Résultats de la recherche

398 résultats correspondent à AASQA
Lundi 11 janvier 2021
Rapport
Programme CARA : bilan des travaux 2018-2019
Ce rapport synthétise les principaux travaux 2018 et 2019 du programme CARA (« CARActérisation chimique des particules ») du dispositif national de surveillance de la qualité de l’air. Fonctionnant en étroite collaboration avec les Associations agréées de surveillance de la qualité de l’air (AASQA) volontaires et des laboratoires universitaires, ce programme permet notamment de documenter, depuis une dizaine d’année, la composition chimique et les origines des particules atmosphériques affectant la qualité de l’air. Il intègre également la mise en œuvre d’outils statistiques et/ou de modélisation numérique, visant à l’amélioration des systèmes de prévision ainsi qu’à l’évaluation de possibles mesures de réduction des concentrations en air ambiant. Dans ce cadre, une étude spécifique a également été consacrée à l’ozone, polluant gazeux secondaire en interaction avec la phase particulaire.   Si des dépassements de valeurs limites journalières fixées pour les PM10 sont encore fréquemment observés sur le territoire, notamment en fin d’hiver-début de printemps sous l’effet de l’accumulation des émissions primaires (dont le chauffage résidentiel et le transport routier) et la formation de particules secondaires (nitrate d’ammonium et aérosols organiques secondaires), aucun épisode de longue durée (> 3 jours) et de large échelle spatiale (impliquant simultanément plusieurs régions voisines) n’a été observé en métropole sur la période 2018-2019. En revanche, la survenue de pics de concentration de courte durée en bordure littoral Manche et mer du Nord entre la fin de l’hiver et le début de l’été semble répondre à des processus complexes, qu’il s’agira d’explorer sur la période 2020-2021. Il est également à noter que 2018 et 2019 ont été marquées par de fortes intrusions de poussières sahariennes en zone Caraïbe ainsi que par d’importants épisodes estivaux de pollution à l’ozone. Pour ce dernier polluant, l’analyse des épisodes de l’été 2019 illustre l’effet bénéfique attendu d’une diminution des émissions des substances précurseurs (oxydes d’azote (NOx) et composés organiques volatils) sur quasiment l’ensemble du territoire, malgré la complexité des processus chimiques mis en jeu (avec de possibles augmentations localisées dans les grandes agglomérations et bassins industriels). Ces résultats confirment l’intérêt de la mise en place de plans de réduction ambitieux des émissions concernant toutes les activités humaines, en particulier en zone urbaine et fortement émettrice de NOx. Par ailleurs, l’étude sur le long-terme menée depuis 2008 au niveau de la station grenobloise Les Frênes (fond urbain) indique une baisse significative des concentrations de PM10, mais également du carbone élémentaire (EC) et des hydrocarbures aromatiques polycycliques (HAP). En revanche, les concentrations hivernales de PM issues de la combustion de biomasse ne présentent pas de tendance significative sur la période 2011-2017, conduisant à une augmentation de leur contribution relative aux PM10. Le chauffage au bois reste donc l’un des principaux leviers d’actions pour l’amélioration de la qualité de l’air à Grenoble, et il apparait nécessaire de poursuivre cette étude, afin notamment d’aider à la bonne évaluation de l’efficacité des politiques publiques mises en œuvre (dont les « fonds air bois ») en région Auvergne-Rhône-Alpes, comme sur d’autres territoires. De même, la baisse notable (env. 0,4 µg/m3 / an) des concentrations de matière organique au SIRTA (fond régional, Ile de France) ne peut être que très partiellement attribuée à une diminution des émissions par le chauffage au bois sur la période 2011-2018. Si l’on note une diminution de l’ordre de 80 ng/m3 / an de la fraction organique directement imputable à la combustion de biomasse, aucune tendance significative n’est observée à ce stade pour la fraction de carbone suie liée à cette même source ni pour la fraction organique primaire la moins oxydée (issue de la combustion d’hydrocarbures mais également au chauffage au bois). Dans le même temps, on note une diminution très légère (env. 20 ng/m3 / an) mais statistiquement significative de la part de carbone suie émise par la combustion d’énergie fossile (incluant les émissions automobiles à l’échappement). Cette tendance pourrait s’accompagner d’une réduction de l’influence de l’ensemble des composés organiques volatils d’origines anthropiques sur la formation d’aérosols organiques secondaires, dont la composante la plus oxydée explique globalement la moitié de la baisse observée des concentrations de matière organique totale. Enfin, les travaux réalisés en 2018 et 2019 ont également pris la forme de nombreuses collaborations scientifiques avec des acteurs académiques (inter-)nationaux, permettant notamment la révision du guide européen pour l’utilisation d’outils statistiques d’identification et de quantification des sources des polluants atmosphériques, ainsi que la publication dans des revues à comité de lecture d’une dizaine d’articles basés, en totalité ou pour partie, sur des résultats obtenus dans le cadre du programme CARA.
