Résultats de la recherche

588 résultats correspondent à INERIS
Jeudi 28 juin 2018
Rapport
Suivi continu des laboratoires d’analyse des HAP dans les PM10
Le deuxième suivi des laboratoires prestataires des AASQA pour l’analyse des HAP a été organisé en 2017. L’objectif d’un tel exercice est de disposer d’un contrôle continu sur toute une année des performances des laboratoires d’analyse des HAP et, le cas échéant, de se servir de ces résultats comme élément additionnel dans le processus de validation des données du suivi réglementaire par les AASQA. Ainsi, au cours de l’année 2017, des échantillons équivalents de filtres PM10 (prélevés en parallèle) ont été envoyés de façon régulière (1 fois par mois) et en aveugle aux différents laboratoires prestataires des AASQA. Les 7 HAP indiqués dans la Directive européenne 2004/107/CE ont été ciblés au cours de cet exercice et les analyses ont été réalisées selon le référentiel national en vigueur. L’ensemble des matériaux envoyés aux participants lors de cette étude ont été évalués comme homogènes et stables sur la durée de l’exercice. Outre la comparaison des concentrations atmosphériques déterminées à partir des résultats fournis par chaque participant, les performances des laboratoires ont été évaluées au moyen du score Z. Les résultats obtenus par l’ensemble des participants étaient satisfaisants montrant l’efficacité des contrôles qualités des analyses mis en œuvre par les laboratoires. Il est cependant très difficile de conclure de façon certaine pour le laboratoire 3 compte tenu que seul un tiers des données étaient disponibles du fait du désistement de l’AASQA travaillant avec ce laboratoire au cours de l’exercice. Le peu de données disponibles montre cependant une sous-estimation récurrente des concentrations de certains HAP par ce laboratoire. Le LCSQA recommande la mise en place de contrôles qualité accrus par celui-ci. Les résultats ont, une nouvelle fois, mis en évidence les difficultés d’analyse du dibenzo[a,h]anthracène qui est souvent rapporté Finalement, il ne sera pas possible d’utiliser les résultats obtenus ici dans le cadre de la validation des données de surveillance réglementaire des HAP en 2017 étant donné qu’aucune AASQA participante n’a respecté l’ordre d’envoi des échantillons pour analyse par leur laboratoire prestataire. Le bénéfice d’un tel exercice n’est rendu possible qu’à condition d’une pleine participation des AASQA et du respect des procédures indiquées. L’exercice ne sera pas reconduit en 2018 mais une CIL HAP sera organisée à échelle européenne.
Jeudi 14 juin 2018
Rapport
Variations spatio-temporelles des espèces chimiques majeures et de composés traces des PM10 en France métropolitaine
Les particules atmosphériques sont constituées d’une très grande variété d’espèces chimiques, dont la nature et les concentrations varient suivant les sources d’émission et l’intensité des mécanismes secondaires donnant lieu à la formation de nouvelles particules et/ou à leur transformation dans l’atmosphère. Ainsi, l’étude de la composition chimique des particules permet d’obtenir des indications sur les sources et les processus contribuant à l’évolution des concentrations observées en air ambiant. Le présent rapport rend compte d’une analyse géochimique multisites des concentrations moyennes saisonnières des composés majeurs et de quelques espèces traces des PM en France métropolitaine. Il s’appuie sur les résultats obtenus au cours de ces dernières années pour 19 sites de typologies différentes (11 urbains, 2 trafics, 3 vallées alpines, et 3 ruraux), dans le cadre du programme CARA et/ou de projets coordonnés par l’IGE. Ce travail, conduit en parallèle d’une vaste étude de sources de PM via l’utilisation de modèle sources-récepteur de type Positive Matrix Factorization dans le cadre le projet SOURCES cofinancé par l’ADEME, apporte une vision globale des principales