Résultats de la recherche

208 résultats correspondent à LNE
Jeudi 23 mai 2013
Rapport
Développement de matériaux de référence pour les Hydrocarbures Aromatiques Polycycliques (HAP)
Les Hydrocarbures Aromatiques Polycycliques (HAP) sont des agents carcinogènes génotoxiques pour l’homme et leurs effets sur la santé sont principalement dus aux concentrations élevées dans l’airambiant, et en particulier sur les particules. C’est la raison pour laquelle la Commission Européenne asouhaité améliorer la surveillance et l’évaluation de la qualité de l’air en introduisant le suivi des HAP et plus particulièrement du benzo(a)pyrène (B[a]P) par le biais de la directive 2004/107/CE (4ème directive fille).Cette surveillance des HAP implique deux étapes : des prélèvements d'air ambiant sur filtres effectués par les Associations Agréées de Surveillance de la Qualité de l'Air (AASQA) et l'analyse de cesprélèvements en laboratoire afin de déterminer les concentrations de HAP. La pertinence d'un tel dispositif de surveillance de l'air repose sur la qualité des informationsobtenues. Elle peut être garantie de façon pérenne en développant des processus de quantificationreposant sur le raccordement des mesures réalisées par les AASQA à un même étalon de référencedétenu par un laboratoire de référence, ainsi que sur l’utilisation d’un Matériau de Référence Certifié (MRC). Cette procédure permet d'assurer la traçabilité des mesures réalisées sur site et de comparer les mesures effectuées par l’ensemble des AASQA dans le temps et dans l'espace.Dans le cas des analyses en laboratoire, le LNE a, entre autres, pour objectif d'établir la traçabilitémétrologique des résultats d'analyse en développant des MRC à l’aide de méthodes de référenceprimaires, quand cela est possible : l'utilisation de ces MRC lors des analyses en laboratoire permet de s'assurer de la justesse et de la fidélité des résultats, et de valider la méthode d’analyse.Une synthèse bibliographique sur les MRC de HAP a été réalisée en 2006 et a permis de mettre enévidence que les références de certains MRC disparaissent des catalogues et de montrer que seulsdeux types de MRC dans des particules étaient disponibles : un pour l’analyse des particules diesel etl’autre pour l’analyse de poussières dans les habitations. Mais, ces matériaux proposés ne sont pasreprésentatifs des particules prélevées dans l’air ambiant.C'est pourquoi le LNE a proposé de développer un MRC adapté à la problématique de lamesure des HAP dans l'air ambiant qui se présentera sous la forme de particules dopées avec des HAP déposées sur des filtres. La production d'un tel MRC comprend plusieurs phases :   le développement de la méthode d'analyse permettant de caractériser le MRC. la préparation du MRC (mise au point de la méthode de dopage de particules avec les HAP et détermination du mode d’impactage des particules sur le filtre). l'étude d’homogénéité et de stabilité dans le temps du MRC.   La méthode d’analyse des HAP dans les particules par ASE (Accelerated solvent extraction) ayant étéfinalisée et validée en 2010, il a été entrepris en 2011, de travailler sur le développement du MRC (phases 2 et 3). Une première étape a consisté à sélectionner des particules à impacter : des cendres d’incinération de déchets urbains et industriels ont été retenues comme matrice pour la fabrication du Matériau deRéférence Certifié (MRC) car leur composition chimique est en adéquation avec celle des particulesprélevées en air ambiant et le volume d’échantillon est suffisamment important pour assurer une production sur du long terme.La deuxième étape a porté sur le développement d’une méthode robuste pour la préparation desmatériaux. Elle peut être résumée en trois étapes :   Dopage des particules avec un mélange des huit HAP étudiés, Tamisage des particules dopées pour garantir l’homogénéité après le dopage, Impactage de 15 mg de cendres dopées sur filtre par « écrasement ».   La troisième étape a consisté à étudier les conditions de stockage de ce matériau, son homogénéité,sa stabilité dans le temps, ainsi que ses conditions de transport (stabilité lors du transport).Enfin, la dernière étape a consisté en la validation du MRC en réalisant une comparaison entrel’INERIS et le LNE. Cette comparaison montre qu’il n’existe pas de différence significative entre lesrésultats analytiques obtenus par le LNE et l’INERIS sur ce type de matériau. Au terme de cette étude, le LNE a donc développé un MRC pour les Hydrocarbures AromatiquesPolycycliques (HAP) : ce MRC se présente sous la forme de particules dopées avec des HAP,déposées sur des filtres. Les résultats de l’étude montre que ce MRC est stable durant plus de quatre mois, à condition de le conserver à l’abri de la lumière et à 4±3°C. De même, ce matériau est stable durant le transport dans les conditions suivantes : à l’abri de la lumière et en s’assurant de ne pas dépasser une température de 4°C. Enfin, le protocole de fabrication mis en place permet d’obtenir un lot dont l’homogénéité estinférieure aux incertitudes analytiques.
