un premier retour d’expérience suite à sa mise en œuvre depuis mi-2015.
Vendredi 13 mai 2016
Rapport
Essais d’adéquation du FIDAS 200 à la mesure réglementaire en France – Bilan des essais 2013-2015
La note "Essais d’adéquation du FIDAS 200 à la mesure réglementaire en France – Bilan des essais 2013-2015" rend compte des résultats d'essais pour les mesures de PM10 et PM2,5, obtenus suite aux campagnes de mesure réalisées de 2013 à 2015 en collaboration avec différentes associations agrées de surveillance de la qualité de l’air (AASQA) : AIR PACA, AIRPARIF,ASPA,ATMO AUVERGNE, ATMO CHAMPAGNE-ARDENNEet QUALITAIR CORSE. Ces essais ont consisté à évaluer la cohérence des mesures FIDAS vis-à-vis de la méthode de référence décrite dans la norme NF EN 12341 (Air ambiant - Systèmes automatisés de mesurage de la concentration de matière particulaire (PM10; PM2,5)), en cohérence, lorsque cela était possible, avec les préconisations de la norme prEN16450 (Air ambiant - Méthode normalisée de mesurage gravimétrique pour la détermination de la concentration massique MP10 ou MP2,5 de matière particulaire en suspension). Les résultats ont montré un bon accord des mesures du FIDAS 200 avec celles obtenues par la méthode de référence sur les sites de fond urbain. Sur ce type de site, les performances du FIDAS évaluées dans ce travail sont tout à fait similaires à celles obtenues pour les autres systèmes de mesure automatiques (AMS) actuellement homologués. Sur les sites trafic, les résultats n’ont pas été satisfaisants. Suite à cette observation, le constructeur a proposé une évolution de l’algorithme de traitement des données spécifiquement dédié à la mesure sur site trafic. Les résultats préliminaires ont montré une amélioration des résultats pour la fraction PM10 mais avec un biais toujours important pour la fraction PM2,5. En l’état, l’utilisation d’un FIDAS sur site trafic nécessiterait l’utilisation d’une fonction de correction qui devrait être propre à chaque site et déterminée à l’aide de mesures gravimétriques.L’ensemble de ces résultats ne sont pas définitifs et les essais seront poursuivis au cours de l’année 2016.