Résultats de la recherche

219 résultats correspondent à LNE
Jeudi 30 juin 2022
Rapport
Maintien et amélioration des étalons de référence mis en oeuvre pour la surveillance de la qualité de l'air
L'objectif est de maintenir un bon niveau de performances métrologiques pour les étalons de référence SO2, NO, NO2, CO, O3 et BTEX (benzène, toluène, éthylbenzène et xylènes) utilisés pour titrer les étalons des AASQA et de développer des étalons de référence pour de nouveaux polluants. La première partie a consisté à faire une synthèse des actions menées pour maintenir l'ensemble des étalons de référence afin de pouvoir réaliser les étalonnages prévus dans l’étude « Maintien de la chaîne nationale de traçabilité métrologique mise en œuvre pour la surveillance de la qualité de l’air » de décembre 2021. La deuxième partie fait un point sur l’état d’avancement du développement d’étalons de référence et de la méthode d’étalonnage pour le 1,3-butadiène. La troisième partie fait un point sur l'état d'avancement de la mise en place d'une chaîne de traçabilité métrologique pour les mesures de H2S. La quatrième partie fait un point sur le développement d’un nouveau matériau de référence (MR) pour les métaux qui se présente sous la forme d’un matériau filtre impacté en PM2,5 ou en PM10.     Update and improvement of reference standards set up for air quality monitoring The objective is to maintain a good level of metrological performance for the national reference standards SO2, NO, NO2, CO, O3, NH3 and BTEX (benzene, toluene, ethylbenzene and xylenes) used to calibrate the AASQA standards and to develop reference standards for new pollutants. The first part consists of summarizing the metrological actions taken to maintain all the reference standards used to carry out the calibrations performed in the study "Update of the national metrological traceability chain set up for air quality monitoring" of December 2021. The second part provides an update on the progress of the development of reference standards and the calibration method for 1.3-butadiene. The third part reports on the status of the implementation of a metrological traceability chain for H2S measurements. The fourth part provides an update on the development of a new certified reference material (CRM) for metals which consists in a filter impacted with PM2.5 or PM10.
Jeudi 14 avril 2022
Rapport
Bilan des niveaux de concentrations particulaires en nombre au sein du dispositif national en comparaison à l'échelle européenne
De nombreux travaux scientifiques indiquent que la concentration en nombre des particules atmosphériques (PNC, pour Particle Number Concentration), majoritairement constituées de particules ultrafines (PUF), semble être un mesurande adapté à l’évaluation de l’impact sanitaire de la pollution atmosphérique et donc complémentaire aux mesures de concentration massique. Le suivi de ce paramètre apparait donc aujourd’hui comme un enjeu majeur d’évolution de surveillance de la qualité de l’air. L’avis relatif à « l’identification, la catégorisation et la hiérarchisation de polluants actuellement non réglementés pour la surveillance de la qualité de l’air » publié par l’ANSES (Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail) en 2018, prend en compte les résultats de ces études et indique que les particules ultrafines (PUF) doivent être considérées de façon prioritaire pour une éventuelle future surveillance de l’air ambiant en France. Dans ce contexte, le ministère en charge de l’environnement a demandé au LCSQA d’étudier les besoins d’évolution du réseau de surveillance national actuel pour une meilleure prise en compte de la PNC. En réponse à cette demande, une stratégie concertée avec les AASQA et différents acteurs sanitaires a été initiée, avec la publication en septembre 2020 d’éléments d’orientation pour la surveillance nationale de la concentration en nombre total des particules ultrafines (LCSQA, 2020). Etant donné l’absence actuelle de valeurs de référence pour ce paramètre dans l’air ambiant, une recherche bibliographique de la PNC mesurée à l’échelle nationale et à l’échelle européenne a été menée afin d’identifier des mesures de PNC « repères » en fonction des typologies de site. Ainsi, cette recherche s’est focalisée sur trois typologies de site identifiées, à savoir « Fond rural », « Fond urbain » et « Trafic » au niveau européen et deux typologies de site, à savoir « Fond urbain » et « Trafic » au niveau national. La comparaison des mesures de PNC réalisées aux niveaux national et européen est présentée pour les typologies de site « Fond urbain » et « Trafic ». Des valeurs PNC moyennes de 7,7 x 103 particules/cm3 et 9,7 x 103 particules/cm3 ont été calculées pour les typologie « Fond urbain » et « Trafic » à l’échelle nationale et de 9,8 x 103 particules/cm3 et 19,5 x 103 particules/cm3 respectivement à l’échelle européenne. Il est important de préciser que les mesures de PNC à l’échelle nationale et comparée à l’échelle européenne sont susceptibles d’évoluer avec la consolidation du réseau de surveillance et donc de la robustesse du jeu de données français associée à l’évolution du parc instrumental. De nombreux travaux scientifiques indiquent que la concentration en nombre