Résultats de la recherche

398 résultats correspondent à AASQA
Lundi 2 février 2015
Rapport
Evaluation des préleveurs actifs benzène
La directive européenne 2008/50/CE [1] concernant la qualité de l’air ambiant et un air pur pour l’Europe impose aux Associations Agréées de Surveillance de la Qualité de l’Air (AASQA) la mise en place d’une stratégie de surveillance du benzène. Certaines d’entre elles ont choisi depuis 2009, de s’équiper de préleveurs afin de réaliser des prélèvements par pompage sur tube selon la norme NF EN 14662-1. Le LCSQA a accompagné les AASQA pour la mise en oeuvre des préleveurs actifs sur le terrain et le guide méthodologique (2014) [2] pour la surveillance du benzène a été mis à jour dans ce sens. Dans ce contexte certaines AASQA ont fait le choix de fabriquer leurs propres préleveurs. Ainsi, lors des discussions menées en 2010 dans le cadre de rencontres techniques avec les membres des AASQA il a été décidé de limiter le nombre de modèles de préleveurs développés par les AASQA, à un maximum de trois en respectant les exigences de la directive, du guide méthodologique et de la norme NF EN 14662-1. Depuis 2011, des préleveurs commerciaux et « fait maison » ont fait l’objet d’évaluations de leurs performances métrologiques lors des essais en atmosphère simulée (chambre d’exposition) [3] et en atmosphère réel (site urbain à porte d’Auteuil et site industriel à Feyzin) [4][5]. En 2013, quatre préleveurs ont fait l’objet des essais de comparaison sur le site de Feyzin d‘Air Rhône-Alpes. Lors de cette campagne, les résultats n’ont pas été satisfaisants contrairement aux campagnes précédents [5]. En 2014, trois nouveaux préleveurs conçus par AirAQ, AIRPARIF et Air Normand, ainsi que le préleveur commercial SYPAC d’ORAMIP ont été soumis à des tests de réception métrologique avant leur installation sur le terrain afin d’évaluer leurs caractéristiques de performance dans des conditions équitables. Les résultats des essais nous ont permis de comparer non seulement la performance des appareils mais aussi d’identifier dans certains cas la source responsable de la dispersion de mesure observée. Les résultats de la campagne de validation sur le terrain de 2014 sont plus satisfaisants que ceux obtenus pendant la campagne menée en 2013. En général les critères imposés par la directive européenne et ceux fixés dans le guide méthodologique ont été respectés, en particulier la dérive du débit et l’écart relatif entre deux tubes d’un même préleveur. Ainsi, les résultats d’incertitude de mesure pour le benzène n’ont pas été totalement satisfaisants. Cependant, des écarts ont été relevés entre les deux méthodes de référence citées par la directive, celle par pompage sur tubes actifs et celle par pompage et mesure automatique.
Jeudi 23 mai 2013
Rapport
Assistance aux AASQA pour les calculs d’incertitude (Rapport 1/2)
Au niveau réglementaire, les directives européennes relatives à la surveillance de la qualité de l’air fixent des seuils d’incertitude sur les concentrations mesurées par les AssociationsAgréées de Surveillance de la Qualité de l’Air (AASQA) « au voisinage de la valeur limiteappropriée ». Il est donc nécessaire d’évaluer les incertitudes associées aux mesurages. Aussi, les normesdécrivant les méthodes de mesure, élaborées depuis 2005, intègrent-elles des procédures ou des exemples d'estimation de ces incertitudes. Une lecture attentive de ces normes montrequ’elles ne sont cependant pas très faciles d’application et qu‘elles peuvent être interprétées de diverses façons, ce qui peut conduire à des résultats très différents. Par conséquent, pour répondre aux exigences des directives et aider les AASQA à estimerleurs incertitudes sur la base de procédures harmonisées, le LCSQA a rédigé un guidepratique pour estimer l’incertitude sur les mesures effectuées à l’air ambiant. Ce guide eststructuré en huit parties, correspondant chacune à une technique de mesure particulière applicable à un ou plusieurs composés. Une fois finalisées, les différentes parties ont étévalidées en Commission de normalisation X43D « Air ambiant » de l’AFNOR et publiées sousforme de fascicules de documentation. Il