Actualité
Le LCSQA/LNE participe à trois projets européens de métrologie du dioxyde d’azote, du Black Carbon et des aérosols
L’expérience acquise au sein du LCSQA dans le domaine de la surveillance de la qualité de l’air a permis au LNE de participer à l’élaboration de plusieurs projets internationaux avec les autres instituts nationaux de métrologie. Ainsi, le LNE a participé en 2016 à un appel à projets intitulé « Call Environnement » dans le cadre du programme EMPIR (European Metrology Programme for Innovation and Research). Les résultats publiés fin 2016 confirment que le LNE sera impliqué dans 3 projets portant sur la métrologie du dioxyde d’azote, du Black Carbon et des aérosols pour une durée de trois ans chacun (2017-2020).  
Jeudi 1 mars 2018
Rapport
Maintien et amélioration des étalons de référence
L'objectif est de maintenir un bon niveau de performances métrologiques pour les étalons de référence SO2, NO, NO2, CO, O3 et BTEX (benzène, toluène, éthylbenzène et xylènes) utilisés pour titrer les étalons des AASQA, afin de pouvoir continuer à produire des prestations de qualité.   La première partie de l'étude a consisté à faire une synthèse des actions menées pour maintenir l'ensemble des étalons de référence afin de pouvoir réaliser les étalonnages prévus dans l’étude « Maintien et amélioration des chaînes nationales d’étalonnage » de décembre 2017. La deuxième partie a porté sur l’amélioration de la méthode de fabrication gravimétrique des mélanges gazeux de référence en bouteille. Pour les composés NO, CO et BTEX (benzène, toluène, éthylbenzène et xylènes), les étalons de référence sont des mélanges gazeux de référence en bouteille (quelques µmol/mol à quelques centaines de µmol/mol) qui sont préparés par le LCSQA/LNE par la méthode gravimétrique selon la norme ISO 6142-1 : ces mélanges gazeux sont ensuite dilués par voie dynamique pour étalonner les mélanges gazeux utilisés par les AASQA. La préparation des mélanges gazeux de référence gravimétriques consiste à déterminer les masses de composés introduites sous forme gazeuse ou liquide dans une bouteille préalablement mise sous vide. Les fractions molaires sont calculées à partir des masses, de la pureté et des masses molaires des différents constituants. Les rampes de fabrication actuellement utilisées par le LCSQA/LNE ont été mises en service il y a une vingtaine d’années et sont donc vieillissantes. Cette étude menée en 2017 nous a donc permis de réaliser un état des lieux de nos rampes de préparation de mélanges gazeux de référence sur le plan pratique, sécuritaire et métrologique. Le constat effectué a montré qu’il était nécessaire d’améliorer un certain nombre de points. Un schéma d’une nouvelle rampe incluant des améliorations a pu être réalisé (filtration, ciblage, alimentation en gaz purs…). Le devis nécessaire à la réalisation de cette rampe a été réalisé par la société « les automatismes appliqués » conduisant à un budget de 40,5 k€. La rampe pourra être montée en 2018 ; il restera en 2019 à ajouter une régulation de température afin de limiter encore les adsorptions des molécules dans les tuyaux. Cette rampe devrait nous permettre une plus grande souplesse d’utilisation ainsi qu’une plus grande maitrise des impuretés (H2O, O2…) pouvant réagir avec les gaz d’intérêt. La justesse et les incertitudes sur les fractions molaires des mélanges gazeux préparés seront ainsi améliorées.