des particules atmosphériques (PNC, pour Particle Number Concentration), majoritairement constituées de particules ultrafines (PUF), semble être un mesurande adapté à l’évaluation de l’impact sanitaire de la pollution atmosphérique et donc complémentaire aux mesures de concentration massique. Le suivi de ce paramètre apparait donc aujourd’hui comme un enjeu majeur d’évolution de surveillance de la qualité de l’air. L’avis relatif à « l’identification, la catégorisation et la hiérarchisation de polluants actuellement non réglementés pour la surveillance de la qualité de l’air » publié par l’ANSES (Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail) en 2018, prend en compte les résultats de ces études et indique que les particules ultrafines (PUF) doivent être considérées de façon prioritaire pour une éventuelle future surveillance de l’air ambiant en France. Dans ce contexte, le ministère en charge de l’environnement a demandé au LCSQA d’étudier les besoins d’évolution du réseau de surveillance national actuel pour une meilleure prise en compte de la PNC. En réponse à cette demande, une stratégie concertée avec les AASQA et différents acteurs sanitaires a été initiée, avec la publication en septembre 2020 d’éléments d’orientation pour la surveillance nationale de la concentration en nombre total des particules ultrafines (LCSQA, 2020). Etant donné l’absence actuelle de valeurs de référence pour ce paramètre dans l’air ambiant, une recherche bibliographique de la PNC mesurée à l’échelle nationale et à l’échelle européenne a été menée afin d’identifier des mesures de PNC « repères » en fonction des typologies de site. Ainsi, cette recherche s’est focalisée sur trois typologies de site identifiées, à savoir « Fond rural », « Fond urbain » et « Trafic » au niveau européen et deux typologies de site, à savoir « Fond urbain » et « Trafic » au niveau national. La comparaison des mesures de PNC réalisées aux niveaux national et européen est présentée pour les typologies de site « Fond urbain » et « Trafic ». Des valeurs PNC moyennes de 7,7 x 103 particules/cm3 et 9,7 x 103 particules/cm3 ont été calculées pour les typologie « Fond urbain » et « Trafic » à l’échelle nationale et de 9,8 x 103 particules/cm3 et 19,5 x 103 particules/cm3 respectivement à l’échelle européenne. Il est important de préciser que les mesures de PNC à l’échelle nationale et comparée à l’échelle européenne sont susceptibles d’évoluer avec la consolidation du réseau de surveillance et donc de la robustesse du jeu de données français associée à l’évolution du parc instrumental.     Overview of particle number concentration levels in the national network compared to the European scale Many scientific studies indicate that the particle number concentration in ambient air (PNC, for Particle Number Concentration), mainly composed of ultrafine particles (PUF), seems to be a suitable measurand, complementary to mass concentration, for evaluating the health impact of atmospheric pollution. Therefore, the measurement of this parameter appears to be a major issue in the evolution of monitoring devices dedicated to air quality survey. The report concerning "the identification, categorization and prioritization of currently unregulated pollutants for air quality monitoring" published by ANSES (National Agency for Food Safety, environment and work) in 2018, takes into account the results of these studies and indicates that ultrafine particles (PUF) must be considered as a priority for a possible future ambient air monitoring in France. In this context, the ministry in charge of the environment asked to LCSQA to study the development needs of the current national monitoring network to take into account PNC. In response to this request, a concerted strategy with the national air quality monitoring networks (AASQA) and health actors was initiated, with the publication in September 2020 of a report dedicated to the national monitoring of the total number of ultrafine particle concentration. Given the fact that no reference values ​​for this parameter in ambient air are available, a bibliographic research of PNC measured at national and european levels was carried out in order to identify “benchmark” PNC measurements according to site typologies. This research was focused on three site typologies identified as « Rural background », « Urban background » and « Traffic » at european level and two site typologies identified as « Urban background » and « Traffic » at the national level. The comparison of PNC measurements carried out at national and european level is presented in this report for both site typologies, i.e. « Urban background » and « Traffic ». Average PNC values ​​of 7.7 x 103 particles/cm3 and 9.7 x 103 particles/cm3 were calculated for the « Urban background » and « Traffic » typologies at the national scale and of 9.8 x 103 particles/cm3 and 19.5 x 103 particles/cm3 respectively on a european scale. It is important to specify that the PNC measurements at the national level compared to the european level will evolve in a near futur with the consolidation of the monitoring network and therefore the robustness of the French dataset associated with the evolution of the instrumental parc.  