a également été élaboré un guide de « Recommandations techniques pour la mise en oeuvre de la partie 2 du guide d'estimation des incertitudes portant sur les mesuragesautomatiques de SO2, NO, NO2, NOx, O3 et CO réalisés sur site » (novembre 2010).Dans le cadre de l’assistance aux AASQA pour le calcul des incertitudes, la mission duLCSQA en 2012 a porté sur les 2 points suivants : ·  Le développement d’une méthodologie différente de celle décrite dans la norme NF ISO 11222 - Qualité de l'air - Détermination de l’incertitude de mesure de la moyennetemporelle des mesurages de la qualité de l’air pour estimer la contribution des donnéesmanquantes dans le calcul d’incertitude associée aux moyennes horaires ; ·  La mise en équation de l’estimation des incertitudes associée aux moyennes temporellescalculées sur différents pas de temps (horaire, 8 heures, journalier, annuel).Cette étude a été menée dans le cadre d’un sous-groupe de travail du GT "Incertitude"composé d'AIRPARIF, d'AIR NORMAND, de l’ASPA et du LCSQA. Le fascicule de documentation FD X43-070-2 sera remis à jour pour la fin du premiersemestre 2013 pour intégrer les différents points abordés dans le guide de recommandationsLCSQA de novembre 2010 et l'estimation détaillée des incertitudes sur les moyennestemporelles. Par ailleurs, il a été décidé de créer la Commission de Suivi « Mesuresautomatiques NO/NOx, SO2, O3, CO, particules » et de mettre en sommeil le Groupe de Travail « Incertitudes » à la fin des travaux de 2012 (une réactivation sera possible enfonction des besoins de la CS).L’objectif général de cette nouvelle Commission de Suivi « Mesures automatiques NO/NOx,SO2, O3, CO, particules » est de s’assurer de la conformité des mesures de polluantsréglementés réalisées au moyen d’analyseurs automatiques, avec les exigences des directives européennes et des normes EN associées. (...)
Vendredi 6 mars 2015
Rapport
Surveillance des métaux dans les particules en suspension
Depuis 2007, une surveillance est effectuée par l’ensemble des AASQA de façon continue ou ponctuelle, pour le Pb, As, Cd et Ni dans les PM10 en accord avec les directiveseuropéennes (2008/50/CE et 2004/107/CE). Les objectifs de Mines Douai, au sein du LCSQA, sont :  - d'assurer un rôle de conseil et de transfert de connaissances auprès des AASQA,- de procéder à des travaux permettant de garantir la qualité des résultats, - de participer activement aux travaux de normalisation européens, - de réaliser une veille technologique sur les nouvelles méthodes de prélèvement et d’analyse susceptibles d’optimiser les coûts tout en respectant les objectifs de qualité,- de participer à la valorisation des activités de surveillance et des études menées en collaborations avec les AASQA. Au cours de l'année 2014, les travaux réalisés dans le cadre du LCSQA ont porté sur les actions suivantes : -  Fourniture de filtres vierges en fibre de quartz. Des filtres sont achetés par lots et leurs caractéristiques chimiques sont contrôlées, avant d’être redistribués aux AASQA sur  simple demande de leur part.     En 2014, 4450 filtres en fibre de quartz (Pall et Whatman) ont été distribués auprès de 15 AASQA différentes. -  Participation au comité de suivi « Benzène, métaux, HAP » sur la stratégie de mesure de As, Cd, Ni, Pb dans l’air ambiant et au groupe de travail « Caractérisation chimique et sources des PM ».-  Essai de terrain et en laboratoire en vue d’une extension de la mise en oeuvre de la méthode de mesure des métaux réglementés dans les PM10 (EN 14902 : 2005) pour une trentaine de métaux et métalloïdes supplémentaires.-  Analyse des métaux, métalloïdes et éléments majeurs dans des échantillons de PM10 collectés dans le cadre du programme CARA à Nogent sur Oise, Lens, Rouen, Roubaix et Revin (MERA) pendant l’année 2013.     L’application de traitement statistique (ACP) et de modèles source-récepteur (PMF) doit permettre l’identification des principales sources de particules affectant la zone et leurs contributions relatives à la masse des PM10 (Aérosols   inorganiques secondaires, combustion de biomasse, trafic automobile, aérosols marins, poussières détritiques, industrie …).