sources de PM et de leurs impacts en fonction des caractéristiques du site étudié. Les principaux résultats obtenus sont repris ci-dessous : Des concentrations maximales en matière organique et en levoglucosan sont observées en période hivernale sur la quasi-totalité des sites étudiés, témoignant de la grande influence de la source de combustion de la biomasse liée au chauffage domestique (en tout premier lieux dans les vallées alpines, mais également sur l’ensemble des niveaux de fond urbain) ; Des concentrations maximales en nitrate d’ammonium sont observées au printemps, en particulier dans la partie nord de la France, en lien notamment avec les émissions agricoles de NH3 et les conditions météorologiques favorisant la formation d’aérosols secondaires semi-volatils ; Des concentrations relativement élevées de sulfate sont observées en été sur la plupart des sites du sud de la France, reflétant l’importance de l’impact des émissions par combustion de fioul lourd et de l’intensité des processus photochimiques ; Des concentrations maximales en polyols sont observées en été et/ou en automne sur l’ensemble des sites étudiés, suggérant un impact non négligeable des émissions biogéniques primaires (e.g., spores fongiques) ; Des concentrations plus importantes en Cu, Sb et Ba (émis par l’usure de certaines pièces mécaniques des véhicules, pneus/freins) sont observées sur les deux sites trafics de Roubaix et Strasbourg, confirmant l’influence des émissions automobiles hors échappement au niveau local.  La détermination des espèces chimiques prises en compte pour la présente étude permet une description préliminaire des principales sources anthropiques de PM pouvant influencer les niveaux de concentrations en air ambiant. Néanmoins, selon les sites, une caractérisation chimique plus fine peut s’avérer nécessaire à une meilleure description d’autres sources primaires locales (e.g., activité industrielle spécifique) et/ou des phénomènes de formation des aérosols secondaires (tels que les aérosols organiques secondaires biogéniques ou anthropiques).
Lundi 19 mars 2018
Rapport
Guide méthodologique pour la mesure du « Black Carbon » par Aethalomètre multi longueur d’onde AE33 dans l’air ambiant (OBSOLETE)
  Attention : Ce guide 2016 est obsolète ; il a fait l'objet d'une révision en 2020 applicable au 15 décembre 2020. Lire le guide révisé "Guide méthodologique pour la mesure du « Black Carbon » par Aethalomètre multi longueur d’onde AE33 dans l’air ambiant " (2020)   Ce document constitue la première version du guide méthodologique LCSQA pour la mesure des concentrations de carbone suie (ou Black Carbon, BC), émis par les sources de combustion. Il concerne l’utilisation de l’aethalomètre multi-longueur d’onde AE33 fabriqué par « Magee scientific ». Ce guide méthodologique ne constitue pas un mode opératoire ou un manuel d’utilisation. Le lecteur est invité à se reporter au manuel fourni par le distributeur pour les informations relatives au fonctionnement de l’instrument lui-même. Ce document s’attache à recenser les bonnes pratiques, les fréquences de maintenance, les différentes étapes inhérentes à la validation des données ainsi que les méthodes d’exploitation des données à travers notamment l’utilisation d’un modèle d’estimation des sources reliées aux combustion de biomasse ou de carburant fossile. Il a été rédigé sur la base des documents des constructeurs, des échanges avec le distributeur, de l’état de l’art scientifique ainsi que des retours d’expériences des utilisateurs des AASQA émis notamment lors des réunions LCSQA du « Groupe Utilisateur AE33 » et du « Groupe de travail du programme CARA ». Ce guide pour l’utilisation des AE33 pourra être remis à jour en fonction des retours d’expériences des utilisateurs, des préconisations du constructeur ou des avancées de l’état de l’art scientifique. Approuvé en CPS du 15 mars 2018.