Jeudi 23 mai 2013
Rapport
Développement de matériaux de référence pour les Hydrocarbures Aromatiques Polycycliques (HAP)
Les Hydrocarbures Aromatiques Polycycliques (HAP) sont des agents carcinogènes génotoxiques pour l’homme et leurs effets sur la santé sont principalement dus aux concentrations élevées dans l’airambiant, et en particulier sur les particules. C’est la raison pour laquelle la Commission Européenne asouhaité améliorer la surveillance et l’évaluation de la qualité de l’air en introduisant le suivi des HAP et plus particulièrement du benzo(a)pyrène (B[a]P) par le biais de la directive 2004/107/CE (4ème directive fille).Cette surveillance des HAP implique deux étapes : des prélèvements d'air ambiant sur filtres effectués par les Associations Agréées de Surveillance de la Qualité de l'Air (AASQA) et l'analyse de cesprélèvements en laboratoire afin de déterminer les concentrations de HAP. La pertinence d'un tel dispositif de surveillance de l'air repose sur la qualité des informationsobtenues. Elle peut être garantie de façon pérenne en développant des processus de quantificationreposant sur le raccordement des mesures réalisées par les AASQA à un même étalon de référencedétenu par un laboratoire de référence, ainsi que sur l’utilisation d’un Matériau de Référence Certifié (MRC). Cette procédure permet d'assurer la traçabilité des mesures réalisées sur site et de comparer les mesures effectuées par l’ensemble des AASQA dans le temps et dans l'espace.Dans le cas des analyses en laboratoire, le LNE a, entre autres, pour objectif d'établir la traçabilitémétrologique des résultats d'analyse en développant des MRC à l’aide de méthodes de référenceprimaires, quand cela est possible : l'utilisation de ces MRC lors des analyses en laboratoire permet de s'assurer de la justesse et de la fidélité des résultats, et de valider la méthode d’analyse.Une synthèse bibliographique sur les MRC de HAP a été réalisée en 2006 et a permis de mettre enévidence que les références de certains MRC disparaissent des catalogues et de montrer que seulsdeux types de MRC dans des particules étaient disponibles : un pour l’analyse des particules diesel etl’autre pour l’analyse de poussières dans les habitations. Mais, ces matériaux proposés ne sont pasreprésentatifs des particules prélevées dans l’air ambiant.C'est pourquoi le LNE a proposé de développer un MRC adapté à la problématique de lamesure des HAP dans l'air ambiant qui se présentera sous la forme de particules dopées avec des HAP déposées sur des filtres. La production d'un tel MRC comprend plusieurs phases :   le développement de la méthode d'analyse permettant de caractériser le MRC. la préparation du MRC (mise au point de la méthode de dopage de particules avec les HAP et détermination du mode d’impactage des particules sur le filtre). l'étude d’homogénéité et de stabilité dans le temps du MRC.   La méthode d’analyse des HAP dans les particules par ASE (Accelerated solvent extraction) ayant étéfinalisée et validée en 2010, il a été entrepris en 2011, de travailler sur le développement du MRC (phases 2 et 3). Une première étape a consisté à sélectionner des particules à impacter : des cendres d’incinération de déchets urbains et industriels ont été retenues comme matrice pour la fabrication du Matériau deRéférence Certifié (MRC) car leur composition chimique est en adéquation avec celle des particulesprélevées en air ambiant et le volume d’échantillon est suffisamment important pour assurer une production sur du long terme.La deuxième étape a porté sur le développement d’une méthode robuste pour la préparation desmatériaux. Elle peut être résumée en trois étapes :   Dopage des particules avec un mélange des huit HAP étudiés, Tamisage des particules dopées pour garantir l’homogénéité après le dopage, Impactage de 15 mg de cendres dopées sur filtre par « écrasement ».   