Lundi 13 mars 2017
Rapport
Maintien et amélioration des chaînes nationales d’étalonnage
En 1996, sous l’impulsion du Ministère chargé de l'Environnement (MEEM), un dispositif appelé « chaîne nationale d’étalonnage » a été conçu et mis en place afin de garantir, sur le long terme, la cohérence des mesures réalisées dans le cadre de la surveillance de la qualité de l’air pour les principaux polluants atmosphériques gazeux réglementés. Ce dispositif a pour objectif d’assurer la traçabilité des mesures de la pollution atmosphérique en raccordant les mesures effectuées dans les stations de surveillance à des étalons de référence spécifiques par le biais d’une chaîne ininterrompue de comparaisons appelée « chaîne d’étalonnage ». Compte tenu du nombre élevé d’Associations Agréées de Surveillance de la Qualité de l'Air (AASQA), il était peu raisonnable d’envisager un raccordement direct de l'ensemble des analyseurs de gaz des stations de mesure aux étalons de référence nationaux, malgré les avantages métrologiques évidents de cette procédure. Pour pallier cette difficulté, il a été décidé de mettre en place des procédures de raccordement intermédiaires gérées par un nombre restreint de laboratoires d’étalonnage régionaux ou pluri-régionaux (appelés également niveaux 2) choisis parmi les acteurs du dispositif de surveillance de la qualité de l'air (AASQA et LCSQA-MD). Par conséquent, ces chaînes nationales d’étalonnage sont constituées de 3 niveaux : le LCSQA-LNE en tant que Niveau 1, des laboratoires d’étalonnage inter-régionaux (au nombre de 8) en tant que Niveau 2 et les stations de mesures en tant que Niveau 3. Dans le cadre de ces chaînes nationales d’étalonnage, le LCSQA-LNE raccorde tous les 3 mois les étalons de dioxyde de soufre (SO2), d’oxydes d'azote (NO/NOx), d'ozone (O3), de monoxyde de carbone (CO) et de dioxyde d’azote (NO2) de chaque laboratoire d’étalonnage. De plus, depuis plusieurs années, le LCSQA-LNE raccorde directement les étalons de benzène, toluène, éthylbenzène et o,m,p-xylène (BTEX) de l’ensemble des AASQA, car au vu du nombre relativement faible de bouteilles de BTEX utilisées par les AASQA, il a été décidé en concertation avec le MEEM qu’il n’était pas nécessaire de créer une chaîne d’étalonnage à 3 niveaux. Un tableau de synthèse résume en page 7 du rapport les étalonnages effectués depuis 2006 par le LCSQA-LNE pour les différents acteurs du dispositif de surveillance de la qualité de l’air (AASQA, LCSQA-INERIS et LCSQA-MD), tous polluants confondus (NO/NOx, NO2, SO2, O3, CO, BTEX et Air zéro). Ce rapport fait également la synthèse des problèmes techniques rencontrés en 2016 par le LCSQA-LNE lors des raccordements des polluants gazeux.
