Résultats de la recherche

208 résultats correspondent à LNE
Mardi 2 août 2022
Rapport
Pesticides dans l’air ambiant : Comparaison inter-laboratoires analytique 2021
Cette comparaison inter-laboratoires (CIL) dédiée aux pesticides et organisée par le LCSQA, fait suite à la dernière en date de 2015 qui montrait une disparité importante des performances des laboratoires avec in fine très peu de laboratoires satisfaisant les exigences en termes de capacité à répondre aux besoins de sous-traitance analytique (limite de quantification, rendement d’extraction, méthodes d’analyse, ...) des Associations agréées de surveillance de la qualité de l’air (AASQA). Cette CIL s’inscrit également dans le contexte du suivi pérenne engagé depuis 2021, et les résultats obtenus peuvent guider les AASQA dans la sélection de leurs laboratoires sous-traitants pour ce suivi. Cette CIL a porté sur 26 substances (25 substances semi-volatiles et une substance polaire (glyphosate)), à savoir :   2.4D fenpropidine permethrine alpha-HCH fluazinam propyzamide boscalid folpel prosulfocarbe chlorothalonil glyphosate pyrimethanil chlorpropham lindane (gamma HCH) s-metolachlore chlorpyriphos methyl metazachlore spiroxamine chlorpyriphos-ethyl oxadiazon tebuconazole cyprodinyl pendimethalin triallate deltamethrin pentachlorophenol     A noter que les précédentes CIL ne ciblaient pas les substances polaires. Ces 26 substances étaient réparties sur/dans différents matériaux d’essais. Des mousses dopées et des solutions de référence ont été dédiées à l’analyse de pesticides semi-volatils. Leurs préparations (conditionnement et dopage) et analyses pour l’étude d’homogénéité et de stabilité ont été effectuées par le LNE. Les concentrations cibles des solutions de référence C1, C2 et C3 ainsi préparées étaient comprises entre 71 et 1300 ng/mL avec un nombre de substances et des niveaux de concentrations variables selon la solution. Les quantités cibles des échantillons de mousses C1, C2 et C3 étaient comprises entre 71 et 3 240 ng selon la substance et le matériau (C1, C2 ou C3), ce qui correspond à des concentrations dans l’air ambiant comprises entre 0,4 et 20 ng/m3 pour des prélèvements hebdomadaires à 1m3/h. Des filtres en microfibre de quartz ont été choisis comme supports pour l’analyse du glyphosate. Ces derniers ont été conditionnés (calcination), dopés, et analysés par l’Ineris afin de vérifier leur homogénéité et stabilité. L’ensemble des filtres a été dopé avec des quantités équivalentes à des concentrations dans l’air ambiant comprises entre 0,7 et 0,07 ng/m3 pour des prélèvements de 24h à 30 m3/h. Trois laboratoires ont participé à cette comparaison inter-laboratoires : •           IANESCO •           LABORATOIRE DEPARTEMENTAL 31 •           MICROPOLLUANTS TECHNOLOGIE SA Etant donné le faible nombre de participants, cette CIL présentait des caractéristiques qui pouvaient la remettre en question quant à la robustesse de son interprétation. Le choix a été fait de la maintenir en raison de l’intérêt qu’elle présente dans l’apport d’informations autres que le seul classement des laboratoires selon leur z-score. Parmi celles-ci, on peut citer les informations concernant le traitement et le stockage des échantillons, les limites de quantification (LQ) et les rendements d’extraction. Parmi les enseignements de cette CIL, on soulignera la capacité des laboratoires participants à renseigner les résultats de la quasi-totalité des substances, et on retiendra l’absence de contamination des matrices vierges. Des différences de conditions de stockage, parfois non conformes à la norme en vigueur, ont été relevées, sans conséquences apparentes sur les résultats d’analyse. Les rendements d’extraction obtenus respectent les critères de la norme XP X43 059, à quelques exceptions près (entre 0 et 7 substances suivant le laboratoire). Ces dernières ne semblent pas avoir eu de répercussions visibles sur les écarts présentés entre les données d’analyse de ces laboratoires et les valeurs cibles attendues. De même pour ce qui est des détails des traitements analytiques mis en œuvre (concentration, nature des étalons internes, …) par les laboratoires, aucune répercussion n’a été observée sur les résultats transmis. Parmi les différentes conditions de dopage de cet exercice, l’introduction de fortes quantités de certaines substances par rapport à d’autres ne semble pas avoir généré de problème particulier d’analyse. De même, malgré des compositions différentes des matériaux d’essai (nombre de substances et concentrations variables, substances relativement délicates à séparer), aucun faux positif/négatif dans les différentes séries de matériaux d’essai n’a été observé. L’introduction du glyphosate, substance polaire non couverte par la norme XP X43-059, a conduit à des résultats satisfaisants pour les laboratoires ayant menés les analyses selon les délais définis. Au regard du nombre d’échantillons à traiter et de résultats à fournir par laboratoire, peu de résultats aberrants ont été comptabilisés. On note qu’au global, les dopages contenant les 25 substances suspectées d’interférences entre elles ne semblent pas amener de difficultés particulières en termes d’identification des substances. Compte-tenu du faible nombre de laboratoire participant, l’évaluation des résultats des laboratoires a été déterminée au travers du biais qui est l’expression de l’écart du résultat du participant avec la valeur cible attendue. Les biais de chaque laboratoire ont été calculés à partir de la moyenne des 3 résultats d’analyse rendus pour chaque série d’échantillon, sans tenir compte des incertitudes de la valeur cible (faible, de l’ordre de 2 %, sauf pour le s-métolachlore où elle était de l’ordre de 10 %). Ils ne prennent pas en compte celle des laboratoires (variable, allant de 15 et 44 %), qui pourrait induire une distorsion de traitement entre les labos dont l’incertitude est forte et présenteraient donc un faible nombre de biais, et ceux dont l’incertitude est faible avec potentiellement un nombre de biais plus élevé. La comparaison de l’ensemble des biais montre qu’ils sont plus importants sur la matrice « solutions de référence » que sur la matrice « mousse ». Contrairement aux attentes, il semble donc que les solutions de référence aient posé certaines difficultés analytiques non rencontrées avec les mousses. Aucune corrélation entre les conditions ou la durée de conservation des échantillons et les biais élevés n’a été identifiée. Au final, il semble que la dispersion des résultats entre les laboratoires soit essentiellement liée au traitement analytique adopté pour la quantification des échantillons. Au vu de la répétabilité des résultats obtenus pour chaque laboratoire, il semble que les incertitudes annoncées par ces derniers soient surestimées. En effet, pour chaque trio de résultats, les écarts observés sont majoritairement faibles (5-10 %) comparés à l’incertitude annoncée.   