La troisième étape a consisté à étudier les conditions de stockage de ce matériau, son homogénéité,sa stabilité dans le temps, ainsi que ses conditions de transport (stabilité lors du transport).Enfin, la dernière étape a consisté en la validation du MRC en réalisant une comparaison entrel’INERIS et le LNE. Cette comparaison montre qu’il n’existe pas de différence significative entre lesrésultats analytiques obtenus par le LNE et l’INERIS sur ce type de matériau. Au terme de cette étude, le LNE a donc développé un MRC pour les Hydrocarbures AromatiquesPolycycliques (HAP) : ce MRC se présente sous la forme de particules dopées avec des HAP,déposées sur des filtres. Les résultats de l’étude montre que ce MRC est stable durant plus de quatre mois, à condition de le conserver à l’abri de la lumière et à 4±3°C. De même, ce matériau est stable durant le transport dans les conditions suivantes : à l’abri de la lumière et en s’assurant de ne pas dépasser une température de 4°C. Enfin, le protocole de fabrication mis en place permet d’obtenir un lot dont l’homogénéité estinférieure aux incertitudes analytiques.
Lundi 13 avril 2015
Rapport
Développement d’un analyseur pour l’étalonnage de mélanges gazeux de NO2
En 2013, le LCSQA-LNE a réalisé une étude bibliographique sur les méthodes optiques(photo-acoustique, QC-Laser, Cavity-Ring Down System) pour l’analyse du NO2  qui présentent les avantages suivants : Méthode d'analyse "directe", Temps de stabilisation et d'analyse relativement courts, Stabilité des mesures supérieure à celle des analyseurs basés sur le principe de la chimiluminescence.   Ces méthodes présentant des performances techniques qui correspondent aux performances requises pour l’étalonnage des mélanges gazeux de NO2, le LCSQA-LNE a proposé de réaliser en 2014 un système d’analyse basé sur une mesure optique. Au sein du LNE, une équipe de chercheurs physiciens opticiens a acquis de solides compétences en spectroscopie depuis une quinzaine d’années. De ce fait, une collaboration a été entreprise afin de s’appuyer sur leurs compétences et leur expérience.   La technologie IBBCEAS pour Incoherent BroadBand Cavity Enhanced Absorption Spectroscopy est la méthode optique qui a été retenue du fait de sa simplicité à être mise en œuvre.   Les différents éléments constitutifs de notre montage ont été choisis de telle sorte qu’ils correspondent au mieux à notre cahier des charges. Un travail sur les LEDs a tout d’abord été effectué afin que les variations de la température ambiante n’affectent plus la puissance émise par la LED et ainsi la stabilité des mesures. Une fois notre montage opérationnel, la mesure de la réflectivité de nos miroirs a été entreprise. Nous avons alors constaté que celle-ci était très dépendante de l’état de surface des miroirs. Des trajets optiques effectifs entre 1 et 6 km ont été calculés. Des mesures de NO2 ont été réalisées à environ 200 nmol/mol. La stabilité à 0 et 200 nmol/mol, ainsi que le temps de réponse du système ont été caractérisés. Enfin, une répétabilité et une limite de détection ont été évaluées.   Ces premiers résultats ont pu être améliorés grâce au changement de la cellule d’acier inoxydable en Téflon, limitant ainsi les phénomènes d’adsorption et les volumes morts. Une nouvelle caractérisation du temps de réponse, de la stabilité, de la répétabilité ainsi que de la linéarité de notre système a été réalisée. Les résultats sont très encourageants. L’influence de différents paramètres sur la mesure reste encore à tester.