Mardi 12 juillet 2011
Rapport
Développement d’un dispositif d’étalonnage des appareils mesurant les concentrations massiques de particules
Le TEOM (Tapered Element Oscillating Microbalance) est un appareil de mesure très répandu au sein des réseaux de surveillance de la qualité de l’air. Il est capable de mesurer en continu la concentration massique des particules en suspension dans l’air (en µg/m 3 ), ce qui le rend préférable à la méthode gravimétrique qui nécessite des analyses postérieures au prélèvement.   A  l’heure  actuelle,  cet  appareil  est  étalonné  à  l’aide  de  cales  étalons  raccordées  au  système international.  Ces  cales,  de  masses  connues,  permettent  de  vérifier  aisément  la  constante d’étalonnage de l’appareil. Néanmoins, elles présentent deux inconvénients majeurs :   Leur masse est de l’ordre de 80 mg alors que les concentrations massiques de particules dans l’air ambiant sont plutôt de l’ordre de quelques µg. Un tel étalonnage ne permet pas de prendre en compte tout le système de prélèvement en amont de la mesure de la masse. Par conséquent, le LNE a proposé de développer une méthode d’étalonnage en masse du TEOM qui tienne compte des particularités décrites ci-dessus et qui consiste à : Injecter des particules ayant des concentrations connues et stables dans le temps d'une part, sur le filtre du TEOM en passant par le système de prélèvement (hors tête de prélèvement) et d'autre part, sur un filtre externe, Comparer  les  concentrations  massiques  mesurées  par  le  TEOM  avec  les  concentrations massiques « vraies » mesurées par la méthode de référence (méthode gravimétrique) sur le filtre. De  plus,  cette  méthode  doit  tenir  compte  des  spécificités  des  AASQA,  puisqu'elle  doit  pouvoir  être facilement mise en œuvre directement par les AASQA dans les stations de mesure pour l'étalonnage de leurs TEOM.  L’étude menée en 2005 a consisté à réaliser une bibliographie afin de faire un choix entre différents générateurs de particules proposés en fonction de leurs performances métrologiques et des conseils des fabricants.Ce  choix  s’est  porté  sur  le  générateur  CFG-1000  de  la  société  PALAS  distribué  par  la  société ECOMESURE.  Ce  générateur  comporte  deux  électrodes  de  graphite :  l’une  d’elle  est  reliée  à  la masse  tandis  que  l’autre  est  reliée  à  un  condensateur  haute  tension,  lui-même  alimenté  par  un dispositif haute tension réglable. Pour générer des particules, le condensateur est chargé jusqu’à sa tension de claquage. Une fois atteinte, le condensateur se décharge en formant une étincelle entre les électrodes.  Celle-ci  est  suffisamment  énergétique  pour  vaporiser  le  carbone  à  l’extrémité  des électrodes. Le carbone sous forme vapeur est alors entraîné par un flux d’argon où il se condense en de  très  fines  particules  primaires  qui  coagulent  entre  elles  pour  former  de  plus  ou  moins  gros agglomérats (leur taille est fonction de la concentration en particules). Ces agglomérats sont ensuite évacués vers la sortie du générateur. Ce générateur a été réceptionné au LNE en février 2006.  Les essais réalisés en 2006 ont porté sur la caractérisation par la méthode gravimétrique de référence du générateur de particules GFG-1000, ce qui a permis de déterminer les valeurs des concentrations massiques de particules générées par le générateur de particules et de démontrer sa répétabilité, sa linéarité en fonction du temps et de la fréquence d’étincelles, ainsi que sa stabilité dans le temps. Cependant, ce générateur n’a pas pu être couplé avec le TEOM 50°C du LNE à cause d’un problème de colmatage trop rapide du filtre du TEOM 50°C.  L’étude 2007 a consisté à poursuivre les investigations pour résoudre le problème de colmatage : des essais réalisés avec la société ECOMESURE ont conduit à modifier  certains paramètres du TEOM 50°C,  à  savoir  le  débit  du  TEOM  50°C  et  le  temps  de  moyennage  pour  le  calcul  de  la  moyenne glissante et de la masse totale, ce qui a permis de ralentir considérablement le colmatage du filtre du TEOM  50°C  et  de  rendre  possible  le  dépôt  d’une  masse  conséquente  de  particules  sur  le  filtre  du TEOM 50°C pendant un laps de temps correct, sans que le phénomène de colmatage ne se produise. Les essais de couplage du générateur de particules avec le TEOM 50°C ont donc été repris afin de continuer  à  optimiser  la  procédure.  