Jeudi 26 juin 2014
Rapport
Méthodologie de répartition spatiale de la population (OBSOLETE)
La législation européenne sur la surveillance de la qualité de l’air requiert la cartographie des zones géographiques de dépassement d’une valeur limite et l’estimation du nombre d’habitants exposés au dépassement. De nombreuses cartographies sont élaborées au niveau local et national pour répondre à cette exigence. Les cartographies des populations exposées à la pollution dans l’air ambiant nécessitent deux variables : les concentrations de polluant d’une part et la population d’autre part, ainsi qu’une méthodologie permettant de croiser ces deux informations. Le LCSQA a été chargé de travailler sur cette problématique afin d’harmoniser les méthodes employées actuellement au sein des AASQA et du LCSQA. La présente note s’attache spécifiquement au calcul de la répartition spatiale des populations pour lequel elle propose un guide méthodologique. Celuici développe une approche adaptée aux différentes résolutions spatiales contraintes par le contexte d’étude et aux données disponibles.  Deux nouvelles méthodes sont proposées: la méthodologie carroyage et la méthodologie MAJIC. La méthodologie carroyage a été conçue pour exploiter les sorties de modèles régionaux des AASQA et la plateforme nationale PREV’AIR. PREV’AIR Urgence utilise déjà cette méthodologie pour évaluer des populations sujettes à des risques de dépassement. La méthode MAJIC proposée par le CETE de Lyon et complétée par le LCSQA permet une description très fine de la population à une échelle locale. Elle emploie les données foncières MAJIC délivrées par la DGFiP. Du fait d’un manque de couverture géographique, cette méthodologie ne peut actuellement être appliquée sur l’ensemble du territoire français et doit, le cas échéant, être remplacée par la méthodologie basée sur la BD Topo. La méthodologie MAJIC nécessite une expertise locale forte des AASQA pour la valider. Des validations sont en cours avec des ASQAA volontaires. Le LCSQA met à disposition des AASQA qui le souhaitent une extraction des données carroyées kilométriques issues de la méthodologie carroyage. Celles-ci sont mises à jour chaque année avec les nouvelles statistiques du recensement de la population. Du fait, de contraintes sur le droit d’accès aux données MAJIC et une mise en oeuvre complexe de la méthodologie, le LCSQA mettra à disposition des AASQA les données de population spatialisées issues de la méthodologie MAJIC. Des échanges seront nécessaires entre les AASQA et le LCSQA pour la validation et l’utilisation de ces données.
Vendredi 20 février 2015
Rapport
Fourniture et validation des données de population spatialisées selon la méthodologie nationale (MAJIC)
  Les données de population spatialisées sont couramment utilisées : • pour évaluer l’exposition des populations telle que rapportée à l’Europe en application des directives, • comme critère de choix dans l’implantation et la caractérisation des sites de mesure (sites fixes et campagnes de mesure), • et comme variable auxiliaire dans des travaux de cartographie. Des travaux LCSQA menés depuis 2012 ont permis d’élaborer une méthodologie nationale harmonisée de distribution géographique (ou « spatialisation ») de la population : cette méthodologie a été nommée méthodologie MAJIC en référence aux données MAJIC utilisées. Celle-ci est applicable à une échelle locale et nationale. Lors du dernier trimestre 2014, des jeux de données test ont été fournis à des AASQA volontaires et au CEREMA1 pour validation. Début 2015, les données finales (année de référence INSEE 2011) ont été fournies à l'ensemble des AASQA pour une utilisation dans le cadre du rapportage de l'année 2013. Ces données de population peuvent nécessiter localement quelques ajustements selon l’expérience de chacune des AASQA. Des échanges entre le LCSQA et les AASQA permettront de corriger, si nécessaire, ces données pour obtenir une base de données spatialisée des populations homogène sur l’ensemble du territoire. La présente note décrit les vérifications locales qu’il est recommandé d’effectuer et définit les modalités d’échange entre le LCSQA et les AASQA.