Mercredi 20 décembre 2017
Rapport
Programme CARA : bilan des travaux 2016
La  note "programme CARA : bilan des travaux 2016" synthétise les principaux travaux 2016 du programme CARA, mis en place en 2008, à l’initiative du LCSQA, pour répondre à une forte demande du ministère et des AASQA d’amélioration des connaissances sur les sources et origines des épisodes de pollution particulaire d’ampleur nationale. Basé sur une étroite collaboration avec les AASQA volontaires ainsi qu’avec des laboratoires universitaires, ce programme assure également un transfert de compétences de la recherche vers l’opérationnel. Afin d’apporter une réponse adaptée au besoin grandissant de compréhension immédiate de ces épisodes, le programme CARA s'est attaché au cours de ces dernières années au développement d’un dispositif d’observation en temps réel de la composition chimique des PM. Ce dispositif, unique en Europe, a notamment permis de mettre en évidence le rôle majeur joué par les émissions locales de combustion (chauffage et transport routier) dans la survenue d’un épisode de pollution persistant au cours des trois premières semaines de décembre 2016. Par ailleurs, un travail de veille bibliographique sur les travaux de recherche récents indique une utilisation accrue des outils statistiques de type « modèle sources-récepteur » pour l’identification et la quantification des sources de particules fines dans l’air ambiant en France. En particulier, les méthodes de type Positive Matrix Factorization (PMF) sont aujourd’hui fortement utilisées par différents laboratoires universitaires, notamment en collaboration avec le LCSQA et les AASQA. Ce travail de veille a été co-financé par l’ADEME dans le cadre du projet SOURCES. Enfin, une analyse approfondie de 15 jeux de données obtenus pour des sites du dispositif national de surveillance de la qualité de l’air a également été réalisée dans le cadre de ce programme. Ce travail a notamment permis de consolider la connaissance des principales sources chroniques de PM en fond urbain à l’échelle nationale.
Lundi 25 janvier 2010
Rapport
Missions diverses et travaux de synthèse - Retour d'expériences sur les moyens techniques itinérants
Les Associations Agrées de Surveillance de la Qualité de l’Air (AASQA) sont amenées de plus en plus fréquemment à réaliser des campagnes de mesures relativement ponctuelles à l’aide de moyens mobiles ou itinérants. Afin de faciliter les prises de décisions ultérieures des AASQA quant à l’achat et à la mise en œuvre de ce type de moyen, une enquête a été lancée au cours de l’année 2009 par le LCSQA/INERIS auprès de l’ensemble des associations, sur la base suivante :   Le type de moyens mis en œuvre Les avantages/inconvénients de chaque outil Les moyens de communications utilisés pour la collecte des données Ce rapport vise à synthétiser les résultats de cette enquête, en reprenant le plus fidèlement possible les réponses apportées par les AASQA. Ce retour d’expériences met en lumière la diversité des moyens techniques itinérants mis en œuvre, regroupés ici par grands types de moyens: les armoires, les remorques et les véhicules. Pour chacun de ces moyens, la récupération des données obtenues par mesures automatiques est généralement réalisée en temps réel (GSM le plus souvent). Les armoires, assez peu couteuses, peuvent être utilisées sur des emplacements de taille réduite (en site trafic notamment). En revanche, leur ergonomie ne permet pas la mise en œuvre simultanée d’un grand nombre d’instruments de mesure, et l’installation de TEOM-FDMS y est relativement difficile. Les opérations de maintenance instrumentale doivent être effectuées en extérieur, ce qui peut être incommode voire impossible. Une grande diversité de remorques et de véhicules-laboratoires est utilisée par les AASQA. Ceux présentant une petite surface au sol permettent la mise en œuvre d’un plus grand nombre d’instruments (et notamment de TEOM-FDMS) que dans les armoires, tout en restant assez faciles à déployer. Néanmoins, la place disponible au sein de ces moyens mobiles est encore trop limitée pour pouvoir faciliter les interventions de maintenance. Les remorques et camions de grand volume, beaucoup plus coûteux, permettent la mise en œuvre d’un grand nombre d’instruments de mesure et de prélèvement, mais nécessitent un dispositif particulier lors de leur mise en place. Enfin, il est à noter qu’un nombre croissant d’AASQA optent  pour l’achat séparé du moyen en lui-même et des instruments de mesure. Ce type d’investissement leur permet de s’équiper en analyseurs de leur choix selon le type de polluant mesuré, et généralement de diminuer le coût de revient de l’ensemble du moyen technique itinérant. L’intégralité des réponses (anonymes) à cette enquête est disponible sous format électronique sur demande au LCSQA/INERIS (contact: olivier.favez@ineris.fr).