Toutefois,  les  essais  montraient  que  certaines  précautions devaient être prises pour obtenir un résultat fiable : de plus, un régulateur de débit massique (RDM) adéquat devait être utilisé, afin de réduire les  incertitudes de mesure et notamment la répétabilité.   Suite à la mise en place des stations de référence pour les PM dans chaque AASQA pour pouvoir ajuster les données PM des autres stations de mesure, il a été demandé au LNE de réorienter l'étude sur l'étalonnage des analyseurs automatiques de particules en étudiant le TEOM-FDMS à la place du TEOM 50°C.L'étude  2008  avait  donc  pour  objectif  de  reprendre  la  procédure  d'étalonnage  développée  pour  le TEOM 50°C et basée sur l'utilisation du générateur de particules GFG-1000 (PALAS) afin de l'adapter au TEOM-FDMS. Cependant, en reprenant les essais avec le TEOM-FDMS, toutes les avancées des deux dernières années sur le TEOM 50°C ont dû être remises en question. En effet, cet appareil a des paramètres fixes pour son fonctionnement, et qui ne peuvent pas être modifiés pour pouvoir le coupler avec le générateur GFG-1000 (PALAS). De ce fait, le filtre du TEOM-FDMS se colmatait rapidement avec une très petite quantité de particules. Pour  essayer  de  résoudre  le  problème,  plusieurs  hypothèses  de  génération  de  particules  ont  été émises et des essais ont été effectués pour chacune d’elles. Les résultats de ces essais montraient que le seul générateur compatible avec le TEOM-FDMS était le nébuliseur de brouillard salin AGK 2000  (PALAS)  qui  permet  de  générer  des  masses  de  particules  compatibles  avec  la  gamme d'étalonnage (0 à 1000 µg), sans colmatage prématuré du filtre du TEOM-FDMS. Son principe repose sur le barbotage d’air comprimé dans une solution saline de concentration connue : l’aérosol produit est ensuite séché pour obtenir des particules de NaCl. Des essais effectués sur deux exemplaires de ce  modèle  montraient  que  ces  appareils  étaient  linéaires  et  répétables,  mais  leurs  points  faibles étaient leur répétabilité et leur reproductibilité dans le temps.  L’étude menée en 2009 a donc porté sur l'optimisation de la méthode d'étalonnage du générateur AGK  2000  (PALAS)  et  sur  la  réalisation  de  premiers  essais  de  couplage  entre  ce  générateur  de particules et le TEOM-FDMS. Cette étude a permis de diminuer la répétabilité et la reproductibilité du protocole d’étalonnage du générateur AGK 2000 (PALAS) en utilisant un porte-filtre, un régulateur de débit  massique  (RDM)  et  des  filtres  de  protection.  Toutefois,  il  restait  à  apporter  des  améliorations pour  diminuer  le  taux  d'humidité  sur  les  filtres  placés  sur  le  porte-filtre.  De  premiers  essais  de couplage de ce générateur avec un TEOM-FDMS montraient des écarts significatifs entre les masses délivrées par le générateur et celles mesurées par le TEOM-FDMS (de l'ordre de 10 %).  En début 2010, la procédure d'étalonnage a dû être repensée à la suite des résultats obtenus en 2009 et des échanges techniques avec l’INERIS notamment sur le taux  d'humidité trop élevé de l'aérosol circulant dans le TEOM-FDMS et susceptible de l’endommager, ce qui a impliqué de nombreux essais et a retardé les essais initialement prévus à l’INERIS pour 2010 en 2011.   Les  essais  réalisés  en  2010  ont  essentiellement  porté  sur l’optimisation  de  la  méthode  de caractérisation du générateur de particules par impaction des particules  délivrées par le générateur sur un filtre externe pesé sur une balance de précision (méthode gravimétrique).   Les essais d’amélioration ont porté sur : l’utilisation d’un nouveau porte-filtre permettant de limiter les fuites, la faisabilité d'utiliser du sulfate d’ammonium à la place du chlorure de potassium pour diminuer l’agressivité du sel vis-à-vis du filtre, l’optimisation de la mise en œuvre du générateur (arrêt ou non du générateur entre les essais…), le test de différents systèmes de séchage de l’aérosol, Utilisation d’un sécheur type FDMS, Utilisation d'une chambre de sédimentation, Utilisation de filtres contenant du silicagel… différentes façons de combiner les éléments cités ci-dessus.