Jeudi 14 octobre 2021
Rapport
Suivi du financement du dispositif national de surveillance de la qualité de l’air sur la période 2015-2019
  L’article 27 de l’arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l’air ambiant dispose que le LCSQA effectue le suivi du coût total du dispositif national de surveillance de la qualité de l’air. Tel est l’objet de ce rapport qui analyse les évolutions budgétaires du dispositif depuis 2015. Le financement total du dispositif national de surveillance de la qualité de l’air s’élève en 2019 à 73,1 M€ (Tableau 1). Le financement du dispositif présente une hausse de 2,8% sur la période 2015-2019. En 2019, l’Etat finance le dispositif national de surveillance de la qualité de l’air par des subventions à hauteur de 33,9% et par des moindres recettes fiscales via la taxe générale sur les activités polluantes (TGAP) à hauteur de 34,1%. Le financement des AASQA représente 92,3% du financement total de la surveillance de la qualité de l’air en moyenne sur la période 2015-2019 et est en augmentation depuis 2015 (4,6%). Le financement du LCSQA représente 7,2% du total en moyenne sur la période 2015-2019 et est en baisse depuis 2015 (-14,1%) Le financement de la mise en œuvre opérationnelle du système Prev’Air est de 349 k€ en moyenne sur la période 2015-2019 et représente 0,5% du financement total de la surveillance de la qualité de l’air entre 2015 et 2019.     2015 (€) 2016 (€) 2017 (€) 2018 (€) 2019 (€)   Total Etat 25 200 455 23 566 875 24 162 990 23 870 740 24 714 520   Total dons TGAP 27 373 493 25 612 490 26 815 066 25 753 175 24 946 522   Total collectivités 14 421 871 13 747 972 15 053 252 15 519 739 15 496 878   Contribution entreprises 2 307 966 3 014 662 2 166 038 1 623 188 3 452 094   Total autres 1 367 130 2 001 262 15 372 530 3 349 905 3 482 426   Etudes et activités annexes 369 329 919 365 980 575 862 017 958 337   Total financement de la qualité de l'air 71 040 244 68 862 626 84 550 451 70 978 764 73 050 777 Financement total du dispositif national de surveillance de la qualité de l’air pour les 5 derniers exercices clos.
Actualité
Le LCSQA/LNE participe à trois projets européens de métrologie du dioxyde d’azote, du Black Carbon et des aérosols
L’expérience acquise au sein du LCSQA dans le domaine de la surveillance de la qualité de l’air a permis au LNE de participer à l’élaboration de plusieurs projets internationaux avec les autres instituts nationaux de métrologie. Ainsi, le LNE a participé en 2016 à un appel à projets intitulé « Call Environnement » dans le cadre du programme EMPIR (European Metrology Programme for Innovation and Research). Les résultats publiés fin 2016 confirment que le LNE sera impliqué dans 3 projets portant sur la métrologie du dioxyde d’azote, du Black Carbon et des aérosols pour une durée de trois ans chacun (2017-2020).  
