Résultats de la recherche

588 résultats correspondent à INERIS
Mercredi 16 septembre 2020
Rapport
Rapport d'activité LCSQA 2019
Après une première partie retraçant les faits marquants de l'année 2019, le rapport d'activité présente l'ensemble des démarches mises en œuvre et les actions réalisées en 2019 pour assurer la coordination du dispositif français de surveillance de la qualité de l'air selon les quatre principales orientations décrites dans le contrat de performance 2016-2021 signé avec le ministère de la transition écologique : Assurer la qualité des données de l’observatoire et les adéquations avec les exigences européennes et les besoins de surveillance Assurer la centralisation au niveau national, l’exploitation et la mise à disposition des données produites par le dispositif de surveillance Améliorer les connaissances scientifiques et techniques du dispositif pour accompagner la mise en œuvre des plans d’action et anticiper les enjeux futurs du dispositif Assurer la coordination, l’animation et le suivi du dispositif national de surveillance Le rapport s'achève sur la présentation de l'organisation du LCSQA ainsi que des principaux chiffres clés, des indicateurs et jalons prioritaires. Notons que cette année constitue une étape intermédiaire dans la réalisation des objectifs fixés dans le contrat de performance du LCSQA et dont le bilan est positif au regard des indicateurs retenus : maintien du rythme des audits techniques des AASQA, production de guides méthodologiques ; enfin malgré la diminution du nombre de raccordements à la chaîne nationale de traçabilité métrologique, la qualité des données produites par le dispositif national est demeurée  conforme aux référentiels en vigueur. Parmi les principaux sujets traités par le LCSQA en 2019, on peut retenir : Une augmentation significative de la part de la subvention du ministère de tutelle consacrée aux actions prospectives (+8%) permettant de réaliser des travaux sur les polluants non réglementés et les micro-capteurs. Ces travaux ont conduit à l’organisation de deux campagnes d’évaluation sur le terrain, la mise en place d’une base de données permettant le partage d’information et le retour d’expérience entre les membres du dispositif national, et enfin l’utilisation de ces données pour la réalisation des cartographies urbaines ; La reprise des travaux sur les pesticides, en collaboration avec l’Anses, avec la coordination de la campagne nationale exploratoire des pesticides dont les mesures se sont déroulées entre juin 2018 et juin 2019. Les travaux ont été publiés cette année. la prévision et la mise en œuvre d’un référentiel commun pour toutes les AASQA (Associations agréées pour la surveillance de la qualité de l’air). Un dossier technique décrivant les travaux du LCSQA dédiés à la modélisation et la prévision aussi bien au niveau national qu’européen complète ce rapport d’activité annuel (Télécharger le dossier technique) la poursuite de la collaboration avec le Gouvernement de la Nouvelle Calédonie qui s’est traduite en 2019 par la réalisation d’une comparaison interlaboratoire pour Scal’Air (organisme de surveillance de la qualité de l’air en Nouvelle-Calédonie) concernant les particules et le gaz et l’accompagnement pour la mise en œuvre de la modélisation à Nouméa Les travaux du LCSQA réalisés en 2019 ont été financés par la Direction Générale de l’Énergie et du Climat (bureau de la qualité de l’air) du Ministère de la Transition Écologique (MTE) mais ont également bénéficié d’un financement de la part de l’Anses pour la campagne nationale exploratoire de mesure des pesticides dans le cadre du dispositif de phytopharmacovigilance (PPV).  