Mercredi 20 juillet 2011
Rapport
Maintien et amélioration des étalons de référence
L'objectif est de maintenir un bon niveau de performances métrologiques pour les étalons de référence SO2, NO, NO2, CO, O3 et BTX (benzène, toluène, xylènes) utilisés pour titrer les étalons des AASQA, afin de pouvoir continuer à produire des prestations de qualité. La première partie de l'étude a consisté à faire une synthèse des actions menées pour maintenir l'ensemble des étalons de référence afin de pouvoir réaliser les étalonnages prévus dans l’étude «Maintien et amélioration des chaînes nationales d’étalonnage» de novembre 2010. La deuxième partie a porté sur le développement de méthodes de référence pour étalonner les mélanges gazeux de p-xylène, de m-xylène et d'éthyl-benzène utilisés par les Associations Agréées de Surveillance de la Qualité de l’Air (AASQA). Depuis 2005, le LNE étalonne les mélanges gazeux de benzène, toluène et o-xylène utilisés par les AASQA. La méthode d’étalonnage consiste à comparer au moyen d’un chromatographe les mélanges gazeux à étalonner avec des mélanges gazeux de référence fabriqués par le LNE par la méthode gravimétrique. La fabrication de ces mélanges gazeux de référence ainsi que la méthode d’étalonnage ont fait l’objet d’une accréditation par le COFRAC dans le domaine de 1 à 100 nmol/mol. En 2008, il a été décidé d’étendre le domaine d’étalonnage à trois composés supplémentaires l’éthylbenzène, le p-xylène et m-xylène. Le raccordement en p-xylène, en m-xylène et en éthyl-benzène implique : Le développement de mélanges gazeux de référence de p-xylène, de m-xylène et d'éthylbenzène qui est constitué des étapes suivantes : Préparation de mélanges gazeux de référence de p-xylène, de m-xylène et d'éthyl-benzène par la méthode gravimétrique, Validation de leur préparation à partir de matériaux de référence gazeux d'un autre Laboratoire de Métrologie, Le développement d'une méthode d'étalonnage basée sur l'utilisation des mélanges gazeux de référence ci-dessus et permettant de titrer les mélanges gazeux de p-xylène, de m-xylène et d'éthyl-benzène utilisés par les AASQA. L'étude 2008 portant sur le premier point a permis de préparer et de valider des mélanges gazeux de référence gravimétriques de p-xylène, de m-xylène et d'éthyl-benzène à 2 μmol/mol. Les études menées depuis 2009 portent sur le 2ème point, c'est à dire sur le développement d'une méthode d'étalonnage en p-xylène, m-xylène et éthyl-benzène. Dans ce but, le LNE a fait l’acquisition, en septembre 2008, d’un chromatographe en phase gazeuse 450GC (VARIAN) équipé d’une pré-concentration avec désorption thermique et de deux voies d’analyse indépendantes constituées chacune d’une colonne capillaire et d’un détecteur à ionisation de flamme pour développer une méthode chromatographique permettant la séparation des 6 composés (benzène, toluène, éthylbenzène, p-xylène, m-xylène et o-xylène) avec une répétabilité des surfaces inférieure à 0,3% afin de garantir une incertitude relative finale sur l’étalonnage inférieure à 1%. Les études menées en 2008 et 2009 ont conduit à la mise au point d’une méthode d’analyse satisfaisante dans laquelle les six composés étaient correctement séparés en un temps acceptable.Néanmoins, l’avancée de cette étude a été fortement perturbée par des problèmes de communication provoquant parfois l’arrêt du chromatographe en cours d’analyses. Ce problème a persisté jusqu’en janvier 2010 où le chromatographe est tombé en panne et a été repris par le fabricant. En avril 2010, un nouveau chromatographe 450GC (VARIAN) identique a été livré au LNE en remplacement de l’appareil défectueux.Après réception du nouveau chromatographe 450GC et intervention du fabricant pour y apporter de nouvelles modifications, les résultats des essais montraient une séparation des six composés en 32 min avec des chromatogrammes