Jeudi 24 octobre 2019
Rapport
Veille technologique sur les capteurs pour les mesures de polluants de l’air ambiant
Dans le domaine de la qualité de l’air, les citoyens sont de plus en plus demandeurs d’informations relatives aux polluants de l’air qu’ils respirent en temps réel (nature, concentrations, etc.). Ainsi, les nouvelles technologies (internet, réseaux, blogs, vidéos …) permettent un partage d'informations quasi-instantané. Pour répondre à cette pression citoyenne et ce besoin d’accéder à l’information rapidement, une multitude de capteurs à coût réduit, pour certains couplés à des smartphones, ont été développés et mis sur le marché : ils permettent un recueil collaboratif des données et une démultiplication des observations afin de pouvoir réaliser un diagnostic rapide de la qualité environnementale. Certains de ces capteurs se sont largement développés et ont été mis en œuvre par les Associations Agréées de Surveillance de la Qualité de l’Air (AASQA) afin d’étudier l’évolution des mesures de concentrations en polluants avec une fréquence de mesure élevée pour évaluer l’exposition humaine ainsi que les tendances à court et moyen termes. Compte tenu des avancées technologiques et mises sur le marché permanentes de nouveaux appareils, ce rapport présente une synthèse de la veille technologique effectuée sur les capteurs disponibles sur le marché à fin octobre 2018. Il présente un inventaire aussi exhaustif que possible des capteurs ainsi que des techniques mises en œuvre, des résultats d’essais d’évaluation de leurs performances et un premier recensement des utilisations de ces capteurs par les AASQA. Grâce à cette étude, il a été répertorié de premiers éléments clés qu’un futur utilisateur doit connaître afin de déterminer quelles caractéristiques un capteur devrait satisfaire pour répondre à une série d’usages prédéfinis. Dans la poursuite des travaux du LCSQA sur les capteurs, il a été convenu de développer une base de données sur les capteurs (CAPT’AIR) afin de permettre, pour les acteurs du dispositif national de surveillance de la qualité de l’air, un accès simplifié (mise en place de requêtes) aux informations techniques et aux usages (caractéristiques techniques, retours d’expérience, essais métrologiques, évaluation sur le terrain, etc.) ainsi qu’une mise à jour rapide de la veille technologique. Le but ultime d’un tel outil est de pouvoir identifier simplement quel capteur ou quel type de capteur serait le mieux adapté à un usage donné.
Jeudi 10 décembre 2020
Rapport
Etat de l’art et analyse critique des méthodes de mesure de pesticides - Premières recommandations
Un travail documentaire sur une liste socle de Substances Actives (SA) couramment surveillées par les AASQA a permis de dresser un état de l’art analytique ainsi qu’une feuille de route des besoins métrologiques et également de formuler des premières recommandations. La diversité des substances actives surveillées notamment en termes de propriétés physicochimiques permet d’ores et déjà de conclure que des méthodes spécifiques devront être développées pour disposer de données de surveillance dont la qualité sera compatible avec les objectifs de la surveillance. De plus, les études réalisées confirment le besoin d’harmonisation et de validation des méthodes disponibles à ce jour, de développement pour des substances orphelines et de mise en place d’un cadre règlementaire plus précis. Le LCSQA doit renforcer ses travaux métrologiques sur les pesticides, en forte interaction avec les laboratoires d’analyse opérant dans la surveillance afin de mettre en place les références indispensables et d’en garantir l’acceptation et le caractère opérationnel pour assurer, à terme, la bancarisation de données de qualité et exploitables.