Mercredi 15 juin 2016
Rapport
Intercomparaison des moyens de mesure mobiles (Lyon 2015)
Afin de vérifier le respect des exigences de la directive européenne 2008/50/CE, le LCSQA propose annuellement aux AASQA une intercomparaison de moyens mobiles pour les polluants SO2, O3, NO, NO2 et CO à différents niveaux de concentration et tout particulièrement au voisinage des seuils horaires d’information ou d’alerte pour les polluants NOx, O3, SO2, et de la valeur limite sur 8h pour le CO. Un exercice d’intercomparaison de moyens de mesures mobiles a été réalisé en mars 2015 en collaboration avec Air Rhône-Alpes. Il a réuni huit participants (7 AASQA et le LCSQA/INERIS) et moyens mobiles, constituant un parc de 46 analyseurs. Les résultats de cette intercomparaison permettent d’évaluer la qualité de mise en œuvre des méthodes de mesures par les AASQA. On notera que depuis 2008, les résultats obtenus en matière d’incertitude de mesure sont conformes aux exigences de la Directive Européenne et confirment dans la durée la fiabilité du système de mesure national. Ces résultats positifs confirment les améliorations constatées depuis plusieurs années consécutives dans le respect des 15 % d’incertitude. Ceci est à rapprocher du fait que le parc d’analyseurs dispose d’un temps de chauffe et de stabilisation important (>2 jours), ce qui tend à réduire les écarts entre appareils en début de campagne et conditionne l’obtention d’intervalles de confiance réduits. Le traitement statistique des données, identique à celui de l’exercice classique, a isolé de nombreuses données ciblées sur certains laboratoires, confirmant les observations faites au travers des données brutes du comportement douteux de certains appareils. Dans ce cas de figure, plusieurs mesures quart-horaires ont fait l’objet d’une élimination du jeu de données sur avis d’expert. Les intervalles de confiance expérimentaux calculés sont : pour le polluant CO : 6,8 %. pour le polluant SO2 : 6,5 %. pour le polluant O3 : 6,8 % au seuil réglementaire de 180 ppb. pour le polluant NO : 7,4 % pour le polluant NO2 : 9,5 %. On note une bonne cohérence des valeurs d’incertitude entre les exercices avec et sans coiffage des têtes de prélèvement pour l’ensemble des polluants SO2. On aura toutefois pu constater, en particulier dans le cas du CO, l’impact important de quelques appareils lorsque la population est faible. Ces résultats globalement encourageant confirment les observations faites lors des tests précédents. Ils nous conduisent à confirmer en 2016 le test de ce système de dopage qui englobe toutes les incertitudes de mesures, et qui est destiné à court terme à supplanter l’exercice classique en boitiers. Ce système permettra en outre de respecter de manière plus systématique le critère de temps de résidence inférieur à 3 secondes pour les polluants O3 et NOx. La réalisation d’exercices réguliers d’intercomparaison permet au dispositif de surveillance national d’enrichir les procédures de maintenance périodique et de transfert. Dans cet objectif, une planification des exercices a été effectuée sur plusieurs années en intégrant les contraintes géographiques afin de permettre à chaque AASQA d’y participer périodiquement. Ce dispositif s’appuie désormais sur 5 sites identifiés grâce à la collaboration d’Atmo Franche-Comté, Atmo Poitou-Charentes, Air Normand, Air Rhône-Alpes et Atmo Midi-Pyrénées.   La directive européenne 2008/50/CE du 21 mai 2008 dédiée à la qualité de l’air appelle au respect de valeurs limites ou valeurs cibles, en leur associant une exigence en matière d’incertitude maximale sur la mesure. Les associations agréées de surveillance de la qualité de l'air (AASQA) sont tenues de participer aux essais d'intercomparaison (destinées aux organismes agréés de surveillance de la qualité de l’air) mis en place dans le cadre des missions du Laboratoire Central de Surveillance de la Qualité de l'Air (article 9 de l’arrêté du 21 octobre 2010).
Mercredi 14 décembre 2016
Rapport
Synthèse sur les développements récents en matière de cartes analysées des résultats de modélisation - Cartographie des concentrations de PM10 et de PM2.5
La note synthétise les travaux récents du LCSQA en matière de modélisation géostatistique. Elle aborde des points de méthodologie et fournit des scores de performance des méthodes développées. Un modèle de cokrigeage pour la cartographie des PM10 et des PM2.5 a été ainsi mis au point. Il permet à la fois d’améliorer la précision des cartographies de PM2.5 et la cohérence entre les estimations de PM2.5 et de PM10. Un lissage a été également introduit dans le krigeage afin d’améliorer la continuité des cartes dans les zones peu contraintes par les stations de mesure. Ces travaux sont destinés à être implantés de manière opérationnelle dans le système PREV’AIR pour améliorer la qualité de la production quotidienne de cartographies de la qualité de l’air pour le jour d’avant. Ils participent donc à la démarche d’assurance qualité du système national de prévision et de cartographie de la qualité de l’air, pour une plus grande précision et une plus grande fiabilité des informations diffusées auprès du Ministère, des AASQA et du grand public. Ces travaux ont été conduits à l’initiative du LCSQA. Certains d’entre eux ont fait l’objet d’échanges techniques avec le Centre de Géosciences de l’Ecole des Mines de Paris, dans le cadre d’une convention de collaboration scientifique avec l’INERIS.
Jeudi 17 mars 2016
Rapport
Suivi et optimisation de l'utilisation des TEOM-FDMS : Guide de dépannage
Le LCSQA-INERIS a rédigé ce guide afin de fournir une aide aux utilisateurs des TEOM-FDMS dans les AASQA. Il a principalement été rédigé à partir des retours d'expérience de chacune des AASQA lors de réunions techniques. Il est rappelé l’importance de suivre les préconisations de la dernière version en vigueur du guide d’utilisation des TEOM-FDMS « Guide méthodologique pour la surveillance des PM10 et PM2,5 par TEOM-FDMS dans l’air ambiant » disponible sur le site du LCSQA, www.lcsqa.org. (rubrique Guides méthodologiques). L’utilisation conjointe des deux guides doit permettre l’identification et résolution des problèmes rencontrés lors de l’utilisation des TEOM-FDMS.