très proches de ceux obtenus avec la méthode définie lors de l’étude de 2009 et l'ancien chromatographe. La répétabilité des surfaces après les premiers essais était inférieure à 0,3%, ce qui était conforme aux objectifs.Cependant, de nouvelles pertes de communications ont été à nouveau constatées. Par conséquent, malgré des résultats encourageants, tant que les problèmes de communication ne sont pas résolus par le fabricant, une utilisation en routine du chromatographe 450GC (VARIAN) pour les étalonnages des mélanges gazeux de BTEX des AASQA ne peut pas être envisagée. En parallèle, le LNE s'est équipé en août 2010 d'un chromatographe Compact GC d'Interscience qui est un compromis entre un chromatographe en phase gazeuse classique (GC) et un μchromatographe en phase gazeuse (μGC). En effet, le système prend peu de place, effectue les analyses rapidement et avec une grande sensibilité comme peut le faire un μGC et présente aussi une bonne modularité (changement de colonne, de piège, de vanne, de conduites…) tel un GC classique. Suite à différents problèmes rencontrés lors de la mise en place de l'appareil, l’étude menée en 2010 par le LNE sur le développement de la méthode d'étalonnage du benzène, toluène, éthylbenzène, pxylène, m-xylène et o-xylène avec le chromatographe en phase gazeuse Compact GC n'a pas pu être terminée. Néanmoins, les premiers essais effectués ont permis de fixer les conditions opératoires, de mettre au point la méthode d’analyse et d'obtenir des résultats satisfaisants et conformes à notre cahier des charges. En effet, les 6 composés sont correctement séparés, la durée totale d’une analyse n’excède pas 15 minutes, la limite de détection et la répétabilité des mesures sont inférieures aux objectifs fixés (respectivement de 0,05 nmol/mol et 0,2%). La caractérisation de la méthode (reproductibilité, linéarité, etc…) est en cours et devra se poursuivre en 2011 de manière à pouvoir réaliser les étalonnages de benzène, toluène, éthylbenzène, p-xylène, m-xylène et o-xylène des mélanges gazeux des AASQA dès juin 2011. La troisième partie a porté sur le développement d'un étalon et d'une méthode de référence pour raccorder les mélanges gazeux de formaldéhyde qui pourraient être ensuite utilisés par les AASQA pour régler des analyseurs placés principalement sur des sites industriels. La première étape réalisée en 2008 a consisté à mettre en place un banc de perméation pour pouvoir générer des mélanges gazeux de référence de formaldéhyde. La deuxième étape commencée début 2009 portait sur le développement d'une méthode de référence pour analyser les mélanges gazeux de formaldéhyde à partir des mélanges gazeux de référence de formaldéhyde générés par perméation.
Lundi 28 février 2022
Rapport
Etat des évaluations préliminaires sur le territoire national à fin 2021
Aux fins des rapportages réglementaires de décembre 2021 pour les régimes prévisionnels de 2022, un état d’avancement des évaluations en cours et restant à faire a été réalisé sur la base d’informations recueillies auprès des AASQA à l’occasion de demandes de précisions sur leur dispositif de surveillance. 11 ZAS sont concernées par des évaluations préliminaires en cours. Il s’agit des ZR Réunion, Mayotte, Guyane, Guadeloupe, et Hauts de France, ainsi que les ZAR Ile de Cayenne, Réunion-Volcan, Arras, Blois, Chartres-Dreux et Laval.  Dans cette note : un premier tableau résume l’aboutissement des évaluations préliminaires en 2021, un second tableau indique les évaluations préliminaire en cours ou à venir en 2022. Celles-ci sont au nombre d'une dizaine pour 1 470 régimes de surveillance établis. Au 1er janvier 2022, un nouveau zonage sera appliqué modifiant les zones dans 5 régions : Normandie, Provence-Alpes-Côte d'Azur, Centre, Nouvelle-Aquitaine et Auvergne - Rhône-Alpes, faisant ainsi passer le nombre de ZAS de 76 à 70.  