Mercredi 10 février 2016
Rapport
Normalisation 2015
Le cadre régalien et normatif de la surveillance de la qualité de l’air en France a évolué en 2015 en raison du processus de révision des 2 Directives européennes en vigueur qui a abouti fin août à la parution d’un nouveau texte modifiant plusieurs annexes des directives du Parlement européen et du Conseil 2004/107/CE et 2008/50/CE. Ces annexes concernent les méthodes de référence, les règles portant sur la validation des données et l'emplacement des points de prélèvement pour l'évaluation de la qualité de l'air ambiant. S’agissant des méthodes de référence, il s’agit essentiellement d’une mise à jour documentaire via la mention des référentiels normatifs parus depuis 2008. Outre le traitement des contentieux (en cours pour les PM10 et pour le NO2), 2015 a vu la parution du 1er Plan National de la Surveillance de la Qualité de l’Air (PNSQA) qui décrit la stratégie nationale de surveillance de la qualité de l’air sur la période 2016‐2020. Ce texte de référence va devoir être repris au niveau régional via les PRSQA des AASQA dont la 3ème version est prévue à partir de 2016, en tenant compte de la réforme territoriale et la nouvelle carte de régions entraînant la fusion des AASQA concernées. En tant que Laboratoire de Référence dans le domaine de la Qualité de l’Air notifié par le Ministère en charge de l’environnement, le LCSQA a pour missions l’aide à l’application correcte des textes de référence ainsi que l’assurance de la qualité des mesures dans le respect des exigences des Directives. Pour cela, il participe aux travaux de normalisation nationale (AFNOR – Association Française de NORmalisation) et européenne (CEN – Comité Européen de Normalisation) et assure la transmission de l’information auprès des acteurs du Dispositif National de Surveillance, notamment au travers des Groupes de Travail et des Commissions de Suivi. Il contrôle la correcte application des exigences techniques et législatives lors des audits de vérification technique. Les travaux décrits dans le présent rapport permettent au LCSQA d’apporter au Dispositif National de Surveillance les éléments d'une vision d'ensemble des activités de surveillance de la qualité de l'air sur tout le territoire, et d’assurer leur cohérence avec les contraintes régaliennes, techniques en tenant compte de la réalité du terrain. Dans la continuité des années précédentes, les travaux du LCSQA en 2015 ont permis : d’assurer une application homogène des textes de référence sur le territoire national en vue de leur respect, de contribuer aux choix stratégiques & économiques du Dispositif National, de valoriser la position française au niveau européen. Ainsi, en 2015, les travaux du LCSQA en matière de normalisation ont été les suivants : participation aux travaux de normalisation européenne, nationale et internationale: normalisation européenne (14 GT du CEN TC 264 sur l’air ambiant extérieur et intérieur impliquant 10 experts du LCSQA. 3 nouveaux GT ont été créé en 2015 : le GT42 sur les micro‐capteurs pour la qualité de l’air, le GT43 sur les objectifs de qualité des modèles  et le GT44 sur l’identification des sources), normalisation nationale (3 Commissions de l’AFNOR impliquant 4 experts du LCSQA). Il est à noter que l’année 2015 a vu la réactivation de 3 GT Ad Hoc dans le cadre de la révision de normes AFNOR (Normes sur les pesticides, sur l’étalonnage et sur la  mesure dans les dépôts, impliquant 5 experts du LCSQA), normalisation internationale (3 GT de l’ISO TC 158 sur l’analyse des gaz, en lien avec la Commission AFNOR E29EG « Préparation et utilisation de mélanges de gaz en analyse » impliquant 2 experts du LCSQA) la participation aux groupes d’expertise européens (AQUILA sur le plan technique et FAIRMODE sur le plan de la modélisation) mandatés par la Commission Européenne, impliquant 5 experts du LCSQA. Ces travaux vont dans la logique de convergence des approches métrologiques et par modélisation souhaitée par la Commission Européenne pour la surveillance de la qualité de l’air et dans le cadre du nouveau texte sorti fin août amendant les 2 Directives « qualité de l’air », la participation aux échanges avec la Commission Européenne (ex : Contentieux en cours sur les PM10 et probable pour le NO2, transposition des directives…), la mise en application effective (ou par anticipation) des exigences ou recommandations découlant des points précédents, associées à l’arrêté du 21/10/11 et à la lettre annuelle de cadrage du MEDDE, etc …), se traduisant par : l’apport d’un appui technique pour l’élaboration des recommandations nationales pour le dispositif national (note de cadrage, guide méthodologique…) et des propositions de résolutions faites dans le cadre des Commissions de Suivi, la vérification de leur application effective, au travers des actions de contrôle sur le terrain que les experts des équipes du LCSQA effectuent en audit chez les AASQA (5 audits en 2015 : Atmo Nord‐Pas de Calais, Atmo Picardie, AIRPARIF, Air Lorraine, AIRAQ), Tous ces travaux s’effectuent en collaboration avec les acteurs du dispositif national de surveillance (MEDDE, LCSQA, AASQA), notamment dans le cadre des études menées par le LCSQA et de ses missions de coordination. L’ensemble des actions d’appui à la surveillance, à la planification et aux politiques territoriales est décrit sur le site du LCSQA (http://pro-lcsqa2.lcsqa.org/fr/) et permettent notamment la mise à jour régulière du référentiel métier applicable par les AASQA pour surveiller la qualité de l'air en France.