Les résultats de cette CIL sont globalement positifs mais font ressortir la nécessité d’apporter quelques précisions et compléments méthodologiques au travers de la révision de la norme XP X43-059 et de mener des discussions avec les laboratoires, notamment sur le cas des substances présentant des biais importants, ou encore celui d’une forte dispersion des résultats individuels   Pesticides in ambient air : analytical inter-laboratories comparison 2021   This inter-laboratory comparison (ILC) dedicated to pesticides and organized by the LCSQA, follows the last one in 2015 which showed a significant disparity in laboratory performance with ultimately very few laboratories meeting the requirements in terms of ability to meet the needs of analytical subcontracting (limit of quantification, extraction yield, methods of analysis, ...) Approved Air Quality Monitoring Associations (AASQA). This ILC is also part of the context of the sustainable monitoring undertaken since 2021, the results obtained can guide the AASQA in the selection of their subcontracting laboratories for this monitoring. This ILC covered 26 substances (25 semi-volatile substances and one polar substance (glyphosate)), namely: 2.4D fenpropidine permethrine alpha-HCH fluazinam propyzamide boscalid folpel prosulfocarbe chlorothalonil glyphosate pyrimethanil chlorpropham lindane (gamma HCH) s-metolachlore chlorpyriphos methyl metazachlore spiroxamine chlorpyriphos-ethyl oxadiazon tebuconazole cyprodinyl pendimethalin triallate deltamethrin pentachlorophenol Note that previous ILCs did not target polar substances. These 26 substances were distributed over/in different test materials. Doped foams (PUF) and reference solutions have been dedicated to the analysis of semi-volatile pesticides. Their preparations (cleaning and doping) and analyses for the study of homogeneity and stability were carried out by the LNE. The target concentrations of the reference solutions C1, C2 and C3 thus prepared were between 71 and 1300 ng/mL with varying numbers of substances and concentration levels depending on the solution. The target quantities of the C1, C2 and C3 foam samples ranged from 71 to 3 240 ng depending on the substance and material (C1, C2 or C3), corresponding to ambient air concentrations between 0.4 and 20 ng/m3 for weekly sampling at 1m3/h. Quartz microfiber filters were chosen as supports for glyphosate analysis. The latter were conditioned (calcination), doped, and analyzed by Ineris to verify their homogeneity and stability. All filters were doped with quantities equivalent to concentrations in ambient air between 0.7 and 0.07 ng/m3 for samples from 24h to 30 m3/h. Three laboratories participated in this inter-laboratory comparison: •           IANESCO •           LABORATOIRE DEPARTEMENTAL 31 •           MICROPOLLUANTS TECHNOLOGIE SA Given the low number of participants, this ILC had characteristics that could call into question the robustness of its interpretation. The choice was made to maintain it because of the interest it presents in the contribution of information other than the sole classification of laboratories according to their z-score. These include information on sample processing and storage, quantification limits (LQ) and extraction yields. Among the lessons of this CIL, we will highlight the ability of the participating laboratories to transmit the results of almost all the substances, and we note the absence of contamination of the blank matrices. Differences in storage conditions, sometimes not in accordance with the current standard, were noted, with no apparent impact on the analytical results. The extraction yields obtained meet the criteria of the french standard XP X43 059, with a few exceptions (between 0 and 7 substances depending on the laboratory). The latter do not appear to have had a visible impact on the difference presented between the analytical data from these laboratories and the expected target values. Similarly, the details of the analytical treatments carried out (concentration, nature of the internal standards, etc.) by the laboratories seems to have no repercussions on the results. Among the different doping conditions of this exercise, the introduction of large quantities of some substances compared to others does not seem to have generated any particular problem of analysis. Similarly, despite different compositions of the test materials (varying number of substances and concentrations, relatively difficult substances to separate), no false positives/negatives in the different series of test materials were observed. The introduction of glyphosate, a polar substance not covered by XP X43-059, led to satisfactory results for the laboratories that conducted the analyses according to the defined deadlines. In view of the number of samples to be processed and the results to be provided per laboratory, few outliers were recorded. It should be noted that, overall, doping containing the 25 substances suspected of interfering with each other does not seem to bring any particular difficulties in terms of identifying substances. Given the low number of participating laboratories, the evaluation of the laboratory results was determined through bias which is the expression of the deviation of the participant's result with the expected target value. The biases of each laboratory were calculated from the average of the 3 analytical results given for each sample series, without taking into account the uncertainties of the target value (low, of the order of 2%, except for s-metolachlor where it was of the order of 10%). They do not take into account either that of laboratories (variable, ranging from 15 to 44%), which could induce a distortion of treatment between labs with high uncertainty and therefore had a low number of biases, and those with low uncertainty with potentially a higher number of biases. The comparison of all the biases shows that they are more important on the "reference solutions" matrix than on the "PUF" matrix. Contrary to expectations, it therefore seems that the reference solutions posed some analytical difficulties not encountered with the PUF foams. No correlation between sample storage conditions (temperature and duration) and high biases was identified. In the end, it seems that the dispersion of the results between the laboratories is essentially related to the analytical treatment adopted for the quantification of the samples. In view of the repeatability of the results obtained for each laboratory, it seems that the uncertainties announced by the laboratories are overestimated. Indeed, for each trio of results, the observed differences are mostly small (5-10%) compared to the announced uncertainty. The results of this CIL are globally positive but highlight the need to make some clarifications and methodological additions through the revision of the NF XP X 43-059 standard and to conduct discussions with laboratories, particularly on the case of substances with significant biases, or a high dispersion of individual results.