Mercredi 11 mars 2020
Rapport
Maintien et amélioration des étalons de référence
L'objectif est de maintenir un bon niveau de performances métrologiques pour les étalons de référence SO2, NO, NO2, CO, O3 et BTEX (benzène, toluène, éthylbenzène et xylènes) utilisés pour titrer les étalons des AASQA, afin de pouvoir continuer à produire des prestations de qualité et de développer des étalons de référence pour de nouveaux polluants. La première partie a consisté à faire une synthèse des actions menées pour maintenir l'ensemble des étalons de référence afin de pouvoir réaliser les étalonnages prévus dans l’étude « Maintien de la chaîne nationale de traçabilité métrologique » de décembre 2019. La deuxième partie a porté sur l’amélioration de la méthode de fabrication gravimétrique des mélanges gazeux de référence en bouteille. Pour les composés NO, CO et BTEX (benzène, toluène, éthylbenzène et xylènes), les étalons de référence sont des mélanges gazeux de référence en bouteille (quelques µmol/mol à quelques centaines de µmol/mol) appelés également Matériaux de Référence Certifiés (MRC) qui sont préparés par le LCSQA-LNE par la méthode gravimétrique selon la norme ISO 6142-1 : ces mélanges gazeux sont ensuite dilués par voie dynamique pour étalonner les mélanges gazeux utilisés par les AASQA. La rampe de fabrication utilisée par le LCSQA-LNE ayant été mise en place il y a une vingtaine d’années, il devenait nécessaire de la remplacer par un système plus performant (changement des capteurs de pression, ciblage de la masse avec une balance…), afin d’améliorer la qualité des mélanges gazeux de référence et de diminuer le temps de fabrication. L’objectif de cette étude était donc de développer et de valider une nouvelle rampe de fabrication des mélanges gazeux de référence. Fin 2017, un schéma d’une nouvelle rampe a été réalisé (filtration, ciblage, alimentation en gaz purs…). Au cours de l’année 2018, de nombreuses discussions ont eu lieu avec le fournisseur pour affiner le schéma de la rampe de fabrication, le cahier des charges ainsi que le devis. La nouvelle rampe pour la production de matériaux de références certifiés a été réceptionnée en juin 2019 au LCSQA-LNE. Elle est flexible d’utilisation avec quatre arrivées de gaz azote et quatre d’air permettant un remplissage en pression des bouteilles plus aisé, une possibilité d’injecter les composés liquides purs, avec une voie dédiée à l’injection des mélanges gazeux ayant des fractions molaires élevées. Les raccords sont en VCR avec des traitements de surface Sulfinert® afin de limiter au maximum les adsorptions des molécules d’intérêt. La mise en place de deux filtres SAES GETTERS® (un pour l’azote et un pour l’air) sur la rampe permet d’obtenir des fractions molaires d’impuretés (vapeur d’eau, oxygène…) très faibles (quelques nmol/mol) limitant ainsi les réactions parasites de ces impuretés avec les molécules d’intérêt (ex : réaction entre NO et O2 ; réaction de NO2 avec H2O). L’instrumentation de la rampe avec un analyseur de vapeur d’eau (CRDS HALO KA) permet de suivre le niveau de vapeur d’eau en continu et de pouvoir produire des MRC lorsque la fraction molaire mesurée de vapeur d’eau est suffisamment faible pour éliminer toute réaction non désirée. Elle a été ensuite optimisée notamment en changeant certaines vannes défectueuses ou inadaptées à notre utilisation. Six mélanges gazeux ont été produits avec cette nouvelle rampe et ont été analysés par rapport à d’autres MRC (laboratoire national de métrologie en Angleterre - NPL). Les essais ont démontré la justesse des mélanges gazeux préparés, validant ainsi dans son ensemble la rampe de production des MRC. Les résultats obtenus au cours de cette étude montrent donc que la nouvelle rampe de fabrication des MRC du LCSQA-LNE est opérationnelle, fonctionnelle et exempte de fuites. Elle sera utilisée à l’avenir pour la fabrication des mélanges gazeux nécessaires pour le raccordement des étalons des AASQA (cf. Rapport LCSQA « Maintien de la chaîne nationale de traçabilité métrologique » de décembre 2019).