Mercredi 2 décembre 2020
Rapport
Résultats de la campagne nationale exploratoire de mesure des résidus de pesticides dans l'air ambiant (2018-2019)
                        L’Anses, l’Ineris dans le cadre du Laboratoire central de surveillance de la qualité de l’air (LCSQA) et le réseau des Associations agréées de surveillance de la qualité de l'air (AASQA) fédéré par Atmo France publient ce jour les résultats de la campagne de mesure des résidus de pesticides dans l’air menée de juin 2018 à juin 2019. Grâce à un protocole harmonisé, cette campagne a permis de mesurer 75 substances sur 50 sites couvrant des situations variées et répartis sur l’ensemble du territoire national (Métropole et DROM). Le recueil de près de 100 000 données validées et l’analyse de 1 800 échantillons correspondants permet d’établir un socle de données qui participe à l’amélioration des connaissances sur les résidus de pesticides présents dans l'air ambiant pour mieux évaluer l'exposition de la population générale. A terme, cette campagne contribuera à définir une stratégie nationale de surveillance des pesticides dans l’air ambiant.    Télécharger le rapport "Résultats de la campagne nationale exploratoire de mesure des résidus de pesticides dans l'air ambiant (2018-2019)" mis à jour déc 2020 la note "Contrôle des données de la campagne nationale exploratoire de mesure des résidus de pesticides dans l'air ambiant (CNEP)" les données "Base des données de mesure de la CNEP"   100 000 données collectées sur une année, 1 800 échantillons analysés et 75 substances mesurées sur 50 sites répartis sur le territoire national   Lancée en juin 2018, cette campagne nationale de grande ampleur a permis de mesurer, sur la même année et selon un protocole pour la première fois harmonisé, 75 substances sur 50 sites. Les substances ciblées entrent, selon le cas, dans la composition des produits phytopharmaceutiques, de produits biocides, de médicaments vétérinaires et antiparasitaires à usage humain. Elles avaient été priorisées par l’Anses sur la base de leurs caractéristiques de danger et de critères d’utilisation, d’émission et de persistance dans l’air.   La répartition des 50 sites de prélèvements couvre l’ensemble des régions et prend en compte les différents types de zones d’habitation (50% de sites urbains/péri-urbains et 50% de sites ruraux) et de productions agricoles (26% de sites en grandes cultures, 18% de sites viticoles, 20% de sites arboricoles, 10% de sites en maraîchage, 6% de sites d’élevage, et 20 % de sites sans profil agricole majoritaire). Les 100 000 données de cette campagne ont été bancarisées dans la base nationale des données sur la qualité de l’air « GEOD’AIR ». Leur exploitation a permis d’établir une première photographie annuelle nationale des niveaux de concentration en résidus de pesticides dans l’air ambiant au regard de critères quantitatifs comme leur fréquence de quantification, les ordres de grandeurs des concentrations rencontrées et leurs distributions statistiques. Dans le cadre de cette étude, il ressort que des substances sont majoritairement associées à certaines productions agricoles sans pour autant être absentes des autres profils. Concernant les différentes typologies « rural », « péri-urbain » et « urbain », le nombre de substances observées sur chaque typologie est sensiblement différent dans les DROM, cette différence de répartition est plus ténue en métropole. Les variations temporelles des concentrations sont globalement cohérentes avec celles des périodes traditionnelles connues de traitements en métropole. Sur la base de ce socle robuste de données, l’Anses a été en mesure d’établir une première interprétation sanitaire des résultats de cette campagne. Au-delà des résultats obtenus et des perspectives de travaux complémentaires que vont permettre ces données, le nombre important de travaux métrologiques menés en parallèle en accompagnement de cette campagne seront valorisées dans la révision des normes nationales portant sur le prélèvement et l’analyse des pesticides dans l’air.    