Jeudi 19 juillet 2018
Rapport
Interlaboratory comparison for the analysis of PAHs in ambient air (2018)
Dans le cadre de la mise en œuvre des exigences qualité fixées par le ministère chargé de l’environnement, un essai de comparaison inter laboratoires (CIL) analytique a été organisé par le LCSQA (INERIS en collaboration avec le LNE) au premier semestre 2018, pour les laboratoires d’analyse sous-traitants des AASQA (Association Agréée pour la Surveillance de la Qualité de l’Air). Les inscriptions ont été également ouvertes à des laboratoires européens appliquant les prescriptions des textes normatifs relatifs à l’analyse du Benzo[a]pyrène (B[a]P) et des autres HAP (Hydrocarbures Aromatiques Polycycliques) concernés par la Directive 2004/107/CE ainsi que sur le phénanthrène, le fluoranthène et le benzo[g,h,i]pérylène. Cet exercice comprenait des matrices de concentrations différentes en HAP afin de prendre en compte les gammes de travail habituelles des laboratoires réalisant l’analyse de filtres issus de prélèvements haut débit ou bas débit. Chaque participant a donc reçu les matériaux suivants : 3 poinçons de filtre issus de prélèvements d’air ambiant pour deux d’entre eux, le troisième étant un blanc de laboratoire. Les prélèvements ont été effectués sur filtre en quartz à l'aide d'un préleveur grand volume de type Graseby-Andersen, équipé d'une tête PM10, à un débit de 70 m3/h. Chaque filtre était découpé avec un emporte-pièce en 20 morceaux de 37 mm de diamètre. Trois filtres notés 18/172774_F1, F2 et F-blanc ont ainsi été envoyés aux participants ; 1 matériau de référence certifié (MRC) par l’IRMM (ERM®-CZ100, fine dust PM10 like) envoyé en double mais identifiés comme 2 matériaux distincts pour les participants et donc notés 18/172224_MRC1 et MRC2. 3 matériaux liquides de référence certifiés (MRC) préparés par le LNE, constitués de trois solutions étalons notées : 18/172774_S1, S2 et S3. Les solutions S1 et S2 étaient identiques. Finalement, 17 laboratoires européens (dont 13 français) ont participé à cette CIL. Une grande amélioration des résultats a pu être observée par comparaison à ceux obtenus lors des CIL organisées en 2014 et 2015 (Verlhac, 2014, Verlhac and Albinet, 2015). Les dernières recommandations et la rencontre organisée avec les laboratoires sous-traitants des AASQA pour l’analyse des HAP (04/07/2016, https://www.lcsqa.org/system/files/commission/Web_CS-cr-lcsqa_rex_hap_aal_2016-vf.pdf) ont été certainement bénéfiques. Mis à part pour le MRC solide, les incertitudes obtenues, notamment pour le B[a]P, respectent celles qui sont admises par la Directive et la TS XP/CEN 16645 montrant que la dispersion des laboratoires est bien meilleure. Néanmoins, quelques laboratoires doivent encore améliorer leurs procédures analytiques car ils ont obtenu des mauvais résultats (majoritairement non acceptables c’est-à-dire ayant un |score z| ≥ 3) pour la plupart des matériaux et HAP testés (180430, 180458 et dans une moindre mesure, 18096, pour les solutions certifiées). De plus, les laboratoires 180458 and 180481 n’ont fourni aucun résultat pour le MRC solide et le laboratoire 180429 a seulement fourni des résultats pour le B[a]P pour tous les matériaux de l’essai. Enfin, sur la base des zêta -scores, les incertitudes de mesure ne sont toujours pas correctement évaluées par la plupart des participants. Les laboratoires français sont donc invités à suivre les recommandations fournies par le LCSQA (Albinet, 2015) afin d’estimer les incertitudes sur l’analyse des HAP.   Rapport intermédiaire (juillet 2018) et annexes This document is a synthesis of the results submitted by the participants during the interlaboratory comparison (ILC) for the analysis of polycyclic aromatic hydrocarbons (PAH) in ambient air organized in 2018 by the LCSQA. This report does not contain any comment or discussion on the submitted data (values higher or lower than a factor of 10 from the participant average results were excluded). It can be subject to modification especially in the calculations of the reference values and z-scores. The data is thus temporary. The final results and discussions will be available in the final version of the report and sent to all participants. Il s'agit d'un rapport intermédiaire (résultats préliminaires).