Vendredi 4 mars 2016
Rapport
Développement et maintien des étalons de référence
L'objectif est de maintenir un bon niveau de performances métrologiques pour les étalons de référence SO2, NO, NO2, CO, O3 et BTEX (benzène, toluène, éthylbenzène et xylènes) utilisés pour titrer les étalons des AASQA. La première partie de l'étude a consisté à faire une synthèse des actions menées pour maintenir l'ensemble des étalons de référence afin de pouvoir réaliser les étalonnages prévus dans l’étude « Maintien et amélioration des chaînes nationales d’étalonnage » d’octobre 2015. La deuxième partie a porté sur l’amélioration de la méthode de génération des mélanges gazeux de référence de NO2 par perméation. Depuis quelques années, une chaîne de raccordement pilote des mélanges gazeux de NO2 en bouteille des laboratoires de niveau 2 a été mise en place ; cette chaîne consiste en un étalonnage des mélanges gazeux par le LCSQA-LNE tous les 3 mois. Les résultats d’étalonnage trimestriels montrent parfois une fluctuation des concentrations déterminées sur un même mélange gazeux en bouteille, parfois imputables aux étalons de référence de NO2. De nouveaux analyseurs spécifiques pour la mesure directe du polluant NO2 (analyseurs AS32M d’Environnement SA, T200UP NO-NO2 de Teledyne…) ont été ou sont en cours de développement par les fabricants. Ces analyseurs pouvant être amenés à être déployés dans les stations de mesure, il est important d’anticiper les besoins et d’améliorer les étalons de référence NO2 et les procédures d’étalonnage nécessaires à un raccordement fiable et robuste des étalons de NO2 des AASQA. Le LCSQA-LNE a donc proposé de s'intéresser de nouveau à la méthode de génération des étalons de référence de NO2 par perméation afin d’améliorer cette méthode au vu de l’expérience acquise depuis 15 ans. En 2015, le LNE s’est équipé d’une nouvelle balance à suspension électromagnétique en acier inoxydable électropoli permettant de déterminer le taux de perméation du tube avec une meilleure précision ; certaines modifications au niveau du software ont été nécessaires afin d’avoir une plus grande souplesse d’utilisation. Les premiers résultats montrent une stabilité correcte, mais qui doit être encore améliorée en travaillant sur l’alignement des différentes parties du système, et en optimisant les paramètres de mesure. Une fois ces derniers réglages optimisés, des essais seront réalisés avec un tube à perméation de dioxyde d’azote afin de suivre l’évolution de la masse du tube en fonction du temps. Des analyses en NO2 et H2O seront également réalisées en parallèle en sortie du système afin d’établir ou non une corrélation entre l’évolution du taux de perméation et la fraction molaire en H2O contenue dans le mélange gazeux généré.
Jeudi 1 mars 2018
Rapport
Circulation du jeu de filtres optiques pour aethalomètre au sein des AASQA
  Suite à la note technique présentée début 2017 concernant la procédure d’étalonnage des filtres optiques utilisés pour les aethalomètres AE33 (Magee Scientific), cette note présente le circuit effectué fin 2017-mi 2018 par le jeu de référence. A l’issue de ces utilisations in situ par les AASQA, un test de sensibilité devra être mené sur les aethalomètres AE33 (Magee Scientific) afin de quantifier l’impact de l’écart entre les valeurs « constructeur » et les valeurs de référence déterminées par le LCSQA/LNE sur les mesures de Black Carbon. Il sera également proposé pour 2018 une certification des jeux de filtres optiques des AASQA par le LCSQA/LNE tout en laissant circuler le jeu de référence au sein des autres AASQA volontaires.