Mercredi 26 mars 2014
Rapport
Surveillance des métaux dans les particules en suspension
En France, une surveillance est effectuée par la plupart des AASQA depuis 2007 de façon continue ou ponctuelle, pour le Pb, As, Cd et Ni dans les PM10 afin de répondre aux directives européennes (2008/50/CE et 2004/107/CE). Les objectifs de Mines Douai, au sein du LCSQA, sont d'assurer un rôle de conseil et de transfert de connaissances auprès des AASQA, de procéder à des travaux permettant de garantir la qualité des résultats, de participer activement aux travaux de normalisation européens et de réaliser une veille technologique sur les nouvelles méthodes de prélèvement et d’analyse susceptibles d’optimiser les coûts tout en respectant les objectifs de qualité.Au cours de l'année 2013, les travaux réalisés dans le cadre du LCSQA ont porté sur les actions suivantes : -  Fourniture de filtres vierges en fibre de quartz. Des filtres sont achetés par lots et leurs    caractéristiques chimiques sont contrôlées, avant d’être redistribués aux AASQA sur simple    demande de leur part. En 2013, 3675 filtres en fibre de quartz (Pall et Whatman) ont été    distribués auprès de 16 AASQA différentes. - Participation au comité de suivi « Benzène, métaux, HAP » sur la stratégie de mesure de   As, Cd, Ni, Pb dans l’air ambiant et au groupe de travail « caractérisation chimique et sources   des PM ». -  Organisation d'un exercice de comparaison inter-laboratoires (Annexe 1). Cette année, 9    laboratoires indépendants ont participé à cet exercice : Laboratoire Carso (Lyon), Ianesco    Chimie (Poitiers), Laboratoire départemental de Haute-Garonne (Launaguet), Laboratoire de    Rouen (Rouen), Micropolluants Technologie (Thionville), Laboratoires des Pyrénées et des    Landes (Lagor), TERA Environnement (Crolles), INERIS (Creil) et LUBW (Allemagne). Les analyses préparatoires réalisées aux Mines de Douai sont inclues dans la présentation des résultats de cet exercice sous la forme d'un dixième laboratoire participant. Nous avons distribué à chaque laboratoire quatre filtres empoussiérés collectés pendant l’hiver 2012-2013, dont les teneurs en métaux correspondent à un site urbain de fond ainsi que 10 filtres vierges en fibre de quartz. Comme en 2011, une solution synthétique et une solution étalon produite à partir de filtres collectés à l’EMD puis minéralisés et analysés précisément par le Laboratoire National de Métrologie et d’Essais (LNE) ont également été introduites dans l’exercice d’intercomparaison afin de discriminer les erreurs liées à l’analyse proprement dite de celles liées à la phase de minéralisation. Un MRC contenant des particules déposées sur filtre produit par le LNE a également été distribué aux participants avec son certificat afin d’évaluer les taux de récupération en métaux lors de la minéralisation des PM10. Les résultats de cette intercomparaison sont globalement positifs (Annexe 1). Malgré les faibles teneurs contenues sur les filtres empoussiérés, les 10 laboratoires participant ont détecté les quatre métaux présents dans les échantillons impactés sur filtres. De plus, les laboratoires respectent globalement les objectifs de qualité des directives européennes (25 % pour Pb et 40 % pour As, Cd et Ni) au niveau des valeurs cibles avec des incertitudes moyennes (norme FD-X43-070) de 28% (As), 31% (Cd), 52% (Ni) et 28% (Pb). L’étape de minéralisation représente la plus importante source relative d’incertitude, comprise entre 43 et 56% de l’incertitude globale selon l’élément considéré. Il faut souligner que six laboratoires ayant participé aux cinq derniers exercices d’intercomparaison ont obtenu de bons résultats pour les quatre éléments visés par rapport aux critères de qualité requis, démontrant ainsi une bonne maîtrise sur le long terme de ce type d’analyses. Les résultats obtenus sur les solutions étalons synthétiques (Ech 4) et issues de minéralisation de filtres (Ech 5) sont globalement satisfaisants avec