Mercredi 4 mai 2011
Rapport
Maintien et amélioration des chaînes nationales d'étalonnage
Au sein du LCSQA, le LCSQA-LNE maintient des chaînes nationales d’étalonnage pour que les mesures de polluants gazeux effectués en stations de mesure soient raccordées aux étalons de référence  par  l'intermédiaire  d'une  chaîne  ininterrompue  de  comparaisons, ce  qui  permet d’assurer la traçabilité des mesures aux étalons de référence.  Ces chaînes nationales d’étalonnage sont constituées de 3 niveaux : le LCSQA-LNE en tant que Niveau 1, des laboratoires d’étalonnage inter-régionaux (au nombre de 7) en tant que Niveau 2 et les stations de mesures en tant que Niveau 3.Ces chaînes nationales d’étalonnage concernent le dioxyde de soufre (SO 2 ), les oxydes d'azote (NO/NO x ), l'ozone (O 3 ) et le monoxyde de carbone (CO).Dans  ce  cadre,  les  étalons  de  transfert  1-2  de  chaque  laboratoire  d’étalonnage  sont raccordés par le LCSQA-LNE tous les 3 mois. De  plus,  le  LCSQA-LNE  est  également  mandaté  pour  réaliser  le  raccordement  direct  des étalons  BTX  utilisés  par  les  Associations  Agréées  de  Surveillance  de  la Qualité  de  l'Air (AASQA), car vu le nombre de bouteilles de BTX utilisées par les AASQA qui reste relativement faible, il a été décidé en concertation avec le MEDDTL et l’ADEME qu’il n’était pas nécessaire de créer une chaîne d’étalonnage à 3 niveaux.  Cette étude a donc pour objectifs : - De  faire  le  point  sur  les  étalonnages  effectués  par  le  LCSQA-LNE  pour  les  différents acteurs du dispositif de surveillance de la qualité de l’air (AASQA, LCSQA- INERIS et LCSQA-EMD), tous polluants confondus (NO/NOx, NO2 , SO2 , O3 , CO, BTX et Air zéro) en 2010. - De faire une synthèse des problèmes techniques rencontrés en 2010 par le LCSQA-LNE lors des raccordements. - D'exposer  les  différentes  phases  de  l’automatisation  des  étalonnages  pour  le  SO2, cette automatisation ayant pour objectif de s’affranchir  de  certaines  étapes  des  procédures actuellement mises en oeuvre pouvant être à l’origine de sources d’erreurs.   - De faire le bilan sur les mises à disposition de moyens de contrôle d’étalonnage d’appareils effectués par le LCSQA-EMD dans le cas des particules. En effet, étant donné que la chaîne d’étalonnage nationale ne concerne que les polluants atmosphériques gazeux (SO2, NO, NO2, CO et O3), une mise à disposition de moyens de contrôle de l'étalonnage des analyseurs PM10  et PM 2.5  sur site est assurée dans l’attente de l’intégration de ces polluants dans la chaîne.Ces dispositifs de transfert consistent en des cales étalon pour les analyseurs automatiques de particules (microbalances à variation de fréquence et jauges radiométriques) permettant aux AASQA de vérifier l’étalonnage, la linéarité et le débit de prélèvement de leurs appareils directement  en  station  de  mesure.  