Résultats de la recherche
68 résultats correspondent à Oxydes d'azote
Mardi 1 mars 2016
Rapport
Développement d’un analyseur pour l’étalonnage de mélanges gazeux de NO2
Pour garantir la justesse des mesures de pollution atmosphérique, le LCSQA raccorde les étalons des Associations Agréées de Surveillance de la Qualité de l’Air (AASQA) qui sont ensuite utilisés pour étalonner les analyseurs en station de mesure : ce raccordement est effectué par comparaisons analytiques des concentrations à un étalon de référence.
Dans le cas du NO et du NO2, la même technique analytique basée sur le principe de la chimiluminescence (norme NF EN 14211) est utilisée à chaque niveau de la chaîne nationale d’étalonnage. Par conséquent, l’utilisation de la même méthode de mesure tout au long de la chaîne nationale d’étalonnage peut être à l’origine de biais systématiques sur les mesures de NO et de NO2 qui peuvent rester indétectés.
Cela est d’autant plus critique que l’analyse du NO2 par chimiluminescence est une méthode de dosage indirecte : en effet, le composé NO2est d'abord converti en NO par l’intermédiaire d’un four de conversion contenant du molybdène, avant d'être analysé par chimiluminescence en présence d’ozone. Cette technique pose non seulement un problème de traçabilité du fait de son fonctionnement, mais peut également engendrer une erreur liée au rendement de conversion du four et à sa non-sélectivité, car d’autres oxydes d’azote peuvent être convertis et donc assimilés par erreur à du NO2.
En 2013, le LCSQA a mené une étude bibliographique sur les méthodes optiques (photo-acoustique, QC-Laser, Cavity-Ring Down System) pour l’analyse du NO2 qui présentent les avantages suivants :
Méthode d'analyse "directe",
Bonne résolution (nmol/mol),
Bonne sensibilité (proche de 1 nmol/mol),
Temps de stabilisation et d'analyse relativement courts,
Stabilité des mesures supérieure à celle des analyseurs basés sur le principe de la chimiluminescence,
Coût modéré.
Le LCSQA s’est donc intéressé à ces techniques optiques directes permettant de réaliser des mesures de concentrations en NO2 en vue de remplacer les appareils basés sur la chimiluminescence utilisés actuellement par le LCSQA. A terme, cela permettra également une amélioration de la justesse des résultats et une diminution des incertitudes d’étalonnage.
En 2014, le choix du LCSQA s’est arrêté sur la méthode optique appelée IBBCEAS (Incoherent Broadband Cavity Enhanced Absorption Spectroscopy). Le montage du système a été réalisé et une première caractérisation métrologique du système à
200 nmol/mol a été effectuée (stabilité, temps de réponse, répétabilité, limite de détection). Les premiers résultats ont été décevants, car la cellule en acier inoxydable utilisée présentait des volumes morts. Une cellule en téflon a alors été achetée ; les mêmes paramètres ont été évalués et les résultats ont été beaucoup plus encourageants.
En 2015, le LCSQA a poursuivi la phase d’optimisation et la caractérisation métrologique du système avec la cellule en téflon. De très bons résultats ont été obtenus ; cependant, une dépendance à la température a été constatée, sans qu’elle puisse être corrigée.
Par conséquent, il a été décidé de réaliser de nouveaux essais avec la cellule en acier inoxydable qui a été modifiée afin de limiter les volumes morts. Il est préférable d’utiliser une cellule en acier inoxydable, car elle est plus stable mécaniquement ; sa rigidité assure un alignement plus robuste et elle est moins sensible aux variations de température. Dans cette configuration, la répétabilité lors de l’analyse de mélanges gazeux de NO2 à
200 nmol/mol est du même ordre de grandeur qu’avec la cellule en téflon (0,1 % relatif).
Enfin, des étalonnages de mélanges gazeux de NO2seront prochainement réalisés avec l’analyseur optique et l’analyseur par chimiluminescence afin de comparer les résultats obtenus et de valider la nouvelle méthode d’étalonnage du LCSQA pour le NO2.
Ce rapport a été réalisé avec la collaboration de Joffray Guillory et Jean-Pierre Wallerand, ingénieurs chercheurs au Conservatoire National des Arts et Métiers (CNAM).