des écarts par rapport à la médiane inférieurs à 20%. La reproductibilité est de 5% pour le Pb et de 10 à 30% pour les autres métaux pour ces 2 échantillons. On observe un écart sur le dosage du plomb sur les deux solutions étalons pour certains laboratoires. Les écarts par rapport aux valeurs certifiées du MRC sont en moyenne de 7 à 10 % relatif pour As, Cd, Pb et 23% pour Ni. - Analyse des métaux, métalloïdes et éléments majeurs dans des échantillons de PM10 collectés dans le cadre du programme CARA à Nogent sur Oise pendant une année.L’application de traitement statistique (ACP) et de modèles source-récepteur en cours doit permettre l’identification des principales sources de particules affectant la zone (Aérosol secondaire, combustion de biomasse, trafic automobile, aérosol marin, poussière détritique,…). - Etude de faisabilité d’une comparaison inter-laboratoire portant sur les analyses de métaux dans les dépôts atmosphériques. Une CIL portant sur la partie analyse est envisageable sous une forme similaire à celle mise en place pour l’analyse des métaux réglementés dans les PM10. Pour la partie prélèvement fortement dépendante de la géographie et de la météorologie locale, seule une validation station par station permet de répondre aux recommandations de la norme.
Mercredi 27 janvier 2010
Rapport
Suivi et optimisation de l'utilisation des TEOM-FDMS 2/2 : Accompagnement à la mise en œuvre des modules FDMS
    Depuis le 1er janvier 2007, les TEOM-FDMS sont très largement utilisés en routine par l’ensemble des AASQA pour la surveillance des PM10 et des PM2.5.  Comme démontré par les travaux du LCSQA en 2005 et 2006, ces instruments satisfont aux critères d’équivalence aux normes EN12341 et EN14907, relatives à la mesure des PM10 et des PM2.5 respectivement.   Dans le cadre du déploiement et de la mise en œuvre de ces instruments, le LCSQA/INERIS est notamment chargé de suivre et d’optimiser leur utilisation par les AASQA ainsi que d'assurer la qualité des données produites en construisant une approche QC/QA basée sur celle décrite dans les normes utilisées pour la mesure des gaz classiques (O3, NOx, SO2, CO).   Les travaux conduits par le LCSQA/INERIS en 2007 et 2008 ont permis de mieux comprendre le fonctionnement et les limites d’applicabilité des modules FDMS à l’aide de campagnes de mesures et d’intercomparaisons, et du retour d'expériences des AASQA. Ce travail a notamment mis en évidence les rôles prépondérants joués par l’efficacité du sécheur et par les performances de la pompe sur la qualité de la mesure par TEOM-FDMS. Il a également donné lieu à l’élaboration des premières versions d’un « Guide pour l'utilisation des TEOM-FDMS ». Par ailleurs, depuis la fin de l’année 2008, de nouvelles versions des TEOM-FDMS sont disponibles sur le marché, en particulier les modèles 1405f et 1405df Le premier consiste globalement en l’unification du TEOM 1400 et du module FDMS en un seul et même instrument, plus compact. Le 1405df est équipé d’un impacteur virtuel placé en aval de la tête de prélèvement, permettant la mesure simultanée des PM10 et PM2.5. Ces nouveaux outils sont amenés à remplacer les premières générations de TEOM-FDMS. Cependant, en 2008, il n’existait pas de preuves scientifiques indiquant leur adéquation avec les critères européens de mesures de PM. Une note du LCSQA envoyée à l'ensemble des AASQA en cours d'année 2008 recommandait donc de ne pas s'équiper de TEOM-FDMS 1405df dans l'immédiat, et d'attendre, si possible, avant de s'équiper en TEOM-FDMS 1405f. L'objet de ce rapport est de présenter les travaux réalisés en 2009 par le LCSQA/INERIS dans ce contexte. Une part importante du travail a consisté à finaliser la collection des retours d'expériences des AASQA, afin de faire évoluer le guide de fonctionnement du TEOM-FDMS. Les premières versions de ce document étaient centrées sur les difficultés rencontrées avec l'outil, et les solutions à mettre en œuvre pour leur résolution. La