Vendredi 26 février 2016
Rapport
Planification des sites instrumentés pour le suivi d’équivalence des analyseurs automatiques de particules
Cette note présente les sites retenus pour le suivi d’équivalence des systèmes de mesure automatisés (AMS) de particules (PM). Elle fait suite à l'appel à candidature du LCSQA en prévision de la publication de la norme EN 16450 au second semestre 2016, définissant la méthodologie à appliquer pour pouvoir utiliser des AMS équivalents en lieu et place de la méthode gravimétrique (de référence). L’appel à candidature a été annoncé au Comité de Pilotage de la Surveillance (CPS) du 15 janvier 2015 et formalisé par une note (ref LCSQA-INERIS-DRC-14-144334-12513A de décembre 2014) aux AASQA.
Mardi 28 juillet 2020
Rapport
Utilisation des données de micro-capteurs pour la modélisation et la cartographie de la qualité de l’air
Le rapport « Utilisation des données de micro-capteurs pour la modélisation et la cartographie de la qualité de l’air » synthétise l’état d’avancement des travaux du LCSQA, qui s’inscrivent dans la feuille de route du GT micro-capteurs et de la CS modélisation, et portent sur l’utilisation des données de micro-capteurs pour la modélisation et la cartographie de la qualité de l’air. Elle s’appuie sur l’analyse bibliographique livrée en septembre 2018 et les récents développements réalisés en collaboration avec des AASQA, des startups et des laboratoires de recherche. Parmi les récents travaux de cartographie avec les données de micro-capteurs, deux catégories de méthodes susceptibles de se recouper ou d’être combinées émergent : les méthodes statistiques spécifiques (Land Use Regression, agrégation spatiale, et apprentissage statistique) et l’interpolation géostatistique par krigeage. Les développements du LCSQA s’appuient sur cette dernière (krigeage en dérive externe) pour fusionner les observations de micro-capteurs fixes et mobiles avec les données modélisées afin d’estimer des concentrations de polluants à l’échelle urbaine. L’approche est testée à Nantes à partir d’observations de PM10 fournies par AtmoTrack. Un prétraitement est réalisé sur les données brutes pour éliminer les valeurs aberrantes et corriger le biais sur la variation journalière des concentrations de fond. La variabilité et l’incertitude de mesure sont considérées dans le krigeage afin de pondérer l’importance des observations dans l’estimation. Les micro-capteurs mobiles offrent une densité d’échantillonnage jamais atteinte par les moyens de mesure traditionnels. Une plus grande maîtrise des incertitudes de mesure apparaît comme une condition nécessaire pour en tirer le meilleur profit dans la cartographie de la qualité de l’air.   Use of low-cost sensor observations for air quality modelling and mapping The report “Use of low-cost sensor observations for air quality modelling and mapping” summarizes the progress of the LCSQA work on the use of low-cost sensor observations for air quality modelling and mapping at the urban scale. This is part of the road map of the low-cost sensor working group and the modelling scientific commission. This work is based on the bibliographic analysis which has been published in September 2018 and on the new developments in collaboration with several AASQAs, startups and research laboratories. Among the recent studies that use low-cost sensor observations for air quality mapping, two categories of methods emerge: specific statistical approaches (Land Use Regression model, spatial aggregation, and machine learning) and geostatistical interpolation via kriging. LCSQA developments are based on the latter (kriging with an external drift) to combine the low-cost sensor observations and the dispersion model calculations to estimate pollutant concentrations at the urban scale. The approach is tested in Nantes using PM10 observations provided by AtmoTrack sensors. A preprocessing is applied on raw data to remove outliers and to correct the bias related to the daily variation of the background concentrations. The variability and the measurement uncertainty are considered in kriging to weight the observations in the estimation. Mobile low-cost sensors provide a unique sampling coverage in space and time compared to regulatory measurements. A better control of measurement uncertainty seems to be a necessary condition to get the most out of these new observations for air quality mapping.