Lundi 22 février 2010
Rapport
Surveillance du benzène (1/2) : Développement de cartouches de référence de Carbograph 4 - Exercice d’intercomparaison
Les Matériaux de Référence (MR) permettent d’assurer la traçabilité des mesures et de valider les méthodes analytiques. Or, actuellement, il n’existe pas de matériaux de référence, en France, disponibles pour la mesure du benzène et du toluène en air ambiant par prélèvement passif sur cartouche de Carbograph 4. Le LNE a donc proposé : De développer un système de chargement de cartouches de Carbograph 4 en benzène et en toluène à partir d’un matériau de référence gazeux; De mettre en oeuvre ces cartouches lors d'un exercice d'intercomparaison pour évaluer les performances des laboratoires effectuant les analyses des prélèvements passifs de benzène et de toluène réalisées par les AASQA. La première partie de l'étude a consisté à développer une méthode de chargement de cartouches de Carbograph 4 en benzène et en toluène à partir d'un matériau de référence gazeux en bouteille préparé par le LNE. La deuxième partie a consisté à étudier la faisabilité d’un exercice de comparaison interlaboratoires en organisant une première comparaison en interne entre les membres du LCSQA avec des cartouches de référence de Carbograph 4 dopées par le LNE en benzène et en toluène afin de roder le protocole et de s’assurer qu’aucune des étapes de l’exercice n’entraînaient de difficultés majeures. Les résultats obtenus ont montré que lors de cette comparaison intra-LCSQA, les masses de benzène et de toluène analysées par les participants (INERIS, EMD et LNE) et celles déposées par le LNE n'étaient pas significativement différentes au vu des incertitudes de mesure. Au vu des résultats obtenus lors de cette seconde partie, un exercice de comparaison interlaboratoires élargi à des laboratoires réalisant des analyses d’échantillonneurs passifs pour les AASQA., a pu être mis en oeuvre pour évaluer les capacités de ces laboratoires à analyser le benzène et le toluène piégés sur des cartouches de type Perkin-Elmer remplies de Carbograph 4. Les laboratoires ayant participé à cette comparaison sont : ATMO Picardie, EMD, INERIS, Laboratoire de chimie d'AIRPARIF, Fondazione Salvatore Maugeri (FSM), Laboratoire Interrégional de Chimie (LIC) Schiltigheim, Centre d'Analyses Environnementales et LNE. Concernant le benzène, hormis deux résultats d'analyse jugés significativement différents des masses chargées par le LNE (un des points du laboratoire E avec un écart relatif de 20 % et le premier point du laboratoire G avec un écart relatif de -8 %), les laboratoires A, B, C, D, E, F, G et H ont fourni des masses de benzène analysées non significativement différentes des masses déposées par le LNE. Cependant, il est à noter l’écart systématique du laboratoire D pour le benzène (écart relatif de 6%). Concernant le toluène, le laboratoire E a fourni des résultats très éloignés de la valeur de référence pour chacune des cartouches (écart relatif de 40 %), pouvant s'expliquer par des conditions analytiques non optimales pour l’analyse du toluène ainsi retenu sur du Carbograph 4. De même, le laboratoire G présente deux masses analysées significativement différentes des masses déposées. Hormis ces valeurs, les laboratoires A, B, C, D, F, G et H ont fourni des masses de toluène analysées non significativement différentes des masses déposées. Cependant, de même que précédemment, il est à noter l’écart systématique du laboratoire D pour le toluène (écart relatif de 11%). La directive européenne indique que l'incertitude élargie sur les mesures de benzène prélevé sur des cartouches ne doit pas dépasser la valeur de 25 % sur la valeur limite de 5 µg/m3, cette incertitude comprenant l'analyse et le prélèvement. Par conséquent, l'ensemble des laboratoires est conforme à ce critère, puisque les incertitudes d'analyse sont comprises entre 2 et 14 %.
Lundi 13 avril 2015
Rapport
Maintien et amélioration des chaînes nationales d’étalonnage
En 1996, sous l’impulsion du Ministère chargé de l'Environnement, un dispositif appelé « chaîne nationale d’étalonnage » a été conçu et mis en place afin de garantir, sur le long terme, la cohérence des mesures réalisées dans le cadre de la surveillance de la qualité de l’air pour les principaux polluants atmosphériques gazeux réglementés. Ce dispositif a pour objectif d’assurer la traçabilité des mesures de la pollution atmosphérique en raccordant les mesures effectuées dans les stations de surveillance à des étalons de référence spécifiques par le biais d’une chaîne ininterrompue de comparaisons appelée « chaîne d’étalonnage ». Compte tenu du nombre élevé d’Associations Agréées de Surveillance de la Qualité de l'Air (AASQA), il était peu raisonnable d’envisager un raccordement direct de l'ensemble des analyseurs de gaz des stations de mesure aux étalons de référence nationaux, malgré les avantages métrologiques évidents de cette procédure. Pour pallier cette difficulté, il a été décidé de mettre en place des procédures de raccordement intermédiaires gérées par un nombre restreint de laboratoires d’étalonnage régionaux ou pluri-régionaux (appelés également niveaux 2) choisis parmi les acteurs du dispositif de surveillance de la qualité de l'air (AASQA et LCSQA-MD). Par conséquent, ces chaînes nationales d’étalonnage sont constituées de 3 niveaux : le LCSQA-LNE en tant que Niveau 1, des laboratoires d’étalonnage inter-régionaux (au nombre de 8) en tant que Niveau 2 et les stations de mesures en tant que Niveau 3. Dans le cadre de ces chaînes nationales d’étalonnage, le LCSQA-LNE raccorde tous les 3 mois les étalons de dioxyde de soufre (SO2), d’oxydes d'azote (NO/NOx), d'ozone (O3), de monoxyde de carbone (CO) et de dioxyde d’azote (NO2) de chaque laboratoire d’étalonnage. De plus, depuis plusieurs années, le LCSQA-LNE raccorde directement les étalons de benzène, toluène, éthylbenzène et o,m,p-xylène (BTEX) de l’ensemble des AASQA, car au vu du nombre relativement faible de bouteilles de BTEX utilisées par les AASQA, il a été décidé en concertation avec le MEDDE qu’il n’était pas nécessaire de créer une chaîne d’étalonnage à 3 niveaux. Le tableau ci-après résume les étalonnages effectués depuis 2006 par le LCSQA-LNE pour les différents acteurs du dispositif de surveillance de la qualité de l’air (AASQA, LCSQA-INERIS et LCSQA-MD), tous polluants confondus (NO/NOx, NO2, SO2, O3, CO, BTEX et Air zéro).     Nombre   2006 2007 2008 2009 2010 2011 2012 2013 2014 Raccordements Niveau 1/ Niveaux 2 146 180 180 180 180 180 181 180 180 Raccordements Madininair 16 24 13 25 19 13 27 14 27 Raccordements BTEX 38 42 37 40 38 33 23 25 26 Raccordements LCSQA-INERIS 12 21 18 20 36 39 32 44 36 Raccordements ORA 0 8 6 6 5 7 4 4 3 Raccordements « Air zéro » - - - - - - - 8 18   Somme totale des raccordements 212 275 254 271 278 272 257 275 290   Ce rapport fait également la synthèse des problèmes techniques rencontrés en 2014 par le LCSQA-LNE lors des raccordements des polluants gazeux, à savoir : ·         Les problèmes rencontrés sur les matériels du LCSQA-LNE, ·         Les problèmes rencontrés au niveau des raccordements, ·         Les problèmes rencontrés au niveau du transport des matériels.