Pour  l’année  2010,  15  mises  à  disposition  ont  été effectuées. Le  respect  de  la  consigne  pour  le  débit  de  prélèvement  est  globalement  constaté  pour  51 appareils  vérifiés  dont  6  FDMS  (soit  environ  10  %  du  parc  d’analyseurs  automatiques actuellement  en  station  de  mesure)  et  les  essais  montrent  un  comportement  correct  de l’ensemble des appareils contrôlés.   Concernant le contrôle de la constante d’étalonnage de la microbalance, la moyenne de la valeur absolue de l’écart observée en AASQA varie entre 0,34 et 1,22% (soit pour l’ensemble des AASQA contrôlées une moyenne ± écart-type de 0,9 ± 0,32%). L’étendue de l’écart réel constaté  sur  le  terrain  est  restreinte  car  comprise  entre  0,04  et  +3,26  %  pour  56  appareils contrôlés dont 11 FDMS (soit environ 12% du parc de microbalances TEOM actuellement en station de mesure). Le  contrôle  de  la  linéarité  montre  l’excellent  comportement  des  appareils  sur  ce  paramètre sachant  que  52  appareils  (dont  6  FDMS)  ont  été  contrôlés  soit  environ  11%  du  parc  de microbalances TEOM actuellement en station de mesure. Concernant les jauges radiométriques MP101M de marque Environnement SA, un contrôle de cale étalon d’AASQA (vérification par le LCSQA-EMD des valeurs de cales étalon fournies par le constructeur) ainsi qu’une mise à disposition de cales étalon permettant le contrôle sur site de l’étalonnage de jauges ainsi que leur linéarité ont été assurés. Comme pour la microbalance, le contrôle de la linéarité montre l’excellent comportement des jauges sur ce paramètre sachant que 6 appareils ont été contrôlés soit environ 9% du parc de jauges actuellement en station de mesure. Enfin un bilan de la « chaîne de contrôle pour la mesure des particules » mise en place par le LCSQA-EMD a été effectué aux Journées Techniques des AASQA les 12 au 14 octobre 2010 à Orléans dans le cadre de l’atelier sur la thématique « Chaîne nationale d’étalonnage : bilan &  perspectives ».  Cet  outil  simple  à  mettre  en  œuvre  est  globalement  apprécié  par  les usagers. Le comportement de cette « chaîne de contrôle pour la mesure des particules » mise en place par  le  LCSQA-EMD  peut  être  qualifié  de  satisfaisant.  Les  résultats  obtenus  pour  les microbalances  TEOM  (concernant  les  paramètres  débit  de  prélèvement,  étalonnage  et linéarité)  et  pour  les  radiomètres  bêta  MP101M  (concernant  le  contrôle  de  moyens d’étalonnage) sont des éléments probants de l’Assurance Qualité / Contrôle Qualité (QA/QC) appliquée  aux  analyseurs  automatiques  de  particules  en  suspension  et  sont  des  sources d’information  nécessaires  dans  le  cadre  du  calcul  de  l’incertitude  de  mesure  sur  ce  type d’appareil. Le maintien et l’extension du programme QA/QC pour les analyseurs automatiques de particules rentrent dans les missions pérennes du LCSQA.