Pour en savoir plus : consulter le rapport « Développement d’un analyseur pour la mesure du dioxyde d’azote (NO2)» de novembre 2014.
Lundi 19 février 2018
Rapport
Vérification de la conformité technique des appareils de mesure pour la surveillance réglementaire de la qualité de l’air - bilan des demandes 2017
En tant que Laboratoire National de Référence désigné par le ministère en charge de l’environnement, le LCSQA émet un avis technique sur les appareillages que les fabricants / distributeurs souhaitent voir être utilisés par les AASQA dans le cadre de la surveillance réglementaire de la qualité de l’air. Ce processus de vérification de la conformité technique des appareils s’appuie sur un dossier technique spécifique remis par le porteur de la demande (constructeur ou distributeur) que le LCSQA étudie afin d’émettre un avis technique. Cet avis, examiné par la Commission de Suivi concernée permet au Comité de Pilotage de la Surveillance (CPS) de la qualité de l’air d’octroyer ou non la conformité technique des appareillages expertisés.
S’agissant de la mesure réglementaire de la concentration massique des PM10 et PM2.5, ont été déposés en 2017 les dossiers des appareils suivants :
l’analyseur automatique modèle FIDAS 200/200S/200E de la société allemande PALAS représentée par la société ADDAIR (il s’agit d’une demande d’extension de conformité à toutes les typologies de site de surveillance de la qualité de l’air tels que décrits dans le référentiel technique national) ;
l’analyseur automatique modèle EMD 180+ de la société allemande GRIMM Aerosol Technik ;
le préleveur à moyen débit modèle DPA14 de la société suisse DIGITEL, représentée par la société MEGATEC. Ce préleveur pourrait également être utilisé pour la mesure des 4 métaux lourds réglementés et du BaP dans les PM10.
Concernant la mesure réglementaire de la concentration massique en polluants gazeux, ont été déposés en 2017 les dossiers des appareils suivants :
les 4 analyseurs automatiques de la société australienne Ecotech (série Serinus) couvrant les polluants gazeux inorganiques, à savoir
Ø le modèle Serinus 10 pour l’ozone (O3);
Ø le modèle Serinus 30 pour le monoxyde de carbone (CO);
Ø le modèle Serinus 40 pour les oxydes d’azote (NO, NO2, NOx);
Ø le modèle Serinus 50 pour le dioxyde de soufre (SO2);
l’analyseur automatique d’oxydes d’azote (NO, NO2, NOx) modèle AC32e de la société Environnement SA.
Vendredi 23 février 2018
Rapport
Episode de pollution de mi-février 2018 : Eléments de compréhension à partir de mesures automatiques lors des premiers jours de l’épisode (21 au 23 février 2018)
Un épisode de pollution particulaire a touché toute la moitié nord de l’Europe autour du 21 février 2018. En France, il a d’abord été observé sur la pointe septentrionale, de la Normandie à la Champagne en passant par l’Ile de France et les Hauts de France, avant de s’étendre également aux régions Grand-Est, Pays-de-la-Loire, Centre-Val-de-Loire et Nouvelle-Aquitaine.
Cet épisode est relativement semblable à ceux typiquement observés en fin d’hiver - début de printemps ces dernières années, dominés par les particules fines et avec une forte influence du nitrate d’ammonium. Ce composé semi-volatil est issu de la combinaison entre l’ammoniac (NH3, venant majoritairement des activités agricoles) et les produits d’oxydation des oxydes d’azote (NOx, issus principalement du transport routier).
Ces résultats sont à considérer comme préliminaires. Ils pourront éventuellement être consolidés à l’aide de résultats issus de l’analyse différée de prélèvements sur filtres. Concernant les origines géographiques, elles ne peuvent être quantifiées à l’aide de ce type de mesures en temps réel. Un examen approfondi de cette problématique pourra être conduit, notamment sur la base de résultats de modélisation.
A noter enfin qu’une augmentation significative des niveaux de PM10 a également touché le quart sud-est du territoire à partir des 22 et 23 février, sous l’effet de phénomènes plus régionalisés et non abordés dans la présente note.