Mercredi 11 mars 2020
Rapport
Maintien et amélioration des étalons de référence
L'objectif est de maintenir un bon niveau de performances métrologiques pour les étalons de référence SO2, NO, NO2, CO, O3 et BTEX (benzène, toluène, éthylbenzène et xylènes) utilisés pour titrer les étalons des AASQA, afin de pouvoir continuer à produire des prestations de qualité et de développer des étalons de référence pour de nouveaux polluants. La première partie a consisté à faire une synthèse des actions menées pour maintenir l'ensemble des étalons de référence afin de pouvoir réaliser les étalonnages prévus dans l’étude « Maintien de la chaîne nationale de traçabilité métrologique » de décembre 2019. La deuxième partie a porté sur l’amélioration de la méthode de fabrication gravimétrique des mélanges gazeux de référence en bouteille. Pour les composés NO, CO et BTEX (benzène, toluène, éthylbenzène et xylènes), les étalons de référence sont des mélanges gazeux de référence en bouteille (quelques µmol/mol à quelques centaines de µmol/mol) appelés également Matériaux de Référence Certifiés (MRC) qui sont préparés par le LCSQA-LNE par la méthode gravimétrique selon la norme ISO 6142-1 : ces mélanges gazeux sont ensuite dilués par voie dynamique pour étalonner les mélanges gazeux utilisés par les AASQA. La rampe de fabrication utilisée par le LCSQA-LNE ayant été mise en place il y a une vingtaine d’années, il devenait nécessaire de la remplacer par un système plus performant (changement des capteurs de pression, ciblage de la masse avec une balance…), afin d’améliorer la qualité des mélanges gazeux de référence et de diminuer le temps de fabrication. L’objectif de cette étude était donc de développer et de valider une nouvelle rampe de fabrication des mélanges gazeux de référence. Fin 2017, un schéma d’une nouvelle rampe a été réalisé (filtration, ciblage, alimentation en gaz purs…). Au cours de l’année 2018, de nombreuses discussions ont eu lieu avec le fournisseur pour affiner le schéma de la rampe de fabrication, le cahier des charges ainsi que le devis. La nouvelle rampe pour la production de matériaux de références certifiés a été réceptionnée en juin 2019 au LCSQA-LNE. Elle est flexible d’utilisation avec quatre arrivées de gaz azote et quatre d’air permettant un remplissage en pression des bouteilles plus aisé, une possibilité d’injecter les composés liquides purs, avec une voie dédiée à l’injection des mélanges gazeux ayant des fractions molaires élevées. Les raccords sont en VCR avec des traitements de surface Sulfinert® afin de limiter au maximum les adsorptions des molécules d’intérêt. La mise en place de deux filtres SAES GETTERS® (un pour l’azote et un pour l’air) sur la rampe permet d’obtenir des fractions molaires d’impuretés (vapeur d’eau, oxygène…) très faibles (quelques nmol/mol) limitant ainsi les réactions parasites de ces impuretés avec les molécules d’intérêt (ex : réaction entre NO et O2 ; réaction de NO2 avec H2O). L’instrumentation de la rampe avec un analyseur de vapeur d’eau (CRDS HALO KA) permet de suivre le niveau de vapeur d’eau en continu et de pouvoir produire des MRC lorsque la fraction molaire mesurée de vapeur d’eau est suffisamment faible pour éliminer toute réaction non désirée. Elle a été ensuite optimisée notamment en changeant certaines vannes défectueuses ou inadaptées à notre utilisation. Six mélanges gazeux ont été produits avec cette nouvelle rampe et ont été analysés par rapport à d’autres MRC (laboratoire national de métrologie en Angleterre - NPL). Les essais ont démontré la justesse des mélanges gazeux préparés, validant ainsi dans son ensemble la rampe de production des MRC. Les résultats obtenus au cours de cette étude montrent donc que la nouvelle rampe de fabrication des MRC du LCSQA-LNE est opérationnelle, fonctionnelle et exempte de fuites. Elle sera utilisée à l’avenir pour la fabrication des mélanges gazeux nécessaires pour le raccordement des étalons des AASQA (cf. Rapport LCSQA « Maintien de la chaîne nationale de traçabilité métrologique » de décembre 2019).