Mercredi 16 septembre 2020
Rapport
Suivi du financement du dispositif national de surveillance de la qualité de l’air sur la période 2014-2018
L’article 27 de l’arrêté du 19 avril 2017 relatif au dispositif national de surveillance de la qualité de l’air ambiant dispose que le LCSQA est tenu d’« effectuer le suivi du coût de la mise en œuvre de la surveillance » de la qualité de l’air. Tel est l’objet de ce rapport qui analyse les évolutions budgétaires du dispositif, sur les 5 dernières années. En 2018, le financement du dispositif national de surveillance de la qualité de l’air est de 71M€, ce qui représente une augmentation de 1% sur 5 ans. De plus, en 2018 l’Etat finance directement, par des subventions, le dispositif national de surveillance de la qualité de l’air à hauteur de 33,6% et par des moindres recettes fiscales via la taxe générale sur les activités polluantes (TGAP) à hauteur de 36,3%. Le financement des AASQA représente 91,8% du financement total de la surveillance de la qualité de l’air sur la période, en augmentation sur 5 ans, passant de 90,1% en 2014 à 92,3% du financement total en 2018. En 5 ans, les financements des AASQA ont augmenté de 3,5% passant de 63,3M€ en 2014 à 65,5M€ en 2018. Les financements du LCSQA représentent 7,7% sur la période ; ils sont en baisse sur 5 ans passant de 9,4% du financement total du dispositif en 2014 à 7,3% en 2018. La baisse est de 21% depuis 2014. Le financement de la mise en œuvre opérationnelle de la plate-forme Prev’Air est en baisse de 29% sur 5 ans, passant de 400k€ en 2014 à 284k€ en 2018. De par sa structure et son mode de financement, seul le coût de mise en œuvre opérationnelle du système Prev’Air, hors travaux de développement scientifique, peut être estimé aisément. Le financement de la mise en œuvre opérationnelle de Prev’Air représente 0,5% du financement total de la surveillance de la qualité de l’Air sur la période.