Jeudi 1 mars 2018
Rapport
Guide méthodologique : mesure de la composition chimique des particules submicroniques non réfractaires par Aerosol Chemical Speciation Monitor (ACSM) - OBSOLETE
  Référentiel technique national Ce guide fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air ambiant.  Il a été approuvé en CPS (comité de pilotage de la surveillance) du 19 décembre 2017. Mise en application : 1er mars 2018. Ce guide n'est plus applicable ; il est remplacé par la version 2025 Ce document constitue la première version du guide méthodologique pour la mesure de la composition chimique des particules submicroniques non-réfractaires (NR-PM1) par ACSM (Aerosol Chemical Speciation Monitoring). Il concerne l’utilisation des ACSM de type quadripôle (Q-ACSM), fabriqués par la société « Aerodyne R.I. ». Ce guide ne constitue pas un mode opératoire ou un manuel d’utilisation. Le lecteur est invité à se reporter au manuel fourni par le distributeur pour les informations relatives au fonctionnement de l’instrument lui-même. Ce document s’attache à recenser les bonnes pratiques, les fréquences de maintenance ainsi que les étapes de validation des données à respecter. Il a été rédigé sur la base des documents des constructeurs, des échanges avec le distributeur, de l’état de l’art scientifique et des bonnes pratiques mutualisées dans le cadre du réseau européen ACTRIS, ainsi que des retours d’expériences des utilisateurs des AASQA émis notamment lors des réunions du « Groupe Utilisateur ACSM ». Ce guide pour l’utilisation des ACSM pourra être remis à jour en fonction des retours d’expériences des utilisateurs, des préconisations constructeur ou des avancées de l’état de l’art scientifique international
Vendredi 23 février 2018
Rapport
Episode de pollution de mi-février 2018 : Eléments de compréhension à partir de mesures automatiques lors des premiers jours de l’épisode (21 au 23 février 2018)
Un épisode de pollution particulaire a touché toute la moitié nord de l’Europe autour du 21 février 2018. En France, il a d’abord été observé sur la pointe septentrionale, de la Normandie à la Champagne en passant par l’Ile de France et les Hauts de France, avant de s’étendre également aux régions Grand-Est, Pays-de-la-Loire, Centre-Val-de-Loire et Nouvelle-Aquitaine. Cet épisode est relativement semblable à ceux typiquement observés en fin d’hiver - début de printemps ces dernières années, dominés par les particules fines et avec une forte influence du nitrate d’ammonium. Ce composé semi-volatil est issu de la combinaison entre l’ammoniac (NH3, venant majoritairement des activités agricoles) et les produits d’oxydation des oxydes d’azote (NOx, issus principalement du transport routier). Ces résultats sont à considérer comme préliminaires. Ils pourront éventuellement être consolidés à l’aide de résultats issus de l’analyse différée de prélèvements sur filtres. Concernant les origines géographiques, elles ne peuvent être quantifiées à l’aide de ce type de mesures en temps réel. Un examen approfondi de cette problématique pourra être conduit, notamment sur la base de résultats de modélisation. A noter enfin qu’une augmentation significative des niveaux de PM10 a également touché le quart sud-est du territoire à partir des 22 et 23 février, sous l’effet de phénomènes plus régionalisés et non abordés dans la présente note.
Lundi 19 février 2018
Rapport
Vérification de la conformité technique des appareils de mesure pour la surveillance réglementaire de la qualité de l’air - bilan des demandes 2017
En tant que Laboratoire National de Référence désigné par le ministère en charge de l’environnement, le LCSQA émet un avis technique sur les appareillages que les fabricants / distributeurs souhaitent voir être utilisés par les AASQA dans le cadre de la surveillance réglementaire de la qualité de l’air. Ce processus de vérification de la conformité technique des appareils s’appuie sur un dossier technique spécifique remis par le porteur de la demande (constructeur ou distributeur) que le LCSQA étudie afin d’émettre un avis technique. Cet avis, examiné par la Commission de Suivi concernée permet au Comité de Pilotage de la Surveillance (CPS) de la qualité de l’air d’octroyer ou non la conformité technique des appareillages expertisés. S’agissant de la mesure réglementaire de la concentration massique des PM10 et PM2.5, ont été déposés en 2017 les dossiers des appareils suivants : l’analyseur automatique modèle FIDAS 200/200S/200E de la société allemande PALAS représentée par la société ADDAIR (il s’agit d’une demande d’extension de conformité à toutes les typologies de site de surveillance de la qualité de l’air tels que décrits dans le référentiel technique national) ; l’analyseur automatique modèle EMD 180+ de la société allemande GRIMM Aerosol Technik ; le préleveur à moyen débit modèle DPA14 de la société suisse DIGITEL, représentée par la société MEGATEC. Ce préleveur pourrait également être utilisé pour la mesure des 4 métaux lourds réglementés et du BaP dans les PM10. Concernant la mesure réglementaire de la concentration massique en polluants gazeux, ont été déposés en 2017 les dossiers des appareils suivants : les 4 analyseurs automatiques de la société australienne Ecotech (série Serinus) couvrant les polluants gazeux inorganiques, à savoir             Ø le modèle Serinus 10 pour l’ozone (O3);             Ø le modèle Serinus 30 pour le monoxyde de carbone (CO);             Ø le modèle Serinus 40 pour les oxydes d’azote (NO, NO2, NOx);             Ø le modèle Serinus 50 pour le dioxyde de soufre (SO2); l’analyseur automatique d’oxydes d’azote (NO, NO2, NOx) modèle AC32e de la société Environnement SA.