Vendredi 27 juillet 2012
Rapport
Contrôle Qualité de la chaîne nationale d’étalonnage
L'objectif de cette étude est d’effectuer des comparaisons interlaboratoires au niveau national pour s’assurer du bon fonctionnement de la chaîne nationale d’étalonnage et pouvoir détecter d’éventuelles anomalies auxquelles il conviendra d’apporter des actions correctives.     Contrôle qualité du bon fonctionnement de la chaîne d’étalonnage en NO/NOx, en CO et en SO2 :   Le but est de faire circuler des mélanges gazeux de concentration inconnue (NO/NOx de l’ordre de 200 nmol/mol, CO de l’ordre de 9 µmol/mol et SO2 de l’ordre de 100 nmol/mol) dans les niveaux 2 et 3 pour valider les différents raccordements effectués dans le cadre de la chaîne nationale d’étalonnage. En 2010, des mélanges gazeux de NO2 de l’ordre de 200 nmol/mol ont été rajoutés.   Ces mélanges gazeux ont été titrés par le LNE puis envoyés à des niveaux 3. Ces niveaux 3 ont ensuite déterminé la concentration de ces mélanges gazeux avant et après réglage de l’analyseur de station avec l’étalon de transfert 2-3, puis les ont renvoyés au LNE qui les a titrés de nouveau.   En 2011, 3 campagnes d'intercomparaison ont été réalisées : -  Avec les réseaux de mesure ATMO RA, AIRPARIF, AIR PL, AIRFOBEP et AIRLOR de mars à mai 2011, -  Avec les réseaux de mesure ATMO NPDC, Qualitair Corse, ATMO Picardie et AIR LR de mai à juillet 2011, -  Avec les réseaux de mesure LIG'AIR, ORA (La Réunion), ATMO PC, ORA (Guyane) et MADININAIR de septembre à décembre 2011.   En règle générale, les AASQA communiquent au LNE les concentrations mesurées soit sans les incertitudes élargies associées, soit avec des incertitudes de mesure inexploitables (inférieures à celles du LNE, valeurs très élevées…). Dans ces conditions, il n'est pas possible de traiter les résultats par des méthodes statistiques.   Par conséquent, dans le présent document, le traitement des données est effectué en s'appuyant sur l'ensemble des résultats obtenus depuis 2002 lors des campagnes précédentes qui ont conduit à définir des intervalles maximum dans lesquels doivent se trouver les écarts relatifs entre les concentrations déterminées par le LNE et celles déterminées par les niveaux 3 après élimination des valeurs jugées aberrantes.   Globalement, en 2011, lorsque les concentrations aberrantes sont éliminées, les écarts relatifs entre le LNE et les niveaux 3 restent dans ces intervalles qui sont les suivants : -  ±7 % avant et après réglage pour une concentration en SO2 voisine de 100 nmol/mol ; -  ±6 % avant et après réglage pour des concentrations en NO/NOx et en NO2 voisines de 200 nmol/mol ; -  ±6 % avant réglage et ±4 % après réglage pour des concentrations en CO voisines de 9 µmol/mol.   Les résultats montrent que : -  Globalement la chaîne nationale d'étalonnage mise en place pour assurer la traçabilité des mesures de SO2, de NO/NOx et de CO aux étalons de référence fonctionne correctement. -  Le fait de régler l’analyseur avec l’étalon de transfert 2-3 améliore de façon significative les écarts relatifs, ce qui met en évidence une dérive de la réponse des analyseurs au cours du temps.   Contrôle qualité du bon fonctionnement de la chaîne d’étalonnage en O3 :   Comme pour les composés SO2, NO/NOx, CO et NO2, le but est de faire circuler, dans lesniveaux 3, un générateur d’ozone portable délivrant un mélange gazeux à une concentration voisine de 100 nmol/mol pour valider les différents raccordements effectués dans le cadre de la chaîne nationale d’étalonnage.   La présente campagne d'intercomparaison a été effectuée avec 13 niveaux 3 en 2011, à savoir : ATMO Picardie, Atmosf'air Bourgogne, AIRAQ, AIR NORMAND, ATMO PC,AIR LORRAINE, AIR LR, ORA – La Réunion, ATMO FC,ATMO RA, ATMO CA, QUALITAIR Corse et ORA - Guyane.   Les résultats obtenus en 2011 montrent que les écarts relatifs entre les concentrations en O3 déterminées par les 13 réseaux de mesure et celles déterminées par le LNE sont de ±8%, excepté pour un réseau qui a obtenu des écarts relatifs beaucoup plus élevés (de l’ordre de -16 %). Les écarts importants obtenus par le laboratoire 14 s’expliquent par une variation du titre de l’étalon de transfert 2-3 lors de son raccordement : en effet, après raccordement sur l'analyseur de référence en conservant les mêmes réglages, il avait été constaté une augmentation du titre de l'étalon de transfert 2-3 d'environ 6 %, ce qui n’était pas le cas de leur deuxième étalon de transfert 2-3 dont le titre avait diminué d'environ 1%. L’augmentation du titre pourrait s’expliquer par une chute du débit de dilution ou par une diminution de l'efficacité de la cartouche d'air zéro. Le laboratoire 14 a donc entrepris des investigations pour rechercher les raisons de la variation du titre de l’étalon de transfert ou d’éventuels problèmes pouvant survenir lors des raccordements. Les écarts relatifs observés entre les valeurs des AASQA et du LNE sont aléatoirement répartis de part et d’autre de zéro. En 2010, pour expliquer les écarts négatifs, il avait été émis l’hypothèse que les mesures étaient relevées par les réseaux pour des temps de génération inférieurs à celui spécifié dans le protocole (soit 1h30) : les résultats obtenus en 2011 montrent que cette hypothèse ne peut pas être retenue, car la quasi-totalité des réseaux de mesure a attendu au moins 1h30 pour relever les concentrations d’ozone.