Mercredi 16 septembre 2020
Rapport
Rapport d'activité LCSQA 2019
Après une première partie retraçant les faits marquants de l'année 2019, le rapport d'activité présente l'ensemble des démarches mises en œuvre et les actions réalisées en 2019 pour assurer la coordination du dispositif français de surveillance de la qualité de l'air selon les quatre principales orientations décrites dans le contrat de performance 2016-2021 signé avec le ministère de la transition écologique : Assurer la qualité des données de l’observatoire et les adéquations avec les exigences européennes et les besoins de surveillance Assurer la centralisation au niveau national, l’exploitation et la mise à disposition des données produites par le dispositif de surveillance Améliorer les connaissances scientifiques et techniques du dispositif pour accompagner la mise en œuvre des plans d’action et anticiper les enjeux futurs du dispositif Assurer la coordination, l’animation et le suivi du dispositif national de surveillance Le rapport s'achève sur la présentation de l'organisation du LCSQA ainsi que des principaux chiffres clés, des indicateurs et jalons prioritaires. Notons que cette année constitue une étape intermédiaire dans la réalisation des objectifs fixés dans le contrat de performance du LCSQA et dont le bilan est positif au regard des indicateurs retenus : maintien du rythme des audits techniques des AASQA, production de guides méthodologiques ; enfin malgré la diminution du nombre de raccordements à la chaîne nationale de traçabilité métrologique, la qualité des données produites par le dispositif national est demeurée  conforme aux référentiels en vigueur. Parmi les principaux sujets traités par le LCSQA en 2019, on peut retenir : Une augmentation significative de la part de la subvention du ministère de tutelle consacrée aux actions prospectives (+8%) permettant de réaliser des travaux sur les polluants non réglementés et les micro-capteurs. Ces travaux ont conduit à l’organisation de deux campagnes d’évaluation sur le terrain, la mise en place d’une base de données permettant le partage d’information et le retour d’expérience entre les membres du dispositif national, et enfin l’utilisation de ces données pour la réalisation des cartographies urbaines ; La reprise des travaux sur les pesticides, en collaboration avec l’Anses, avec la coordination de la campagne nationale exploratoire des pesticides dont les mesures se sont déroulées entre juin 2018 et juin 2019. Les travaux ont été publiés cette année. la prévision et la mise en œuvre d’un référentiel commun pour toutes les AASQA (Associations agréées pour la surveillance de la qualité de l’air). Un dossier technique décrivant les travaux du LCSQA dédiés à la modélisation et la prévision aussi bien au niveau national qu’européen complète ce rapport d’activité annuel (Télécharger le dossier technique) la poursuite de la collaboration avec le Gouvernement de la Nouvelle Calédonie qui s’est traduite en 2019 par la réalisation d’une comparaison interlaboratoire pour Scal’Air (organisme de surveillance de la qualité de l’air en Nouvelle-Calédonie) concernant les particules et le gaz et l’accompagnement pour la mise en œuvre de la modélisation à Nouméa Les travaux du LCSQA réalisés en 2019 ont été financés par la Direction Générale de l’Énergie et du Climat (bureau de la qualité de l’air) du Ministère de la Transition Écologique (MTE) mais ont également bénéficié d’un financement de la part de l’Anses pour la campagne nationale exploratoire de mesure des pesticides dans le cadre du dispositif de phytopharmacovigilance (PPV).  
Lundi 13 avril 2015
Rapport
Développement d’un analyseur pour l’étalonnage de mélanges gazeux de NO2
En 2013, le LCSQA-LNE a réalisé une étude bibliographique sur les méthodes optiques(photo-acoustique, QC-Laser, Cavity-Ring Down System) pour l’analyse du NO2  qui présentent les avantages suivants : Méthode d'analyse "directe", Temps de stabilisation et d'analyse relativement courts, Stabilité des mesures supérieure à celle des analyseurs basés sur le principe de la chimiluminescence.   Ces méthodes présentant des performances techniques qui correspondent aux performances requises pour l’étalonnage des mélanges gazeux de NO2, le LCSQA-LNE a proposé de réaliser en 2014 un système d’analyse basé sur une mesure optique. Au sein du LNE, une équipe de chercheurs physiciens opticiens a acquis de solides compétences en spectroscopie depuis une quinzaine d’années. De ce fait, une collaboration a été entreprise afin de s’appuyer sur leurs compétences et leur expérience.   La technologie IBBCEAS pour Incoherent BroadBand Cavity Enhanced Absorption Spectroscopy est la méthode optique qui a été retenue du fait de sa simplicité à être mise en œuvre.   Les différents éléments constitutifs de notre montage ont été choisis de telle sorte qu’ils correspondent au mieux à notre cahier des charges. Un travail sur les LEDs a tout d’abord été effectué afin que les variations de la température ambiante n’affectent plus la puissance émise par la LED et ainsi la stabilité des mesures. Une fois notre montage opérationnel, la mesure de la réflectivité de nos miroirs a été entreprise. Nous avons alors constaté que celle-ci était très dépendante de l’état de surface des miroirs. Des trajets optiques effectifs entre 1 et 6 km ont été calculés. Des mesures de NO2 ont été réalisées à environ 200 nmol/mol. La stabilité à 0 et 200 nmol/mol, ainsi que le temps de réponse du système ont été caractérisés. Enfin, une répétabilité et une limite de détection ont été évaluées.   Ces premiers résultats ont pu être améliorés grâce au changement de la cellule d’acier inoxydable en Téflon, limitant ainsi les phénomènes d’adsorption et les volumes morts. Une nouvelle caractérisation du temps de réponse, de la stabilité, de la répétabilité ainsi que de la linéarité de notre système a été réalisée. Les résultats sont très encourageants. L’influence de différents paramètres sur la mesure reste encore à tester.