Mercredi 9 janvier 2013
Rapport
Note : Suivi de la composition chimique journalière des PM2.5 et PM10 - station Petit Quevilly d’Air Normand (octobre 2010 - octobre 2011)
La présente étude, réalisée en partenariat avec Air Normand et le Laboratoire des Sciences du Climat et de l’Environnement (LSCE), a été initiée en 2010, avec pour principal objectif l’élaboration d’une base de données détaillée permettant la réalisation d’exercices de comparaisons mesures/modèles sur le long terme au niveau d’un site de fond urbain du territoire national. Elle est basée sur la caractérisation chimique d’échantillons journaliers de PM2.5 et PM10 prélevés en continu sur la station Petit Quevilly de l’agglomération Rouennaise. Un premier rapport d’étape, relatif aux résultats obtenus pour la période comprise entre avril et septembre 2010, est disponible sur le site web du LCSQA[1]. L’analyse de cette période estivale, peu propice au développement d’épisodes de pollution particulaires, a permis de confirmer la tendance des modèles prévisionnistes opérationnels (dans le cas présent : modèle CHIMERE utilisé au sein du système PREV’AIR, www.prevair.org) à la sous-estimation de la fraction organique, partiellement compensée par la surestimation globale des espèces inorganiques secondaires au sein des particules fines. Cette première analyse semblait également indiquer une surestimation de la fraction grossière par le modèle au niveau du site étudié. La présente note vise à présenter la base de données disponible à la fin de l’année 2012. En accord avec Air Normand, les prélèvements d’échantillons journaliers se poursuivront a minima jusqu’au printemps 2013. Néanmoins, en raison du coût et du caractère chronophage de l’analyse différée systématique de filtres journaliers ainsi que de la survenue de problèmes techniques sur les chaînes analytiques au dernier trimestre 2011 et premier trimestre 2012, seuls les filtres prélevés jusqu’au mois octobre 2011 ont pu être analysés à ce jour. Par ailleurs, la base de données correspondante n’ayant été validée qu’au cours de l’été 2012, il n’est pas possible de présenter ici des résultats de comparaisons mesures/modèles supplémentaires par rapport à ceux réalisés précédemment[1]. En revanche, l’analyse de quelques traceurs organiques et métalliques non-envisagés initialement a d’ores et déjà permis d’appliquer un modèle statistique (de type PMF, pour « Positive Matrix Factorization ») visant à identifier et quantifier les principales sources responsables des niveaux de concentrations de PM10 enregistrés entre octobre 2010 et octobre 2011. [1]Caractérisation chimique des particules: comparaison modèle/mesure (B. Bessagnet, F. Meleux, O. Favez et L. Chiappini). Ref. INERIS: DRC-10-111579-01718A.
Vendredi 19 janvier 2018
Episode de pollution
Episode du 19/01/2018 - PM10 - OISE - Alerte