Mardi 12 juillet 2011
Rapport
Contrôle Qualité de la chaîne nationale d’étalonnage
L'objectif de cette étude est d’effectuer des comparaisons interlaboratoires au niveau national pour s’assurer du bon fonctionnement de la chaîne nationale d’étalonnage et pouvoir détecter d’éventuelles anomalies auxquelles il conviendra d’apporter des actions correctives. Contrôle qualité du bon fonctionnement de la chaîne d’étalonnage en NO/NOx, en CO et en SO2 : Le but est de faire circuler des mélanges gazeux de concentration inconnue (NO/NOx de l’ordre de 200 nmol/mol, CO de l’ordre de 9 μmol/mol et SO2 de l’ordre de 100 nmol/mol) dans les niveaux 2 et 3 pour valider les différents raccordements effectués dans le cadre de la chaîne nationale d’étalonnage. En 2010, des mélanges gazeux de NO2 de l’ordre de 200 nmol/mol ont été rajoutés.Ces mélanges gazeux ont été titrés par le LNE puis envoyés à des niveaux 3.Ces niveaux 3 ont ensuite déterminé la concentration de ces mélanges gazeux avant et après réglage de l’analyseur de station avec l’étalon de transfert 2-3, puis les ont renvoyés au LNE qui les a titrés de nouveau. En 2010, 3 campagnes d'intercomparaison ont été réalisées : Avec les réseaux de mesure ATMO PC, LIG'AIR, ATMO Drôme Ardèche, ATMO Lorraine Nord et AIRBREIZH de mars à juin 2010, Avec les réseaux de mesure ATMOSF'air Bourgogne, AIR NORMAND, ATMO CA, ATMO PACA, ATMO Franche Comté et AIRAQ de juin à novembre 2010, Avec les réseaux de mesure LIMAIR, ORAMIP, ATMO Auvergne, ASPA et AIR COM de septembre à novembre 2010. En règle générale, les AASQA communiquent au LNE les concentrations mesurées soit sans les incertitudes élargies associées, soit avec des incertitudes de mesure inexploitables (inférieures à celles du LNE, valeurs très élevées…). Dans ces conditions, il n'est pas possible de traiter les résultats par des méthodes statistiques. Par conséquent, dans le présent document, le traitement des données est effectué en s'appuyant sur l'ensemble des résultats obtenus depuis 2002 lors des campagnes précédentes qui ont conduit à définir des intervalles maximum dans lesquels doivent se trouver les écarts relatifs entre les concentrations déterminées par le LNE et celles déterminées par les niveaux 3 après élimination des valeurs jugées aberrantes.Globalement, en 2010, lorsque les concentrations aberrantes sont éliminées, les écarts relatifs entre le LNE et les niveaux 3 restent dans ces intervalles qui sont les suivants : ± 7 % avant et après réglage pour une concentration en SO2 voisine de 100 nmol/mol ; ± 6 % avant et après réglage pour des concentrations en NO/NOx voisines de 200 nmol/mol ; ± 6 % avant réglage et ± 4 % après réglage pour des concentrations en CO voisines de 9 μmol/mol. Les résultats montrent que : Globalement la chaîne nationale d'étalonnage mise en place pour assurer la traçabilité des mesures de SO2, de NO/NOx et de CO aux étalons de référence fonctionne correctement. Le fait de régler l’analyseur avec l’étalon de transfert 2-3 améliore de façon significative les écarts relatifs, ce qui met en évidence une dérive de la réponse des analyseurs au cours du temps. Concernant le composé NO2, les intervalles n’ont pas pu être définis, car les comparaisons n’ont débutées qu’en 2010. Les résultats obtenus en 2010 montrent que les écarts relatifs entre les concentrations déterminées par le LNE et celles déterminées par les niveaux 3 sont globalement de ± 7 % avant et après réglage de l’analyseur, ce qui est comparable à l’intervalle de ± 6 % défini pour les composés NO/NOx. Contrôle qualité du bon fonctionnement de la chaîne d’étalonnage en O3 : Comme pour les composés SO2, NO/NOx, CO et NO2, le but est de faire circuler, dans les niveaux 3, un générateur d’ozone portable délivrant un mélange gazeux à une concentration voisine de 100 nmol/mol pour valider les différents raccordements effectués dans le cadre de la chaîne nationale d’étalonnage. La présente campagne d'intercomparaison a été effectuée avec 7 niveaux 3 en 2009, à savoir : MADININAIR, AIR PL, AIRPARIF, AIR COM, AIRFOBEP, ATMO NPDC et ATMO Auvergne. Les résultats obtenus en 2010 montrent que les écarts relatifs entre les concentrations en O3 déterminées par les 7 réseaux de mesure et celles déterminées par le LNE sont compris entre +3% et –9%. La plage dans laquelle se situent les écarts est plus faible que celle obtenue en 2009 ; par contre, l’écart maximum constaté est légèrement supérieur (écarts 2009 de ±7%). De plus, les résultats d’étalonnage montrent que durant la comparaison, les écarts de concentration sont globalement négatifs : ceci pourrait s’expliquer par des mesures effectuées pour des temps de génération inférieurs à celui spécifié dans le protocole (soit 1h30). Pour pouvoir argumenter ce point, il sera demandé aux participants de spécifier le temps de génération lors de la prochaine comparaison en 2011.