Vendredi 4 mars 2016
Rapport
Développement et maintien des étalons de référence
L'objectif est de maintenir un bon niveau de performances métrologiques pour les étalons de référence SO2, NO, NO2, CO, O3 et BTEX (benzène, toluène, éthylbenzène et xylènes) utilisés pour titrer les étalons des AASQA. La première partie de l'étude a consisté à faire une synthèse des actions menées pour maintenir l'ensemble des étalons de référence afin de pouvoir réaliser les étalonnages prévus dans l’étude « Maintien et amélioration des chaînes nationales d’étalonnage » d’octobre 2015. La deuxième partie a porté sur l’amélioration de la méthode de génération des mélanges gazeux de référence de NO2 par perméation. Depuis quelques années, une chaîne de raccordement pilote des mélanges gazeux de NO2 en bouteille des laboratoires de niveau 2 a été mise en place ; cette chaîne consiste en un étalonnage des mélanges gazeux par le LCSQA-LNE tous les 3 mois. Les résultats d’étalonnage trimestriels montrent parfois une fluctuation des concentrations déterminées sur un même mélange gazeux en bouteille, parfois imputables aux étalons de référence de NO2. De nouveaux analyseurs spécifiques pour la mesure directe du polluant NO2 (analyseurs AS32M d’Environnement SA, T200UP NO-NO2 de Teledyne…) ont été ou sont en cours de développement par les fabricants. Ces analyseurs pouvant être amenés à être déployés dans les stations de mesure, il est important d’anticiper les besoins et d’améliorer les étalons de référence NO2 et les procédures d’étalonnage nécessaires à un raccordement fiable et robuste des étalons de NO2 des AASQA. Le LCSQA-LNE a donc proposé de s'intéresser de nouveau à la méthode de génération des étalons de référence de NO2 par perméation afin d’améliorer cette méthode au vu de l’expérience acquise depuis 15 ans. En 2015, le LNE s’est équipé d’une nouvelle balance à suspension électromagnétique en acier inoxydable électropoli permettant de déterminer le taux de perméation du tube avec une meilleure précision ; certaines modifications au niveau du software ont été nécessaires afin d’avoir une plus grande souplesse d’utilisation. Les premiers résultats montrent une stabilité correcte, mais qui doit être encore améliorée en travaillant sur l’alignement des différentes parties du système, et en optimisant les paramètres de mesure. Une fois ces derniers réglages optimisés, des essais seront réalisés avec un tube à perméation de dioxyde d’azote afin de suivre l’évolution de la masse du tube en fonction du temps. Des analyses en NO2 et H2O seront également réalisées en parallèle en sortie du système afin d’établir ou non une corrélation entre l’évolution du taux de perméation et la fraction molaire en H2O contenue dans le mélange gazeux généré.
Actualité
Thomas GRENON, Directeur général du LNE, est nommé Président du LCSQA
Thomas GRENON, récemment nommé directeur général du Laboratoire national de métrologie et d’essais (LNE) a été élu Président du LCSQA pour une durée de 2 ans à compter du 23 juin 2016.  