Jeudi 11 février 2010
Rapport
Travaux d'instrumentation et d'informatique
Le LCSQA apporte son appui technique concernant la chaîne d'acquisition et de transmission de données sur la qualité de l'air à l'ensemble des AASQA, au Ministère de l'Ecologie, de l'Energie, du Développement durable et de la Mer ainsi qu'à l'ADEME. Les actions menées en 2009 concernent :Assistance aux AASQA Support technique Depuis le début de l'année, le LCSQA a traité 3 demandes provenant des associations agréées de surveillance de la qualité de l'air. Ces demandes ont concerné : ­- un problème de communication entre un analyseur TEOM et une station ISEO SAM, - un dysfonctionnement du convertisseur de protocole d’un anémomètre METEK USA1, - un problème de collecte des fichiers primaires sous POLAIR. Assurance qualité station Le LCSQA a initié, en 2009, la conception et le développement d’un outil de simulation multiprotocoles de mesures numériques afin de répondre aux besoins des AASQA dans leur démarche d’assurance qualité appliquée aux stations. Cet outil logiciel servira notamment à répondre aux exigences de la norme EN14211 en permettant la vérification de l’agrégation quart horaire des mesures issues d’un analyseur et leur enregistrement dans le poste central.Assistance au MEEDDM et à l’ADEME Participation au Comité de Suivi de l’Informatique des Associations (CSIA) Dans le cadre de ce programme, le LCSQA a participé à la réunion du CSIA qui a eu lieu le 16 décembre 2009 au cours de laquelle il a évoqué les résultats des tests d’évaluation de la compatibilité entre le poste POLAIR et la station FDE en LCV3.1 , le développement de l’outil de simulation multiprotocoles de mesures numériques, le recensement prochain auprès des AASQA des besoins des réseaux en termes d’évolutions du langage de commande et de nouvelles fonctionnalités des stations. Analyse des nouveaux besoins liés au langage de commande L’action concernant le recensement et l’analyse des besoins des réseaux liés au langage de commande a été partiellement repoussée au premier trimestre 2010 au profit du développement de l’outil de simulation de mesures numériques et des tests d’évaluation et de recette.Suivi des travaux des constructeurs Compatibilité du dialogue IP entre station FDE et poste central XR Les essais de communication IP menés par le LCSQA entre son poste central XR et une station FDE SAP WinCe se sont révélés systématiquement négatifs et contraires aux résultats des tests menés par FDE avec ESPOL dont le compte rendu conclut au fonctionnement de la plupart des fonctionnalités du langage de commande en mode non compressé. Avec la collaboration d’Air Normand, le LCSQA a finalement mis en évidence que la cause des échecs de communication constatés en IP est liée à la version Premium (basée sur Windows) du poste XR du LCSQA, tandis que les versions XR en noyau Linux équipant la plupart des AASQA présentent des dialogues IP concluants. En 2010, le LCSQA mènera une expertise approfondie sur ce point dans le cadre de l’évaluation de la comptabilité de la communication IP entre stations et postes centraux. Participation aux Journées techniques organisées par les constructeurs : Le LCSQA a participé : ­    aux Journées Utilisateurs organisées par la société ISEO les 24 et 25 juin 2009, ­    au Club Utilisateurs Pol’Air organisé par la société CEGELEC les 23 et 24 septembre 2009, afin de prendre connaissance des bilans de fonctionnement sur les matériels, des évolutions proposées par les constructeurs ainsi que des besoins des AASQA.Travaux d’évaluation et de recette Evaluation de la compatibilité des stations d’acquisition avec les postes centraux Le LCSQA a élaboré et réalisé en 2009 des tests d’évaluation sur les fonctionnalités d’échanges en langage de commande 3.1 entre le poste central POL’AIR (V5.4.5) et une station ISEO SAM WI (5.1.30.0). La recette a été basée sur onze fiches de tests élaborées afin de couvrir les principaux thèmes du langage de commande LCV3.1. Les tests effectués n’ont pas mis en évidence de blocages ni dysfonctionnements majeurs vis-à-vis des fonctionnalités d’échanges ; la compatibilité entre les 2 systèmes en LCV3.1 est donc globalement validée. Néanmoins, deux contraintes d’utilisation et cinq réserves on été relevées. Le rapport d’évaluation a été transmis en septembre 2009 aux constructeurs concernés (ISEO et CEGELEC) ainsi qu’à l’ADEME. Suivi de l’évaluation des stations d’acquisition En 2009, le LCSQA a relancé des tests d’évaluation de la conformité au langage de commande V3.1 sur une version récente de la station SAM WI (version 5.1.32.0) dans le but mettre à jour le bilan effectué en 2006 (sur la version V5.1.21.0) et de faire un point sur les actions correctives menées. Cette reprise a concerné uniquement les 13 tests refusés et acceptés avec réserves lors de la première évaluation. Sur La version 5.1.32.0 de la SAM WI, le nombre de dysfonctionnements et non-conformités vis-à-vis du langage de commande a été réduit à 7 points (3 tests refusés et 4 tests acceptés avec réserves).