Jeudi 17 décembre 2020
Rapport
Comparaison inter-laboratoires pour la mesure des métaux (As, Cd, Ni et Pb) dans les PM10
Le LCSQA  a organisé en 2020 le dixième exercice de comparaison inter-laboratoires (CIL) pour la mesure des métaux réglementés dans les PM10. Cette CIL permet de déterminer si les critères de qualité des directives 2004/107/EC, 2008/50/CE et 2015/1480/UE l’analyse de l’As, Cd, Ni et Pb dans les PM10 sont atteints par les laboratoires d’analyse, d’évaluer la fidélité des méthodes de mesures utilisées et d’identifier les principales sources d’incertitudes. Il est important de contrôler la qualité de mesures des laboratoires réalisant des analyses de métaux pour les AASQA en France, afin de garantir la justesse et l'homogénéité (absence de biais entre les laboratoires) des résultats obtenus au niveau national. Elle permet en outre aux AASQA d’effectuer un choix avisé de leurs laboratoires d’analyse pour l’année N+1 sur la base de critères techniques objectifs. En 2020, 5 laboratoires indépendants ont participé à cet exercice : Laboratoire Carso (Lyon), Ianesco Chimie (Poitiers), Laboratoire départemental 31 EVA (Launaguet), Micropolluants Technologie (Thionville) et TERA Environnement (Crolles), auxquels s’ajoute le laboratoire de l’IMT Lille Douai. Chaque laboratoire a analysé 4 filtres impactés de particules prélevées sur un site urbain avec des concentrations en métaux variables et dix filtres vierges en fibre de quartz (issus du même lot) transmis par le LCSQA-IMT Lille Douai. L’analyse de 10 échantillons de leur matériau de référence certifié (MRC) habituel a permis d’estimer les taux de récupération lors de la minéralisation des particules. En complément, deux solutions étalons de concentrations connues en métaux certifiés par le LCSQA-LNE, ont aussi été analysés par les laboratoires. En outre, 6 éléments supplémentaires (Co, Cu, Hg, Mn, V, Zn) ont été proposés en option pour l’analyse dans les différents échantillons fournis. Tous les participants ont utilisé la méthode de la norme EN 14902 : 2005, incluant une attaque en milieu fermé par minéralisateur micro-ondes à l'aide d'un mélange HNO3/H2O2 et une analyse par ICP-MS. Le traitement statistique des résultats a permis de montrer que les résultats obtenus par les différents laboratoires sont globalement satisfaisants et comparables à ceux de la CIL de 2017. Tous les laboratoires détectent l’As, le Cd, le Ni et le Pb sur les filtres impactés de PM10 avec 100 % de leurs résultats avec de Z-scores compris entre -2 et 2. Les principales difficultés des analyses sur filtres sont identifiées pour le Ni dont les teneurs étaient particulièrement faibles lors de cet exercice. Les résultats obtenus sur les 2 solutions étalons sont satisfaisants avec une reproductibilité inter-laboratoires de 6 % à 10 % pour les éléments Cd, Ni et Pb quelles que soient la solution étalon et de l’ordre de 15% pour l’arsenic dans la solution à plus basses teneurs (norme 5725-2). Les concentrations mesurées ne montrent pas de biais systématiques par rapport à la valeur de référence du LNE. Les très faibles teneurs analysées lors de cette CIL montrent la capacité des laboratoires à mesurer avec l’incertitude requise, les éléments As, Cd, Ni et Pb (et pour certains également Mn, V, Cu, Zn, Co et Hg) pour des prélèvements hebdomadaires sur un site urbain de fond et la possibilité de réaliser un historique fiable des concentrations ambiantes à des teneurs réalistes.   Inter-laboratory comparison for the measurement of As, Cd, Ni and Pb in PM10 In 2020, the LCSQA organized the tenth inter-laboratory comparison exercise (CIL) for the measurement of regulated metals in PM10. This CIL allows determining whether the quality criteria of directives 2004/107/EC, 2008/50/EC and 2015/1480/UE for the analysis of As, Cd, Ni and Pb in PM10 are met by laboratories, evaluate the reliability of the measurement methods used and identify the main sources of uncertainty. It is important to control the quality of measurements from laboratories carrying out metal analysis for AASQA in France, in order to guarantee the accuracy and homogeneity (absence of bias between laboratories) of the results obtained at national level. It also allows AASQA to make an informed choice of their analysis laboratories for year N + 1 on the basis of objective technical criteria. In 2020, 5 independent laboratories took part in this exercise: Laboratoire Carso (Lyon), Ianesco Chimie (Poitiers), Departmental laboratory 31 EVA (Launaguet), Micropolluants Technologie (Thionville) and TERA Environnement (Crolles), to which is added the laboratory from IMT Lille Douai. Each laboratory analyzed 4 filters impacted by particles taken from an urban site with variable metal concentrations and ten virgin quartz fiber filters (from the same batch) transmitted by LCSQA-IMT Lille Douai. Analysis of 10 samples of their usual Certified Reference Material (RCM) allowed recovery rates to be estimated during particle mineralization. In addition, two standard solutions of known metal concentrations, certified by the LCSQA-LNE, were also analyzed by the laboratories. In addition, 6 additional elements (Co, Cu, Hg, Mn, V, Zn) were offered as options for analysis in the various samples provided. All participants used the method of EN 14902:2005, including an attack in a closed environment by microwave mineralizer using a mixture of HNO3/H2O2 and analysis by ICP-MS. The statistical processing of the results has shown that the results obtained by the various laboratories are generally satisfactory and comparable to those of the CIL of 2017. All the laboratories detect As, Cd, Ni and Pb on the impacted filters. of PM10 with 100% of their results with Z-scores between -2 and 2. The main difficulties on filters analysis are identified for Ni which had particularly low concentrations during this CIL. The results obtained on the 2 standard solutions are satisfactory with an inter-laboratory reproducibility of 6% to 10% for the elements Cd, Ni and Pb whatever the standard solution and in the order of 15% for As in the low concentration solution (standard 5725-2). The measured concentrations do not show any systematic bias compared to the LNE reference value. The very low contents analyzed during this CIL show the capacity of the laboratories to measure, with the required uncertainty, the elements As, Cd, Ni and Pb (and for some also Mn, V, Cu, Zn, Co and Hg) for weekly samples at an urban background site and the possibility of making a reliable monitoring of ambient concentrations at realistic levels.