Jeudi 7 mai 2020
Rapport
Travaux LCSQA 2018 dans le domaine de la normalisation française et européenne
Le rapport « Travaux LCSQA dans le domaine de la normalisation française et européenne » fait état des principales activités dans lesquelles le LCSQA s'est impliqué au niveau national et européen en 2018. Au niveau européen, les Groupes de Travail et différentes instances techniques (AQUILA, FAIRMODE) ont impliqué jusqu’à 14 experts membres du LCSQA en 2018. Les principales informations associées aux différents documents normatifs et réglementaires traités cette année sont les suivantes : Ø sur le plan de la réglementation européenne, le processus de Fitness Check s’est terminé et ses conclusions sont attendues pour 2019, Ø concernant la réglementation nationale, l’arrêté du 19 avril 2017 qui précise les rôles et responsabilités des différents acteurs (AASQA, LCSQA) et qui structure désormais le Référentiel Technique National devrait être révisé en 2019. Il convient de noter que ce référentiel mentionne des textes normatifs européens qui ne sont pas inscrits dans les directives européennes (par exemple  la norme EN 16450 sur les analyseurs automatiques de PM, la norme EN 16339 sur la mesure du NO2 par tube à diffusion, la Spécification Technique TS 16976 sur la détermination de la concentration en nombre de particules de l’aérosol atmosphérique), Ø s’agissant de la normalisation, tant européenne que (inter)nationale, 2018 est une année de transition et de préparation à la sortie de textes (soit nouveaux, soit révisés) sur la période 2019-2020 : F EN 17346 « Qualité de l'air ambiant - Méthode de détermination de la concentration d'ammoniac par échantillonnage diffusif »  F NF EN 14211 « Air ambiant - Méthode standard pour le mesurage de la concentration en dioxyde d'azote et monoxyde d'azote par chimiluminescence » F NF EN 14212 « Air ambiant - Méthode standard pour le mesurage de la concentration en dioxyde de soufre par fluorescence UV » F NF EN 14625 « Air ambiant - Méthode standard de mesurage de la concentration en ozone par photométrie UV » F NF EN 14626 «  Air ambiant – Méthode normalisée de mesurage de la concentration en monoxyde de carbone par spectroscopie à rayonnement infrarouge non dispersif » F EN 14662-1 « Qualité de l'air ambiant — Méthode normalisée pour le mesurage de la concentration en benzène — Partie 1 : Echantillonnage par pompage suivi d'une désorption thermique et d'une méthode chromatographie en phase gazeuse » F EN 12341 « Air ambiant - Méthode normalisée de mesurage gravimétrique pour la détermination de la concentration massique MP10 ou MP2,5 de matière particulaire en suspension » F EN 16450 « Air ambiant - Systèmes automatisés de mesurage de la concentration de matière particulaire (PM10; PM2,5) » F TS 17434 « Air ambiant - Détermination de la distribution granulométrique de particules d’un aérosol atmosphérique à l’aide d’un spectromètre de granulométrie à mobilité électrique (SMPS) » F TS 16868 « Air ambiant - Échantillonnage et analyse des grains de pollen dans l'air et des spores fongiques pour les réseaux d'allergie - Méthode volumétrique Hirst » F TS (référence non encore attribuée) sur l’évaluation des performances de capteurs pour la détermination de la concentration de polluants gazeux dans l’air ambiant F TS 17458 « Air ambiant — Méthode d’évaluation de la performance d’applications d’un système de modélisation de la répartition des sources » F TS (référence non encore attribuée) sur la définition et l’utilisation d’objectifs de qualité d’un système de modélisation pour l’évaluation de la qualité de l’air ambiant   Ces textes (dont certains sont déjà mentionnés dans le Référentiel Technique National) impacteront vraisemblablement le fonctionnement du dispositif national de surveillance. La « mise sous normalisation » des nouveaux outils d’évaluation de la qualité de l’air (capteurs, outils numériques) est un enjeu majeur pour le dispositif, notamment en ce qui concerne les exigences stipulées dans ces textes susceptibles de devenir des documents de référence.