Mercredi 11 mars 2020
Rapport
Développement d’un protocole pour l’évaluation en laboratoire des capteurs de PM
Une étude de faisabilité d'un protocole d’évaluation en laboratoire de capteurs pour la mesure des concentrations massiques particulaires a été menée entre 2017 et 2018 par le LCSQA-IMT Lille Douai. Ces essais ont porté sur deux natures de particules (poussières d’Arizona et chlorure de potassium) représentatives d’une fraction particulaire l’air ambiant. En 2019, le LCSQA-LNE a repris ces travaux dans le but d’optimiser ce protocole d’évaluation de par la mise en place d’une instrumentation spécifique associée à la génération d’aérosols et aux mesures de référence autour d’une chambre d’exposition. Concernant la génération des particules en phase aérosols, un générateur en voie humide ayant une stabilité temporelle adaptée aux essais a été impliqué dans le cadre d’une production de poussières d’Arizona. Couplés à cette même chambre, des instruments de référence ont été utilisés pour les mesures de distributions granulométriques en nombre (SMPS+APS) et de concentrations massiques (TEOM 50°C équipé d’une tête PM10/PM2,5) avec des résolutions temporelles inférieures à la minute. Le banc d’essais développé dans le cadre de cette étude a ensuite été mis en œuvre pour définir des modes opératoires pour la détermination de certaines performances des capteurs telles que la linéarité, la justesse, les limites de détection et la répétabilité (conditions de réalisation des essais et traitement statistique). Ces modes opératoires ont ensuite été mis en application sur des capteurs disponibles en laboratoire pour tester leur robustesse. Les essais et les résultats obtenus montrent qu’ils sont adaptés à la détermination de la linéarité, la justesse, les limites de détection et la répétabilité des capteurs. En termes de perspectives, il s’agira d’optimiser ce protocole d’évaluation en y associant des conditions de température et d'humidité relative contrôlées afin de tester l'effet de ces paramètres sur les performances des capteurs. Concernant la température, une gamme globale allant de 5°C à 40°C est prévue en lien avec une gamme d’humidité relative allant de 10% à 85%. Le premier challenge de cette nouvelle étude consistera à déterminer des points de fonctionnement en termes de température et d’humidité relative. Par la suite, pour chacun de ces points de fonctionnement, des gammes de concentrations particulaires en nombre et en masse seront identifiées et optimisées en injectant au sein de la chambre d’exposition des aérosols plus ou moins hygroscopiques (huiles, sels, dust, …) et possédant des indices de réfraction connus.
Jeudi 1 mars 2018
Rapport
Maintien et amélioration des étalons de référence
L'objectif est de maintenir un bon niveau de performances métrologiques pour les étalons de référence SO2, NO, NO2, CO, O3 et BTEX (benzène, toluène, éthylbenzène et xylènes) utilisés pour titrer les étalons des AASQA, afin de pouvoir continuer à produire des prestations de qualité.   La première partie de l'étude a consisté à faire une synthèse des actions menées pour maintenir l'ensemble des étalons de référence afin de pouvoir réaliser les étalonnages prévus dans l’étude « Maintien et amélioration des chaînes nationales d’étalonnage » de décembre 2017. La deuxième partie a porté sur l’amélioration de la méthode de fabrication gravimétrique des mélanges gazeux de référence en bouteille. Pour les composés NO, CO et BTEX (benzène, toluène, éthylbenzène et xylènes), les étalons de référence sont des mélanges gazeux de référence en bouteille (quelques µmol/mol à quelques centaines de µmol/mol) qui sont préparés par le LCSQA/LNE par la méthode gravimétrique selon la norme ISO 6142-1 : ces mélanges gazeux sont ensuite dilués par voie dynamique pour étalonner les mélanges gazeux utilisés par les AASQA. La préparation des mélanges gazeux de référence gravimétriques consiste à déterminer les masses de composés introduites sous forme gazeuse ou liquide dans une bouteille préalablement mise sous vide. Les fractions molaires sont calculées à partir des masses, de la pureté et des masses molaires des différents constituants. Les rampes de fabrication actuellement utilisées par le LCSQA/LNE ont été mises en service il y a une vingtaine d’années et sont donc vieillissantes. Cette étude menée en 2017 nous a donc permis de réaliser un état des lieux de nos rampes de préparation de mélanges gazeux de référence sur le plan pratique, sécuritaire et métrologique. Le constat effectué a montré qu’il était nécessaire d’améliorer un certain nombre de points. Un schéma d’une nouvelle rampe incluant des améliorations a pu être réalisé (filtration, ciblage, alimentation en gaz purs…). Le devis nécessaire à la réalisation de cette rampe a été réalisé par la société « les automatismes appliqués » conduisant à un budget de 40,5 k€. La rampe pourra être montée en 2018 ; il restera en 2019 à ajouter une régulation de température afin de limiter encore les adsorptions des molécules dans les tuyaux. Cette rampe devrait nous permettre une plus grande souplesse d’utilisation ainsi qu’une plus grande maitrise des impuretés (H2O, O2…) pouvant réagir avec les gaz d’intérêt. La justesse et les incertitudes sur les fractions molaires des mélanges gazeux préparés seront ainsi améliorées.