Jeudi 13 octobre 2022
Rapport
Rapport d'activité LCSQA 2020-2021
Après une première partie retraçant les faits marquants sur la période 2020-2021, le rapport d'activité présente l'ensemble des démarches mises en œuvre et les actions réalisées pour assurer la coordination du dispositif français de surveillance de la qualité de l'air selon les quatre principales orientations décrites dans le contrat de performance 2016-2021 signé avec le ministère de la transition écologique : Assurer la qualité des données de l’observatoire et les adéquations avec les exigences européennes et les besoins de surveillance Assurer la centralisation au niveau national, l’exploitation et la mise à disposition des données produites par le dispositif de surveillance Améliorer les connaissances scientifiques et techniques du dispositif pour accompagner la mise en œuvre des plans d’action et anticiper les enjeux futurs du dispositif Assurer la coordination, l’animation et le suivi du dispositif national de surveillance Le rapport s'achève sur la présentation de l'organisation du LCSQA ainsi que des principaux chiffres clés, des indicateurs et jalons prioritaires. Notons que 2021 constitue une étape finale dans la réalisation des objectifs fixés dans le contrat de performance du LCSQA 2016-2021 et dont le bilan est positif au regard des indicateurs retenus. Le LCSQA a pu maintenir sa capacité d’expertise scientifique et technique tout en respectant les obligations définies dans la réglementation, comme la réalisation des audits techniques des AASQA et le maintien et la mise à jour du Référentiel Technique National en produisant des notes stratégiques et des guides méthodologiques. Parmi les principaux sujets traités par le LCSQA en 2020-2021, on peut retenir : En collaboration avec le BQA et les AASQA, l'élaboration d'une stratégie harmonisée de surveillance de la concentration totale en nombre des particules (ultra)fines et la définition d'une stratégie de suivi pérenne des pesticides dans l’air. L’ensemble des travaux du LCSQA concernant les polluants d’intérêt national et émergents (Particules Ultra Fines, potentiel oxydant des particules, 1,3-butadiène, NH3, H2S, pesticides) est décrit dans un dossier technique dédié (publié prochainement) ; La poursuite des travaux sur les systèmes capteurs pour la surveillance de la qualité de l’air avec notamment leur couplage avec des drones et la mise à disposition d’algorithmes « open-source » pour réaliser des cartographies à partir de systèmes capteurs mobiles (SESAM) ; L’ouverture et la valorisation auprès du public des données de qualité de l’air avec la mise en service, en septembre 2021, du nouveau site Geod’air, système national de gestion des données de qualité de l’air ; la poursuite de la collaboration avec le Gouvernement de la Nouvelle Calédonie qui s’est traduite par la fourniture à la Direction de l'Industrie, des Mines et de l'Energie de la Nouvelle-Calédonie de plusieurs guides méthodologiques et notes techniques, en lien avec la publication en janvier 2021 de l'arrêté relatif à l'amélioration de la qualité de l'air. L'accompagnement de Scal’Air (organisme de surveillance de la qualité de l’air en Nouvelle-Calédonie) s'est traduit par la finalisation de la comparaison interlaboratoire concernant la mesure automatique des particules (PM10 et PM2.5), et l’appui technique pour la mise en œuvre de la modélisation à Nouméa.
Mercredi 21 septembre 2022
Rapport
Définition de la procédure d'étalonnage des compteurs de particules à noyaux de condensation (CNC)
La stratégie de surveillance nationale de la concentration en nombre des particules (PNC) développée par le LCSQA se situe dans une approche impliquant l’utilisation de Compteurs à Noyaux de Condensation (CNC). Ce nouveau parc analytique de CNC sera déployé et contrôlé périodiquement en accord avec la méthode normalisée décrite au sein de la spécification technique XP CEN/TS 16976:2016 « Air ambiant - Détermination de la concentration en nombre de particules de l'aérosol atmosphérique » faisant appel à la procédure de la norme ISO 27891:2015 « Concentration particulaire en nombre - Étalonnage de compteurs de particules d’aérosol à condensation » et adapté selon les recommandations du guide pour l’utilisation des CNC. Dans ce cadre, une activité d’étalonnage des CNC des AASQA est à prévoir en lien avec la mise en place d’une chaîne nationale de traçabilité métrologique. Ce rapport présente ainsi la procédure d’étalonnage des CNC en accord avec le cadre normatif précité et le cahier des charges technique, financier et humain dédié à la construction d’un banc national d’étalonnage des CNC au sein du LCSQA.     Definition of the calibration procedure for condensation particle counters (CPC) The national particle number concentrations (PNC) survey strategy developed by LCSQA is an approach involving the use of condensation particle counters (CNC). This new CNC analytical park will be deployed and verified periodically in accordance with the standardized method described in the technical specification XP CEN / TS 16976: 2016 “ Ambient air - Determination of the particle number concentration of atmospheric aerosol ” which also involves the procedure of standard ISO 27891: 2015 "Particulate concentration in number - Calibration of condensing aerosol particle counters". In this context, a calibration activity for the national CNCs needs to be planned in connection with the establishment of a national metrological traceability chain. Therefore, this report presents the CNC calibration procedure in accordance with the normative context and the technical, financial and human specifications dedicated to the implementation of a national CNC calibration bench within LCSQA.  
Jeudi 30 juin 2022
Rapport
Maintien et amélioration des étalons de référence mis en oeuvre pour la surveillance de la qualité de l'air
L'objectif est de maintenir un bon niveau de performances métrologiques pour les étalons de référence SO2, NO, NO2, CO, O3 et BTEX (benzène, toluène, éthylbenzène et xylènes) utilisés pour titrer les étalons des AASQA et de développer des étalons de référence pour de nouveaux polluants. La première partie a consisté à faire une synthèse des actions menées pour maintenir l'ensemble des étalons de référence afin de pouvoir réaliser les étalonnages prévus dans l’étude « Maintien de la chaîne nationale de traçabilité métrologique mise en œuvre pour la surveillance de la qualité de l’air » de décembre 2021. La deuxième partie fait un point sur l’état d’avancement du développement d’étalons de référence et de la méthode d’étalonnage pour le 1,3-butadiène. La troisième partie fait un point sur l'état d'avancement de la mise en place d'une chaîne de traçabilité métrologique pour les mesures de H2S. La quatrième partie fait un point sur le développement d’un nouveau matériau de référence (MR) pour les métaux qui se présente sous la forme d’un matériau filtre impacté en PM2,5 ou en PM10.     Update and improvement of reference standards set up for air quality monitoring The objective is to maintain a good level of metrological performance for the national reference standards SO2, NO, NO2, CO, O3, NH3 and BTEX (benzene, toluene, ethylbenzene and xylenes) used to calibrate the AASQA standards and to develop reference standards for new pollutants. The first part consists of summarizing the metrological actions taken to maintain all the reference standards used to carry out the calibrations performed in the study "Update of the national metrological traceability chain set up for air quality monitoring" of December 2021. The second part provides an update on the progress of the development of reference standards and the calibration method for 1.3-butadiene. The third part reports on the status of the implementation of a metrological traceability chain for H2S measurements. The fourth part provides an update on the development of a new certified reference material (CRM) for metals which consists in a filter impacted with PM2.5 or PM10.