dernière version, mise en ligne, en ligne depuis mai 2009, propose également un protocole de contrôle QC/QA. Ce protocole sera notamment repris par la société Thermo (constructeur du TEOM-FDMS) dans le cadre de l’élaboration de son propre guide de contrôle QC/QA, diffusé au niveau européen. Un autre point important en 2009 est le suivi de l'évolution de la gamme commerciale des TEOM-FDMS. Dans le cadre des travaux du LCSQA/INERIS 2009, une première série de tests a été réalisée sur les nouveaux TEOM-FDMS (1405f et 1405df). Ces tests ont notamment permis de suspecter une mauvaise qualité des données horaires fournies par les nouvelles versions. Le même type de problèmes a également été mis à jour par différents utilisateurs des TEOM-FDMS aux Etats-Unis et par le constructeur. En raison de ces problèmes, liés à des défauts de conception induisant un bruit instrumental très important, les TEOM-FDMS 1405f livrés en France avant décembre 2009 nécessitent d’être reconfigurés. Ecomesure (distributeur français de ces instruments) s’engage à effectuer les mises à jour nécessaires avant fin février 2010 (sous condition de livraison par Thermo des kits de réparation dans les temps impartis). Les instruments livrés à partir de décembre 2009 ont été modifiés au préalable ou conçus selon les nouveaux procédés de fabrication. De ce fait, il a été décidé en cours d’année 2009 de suspendre l’ensemble des tests prévus sur les nouveaux TEOM-FDMS, et d’attendre la reconfiguration des instruments et/ou la livraison de nouveaux instruments. En revanche, afin de compléter la connaissance de l’outil FDMS, le LCSQA/INERIS s’est attaché à mieux connaître le fonctionnement de la membrane Nafion à travers une étude en laboratoire. Les résultats de cette étude mettent clairement en évidence l’influence de la dépression sur l’efficacité de séchage. En outre, cette influence de la dépression s’accroît à mesure que l’humidité relative est élevée.
Mercredi 23 juillet 2014
Rapport
Rapport préparatoire au guide méthodologique pour la surveillance du benzène dans l’air ambiant
Depuis plus de 10 ans, le LCSQA accompagne les AASQA dans leurs choix de méthode et d’équipement pour la surveillance du benzène dans l’air ambiant. En 2009, un « guide technique de recommandations concernant la mesure du benzène dans l’air ambiant » a été édité. Depuis 2012, des difficultés techniques de mise en pratique de ce guide ainsi que des évolutions dans le matériel dédié à la surveillance, ont amené le LCSQA à revoir ce guide. Ainsi, ce rapport constitue une version provisoire (soumise à validation de la CS « HAP – Métaux Lourds - Benzène » et du CPS) du guide méthodologique pour la surveillance du benzène dans l’air ambiant.  Ce guide doit fournir une aide aux utilisateurs en leurs fournissant une première liste de procédures à mettre en œuvre ainsi qu’un échéancier à respecter pour permettre la bonne utilisation des différents outils disponibles pour la surveillance réglementaire du benzène que sont : -       Les analyseurs automatiques par chromatographie en phase gazeuse ; -       Les préleveurs actifs sur cartouches d’adsorbant commerciaux ou conçus par les AASQA ; -       Les tubes à diffusion passive. Il a été rédigé sur la base des documents et échanges avec les constructeurs, fournisseurs ainsi qu’à partir du retour d’expérience du personnel des AASQA (journées techniques des AASQA, CS, etc.). Il comprend pour chacune des techniques citées ci-dessus des éléments permettant d’effectuer une installation sur site conforme aux recommandations données dans les normes NF EN 14662-1, NF EN 14662-3, NF EN 14662-4 ainsi qu’à la Directive 2008/50/CE, de mettre en place les procédures de maintenances et de vérifications périodiques nécessaires au bon fonctionnement et de réaliser les contrôles QA/QC adéquats. Par ailleurs il comprend en dernier lieu, une partie relative au rendu des résultats (validation et agrégation des données, calcul des incertitudes).