Vendredi 15 janvier 2016
Rapport
Inter-comparaison 2014 sur les granulomètres UFP 3031
Différentes AASQA sont aujourd’hui équipées de granulomètres UFP 3031, avec lesquels elles réalisent des études sur les particules ultrafines en air ambiant. Ces AASQA et le LCSQA/INERIS sont désormais fédérés au sein d’un groupe de travail spécifique, le GT « PUF », rattaché à la CS PM du dispositif national de surveillance de la qualité de l’air. Un exercice d’intercomparaison a été réalisé en juillet 2014, rassemblant l’ensemble des UFP 3031 français. L’objectif a été d’une part d’évaluer les performances de cette technologie dans sa dernière configuration en date, et d’autre part de disposer d’un retour d’expérience sur les pratiques de mise en oeuvre par les différents acteurs français. Cet exercice a permis d’identifier différents points techniques sur lesquels progresser, désormais intégrés dans le programme de travail du GT, et pris en compte dans les discussions avec le constructeur. Les données produites ont permis d’effectuer une évaluation quantitative des performances de l’UFP 3031. Le canal de mesure dédié à la gamme 200 – 800 nm présente des performances limitées : il est par conséquent recommandé de limiter son utilisation à un usage « informatif ». Le reste de la gamme de mesure (5 canaux allant de 20 à 200 nm) présente des performances jugées satisfaisantes.
Lundi 15 juin 2020
Rapport
Référentiel des constituants
Ce document fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air ambiant.   Mise en application : 23 avril 2020   Le référentiel des constituants définit la liste des "codes ISO" des polluants (ou paramètre mesuré) à utiliser pour transmettre les mesures des-dits polluants au niveau national.  Le code ISO, défini sur 2 caractères alphanumériques, permet d'identifier le polluant mesuré.  Il est à renseigner dans les postes centraux et est utilisé dans les fichier ISO (données automatiques) et fichiers xml de données manuelles qui sont transmis au niveau national. 
Mardi 31 juillet 2012
Rapport
Maintien et amélioration des chaînes nationales d’étalonnage Rédaction d’une plaquette synthétique relative à la qualité des mesures
En 1996, sous l’impulsion du Ministère chargé de l'Environnement, un dispositif appelé « chaîne nationale d’étalonnage » a été conçu et mis en place afin de garantir, sur le long terme, la cohérence des mesures réalisées dans le cadre de la surveillance de la qualité de l’air pour les principaux polluants atmosphériques gazeux réglementés. Ce dispositif a pour objectif d’assurer la traçabilité des mesures de la pollution atmosphérique en raccordant les mesures effectuées dans les stations de surveillance à des étalons de référence spécifiques par le biais d’une chaîne ininterrompue de comparaisons appelée « chaîne d’étalonnage ».   Compte tenu du nombre élevé d’Associations Agréées de Surveillance de la Qualité de l'Air (AASQA), il était peu raisonnable d’envisager un raccordement direct de l'ensemble des analyseurs de gaz des stations de mesure aux étalons de référence nationaux, malgré les avantages métrologiques évidents de cette procédure. Pour pallier cette difficulté, il a été décidé de mettre en place des procédures de raccordement intermédiaires gérées par un nombre restreint de laboratoires d’étalonnage régionaux ou pluri-régionaux (appelés également niveaux 2) choisis parmi les acteurs du dispositif de surveillance de la qualité de l'air (AASQA et LCSQA-EMD). Par conséquent, ces chaînes nationales d’étalonnage sont constituées de 3 niveaux : le LCSQA-LNE en tant que Niveau 1, des laboratoires d’étalonnage inter-régionaux (au nombre de 8) en tant que Niveau 2 et les stations de mesures en tant que Niveau 3.   Dans le cadre de ces chaînes nationales d’étalonnage, le LCSQA-LNE raccorde tous les 3 mois les étalons de dioxyde de soufre (SO2), d’oxydes d'azote (NO/NOx), d'ozone (O3), de monoxyde de carbone (CO) et de dioxyde d’azote (NO2) de chaque laboratoire d’étalonnage. De plus, depuis plusieurs années, le LCSQA-LNE raccorde directement les étalons debenzène, toluène et o-xylène (BTX) de l’ensemble des AASQA, car au vu dunombre relativement faible de bouteilles de BTX utilisées par les AASQA, il a été décidé en concertation avec le MEDDTL qu’il n’était pas nécessaire de créer une chaîne d’étalonnage à 3 niveaux. Depuis août 2011, le LNE certifie également les concentrations d’éthylbenzène, de m-xylène et de p-xylène en plus du benzène, du toluène et de l’o-xylène pour les mélanges gazeux de BTEX des AASQA. Le tableau ci-après résume les étalonnages effectués depuis 2006 par le LCSQA-LNE pour les différents acteurs du dispositif de surveillance de la qualité de l’air (AASQA, LCSQA- INERIS et LCSQA-EMD), tous polluants confondus (NO/NOx, NO2, SO2, O3, CO, BTEX et Air zéro).       Nombre   2006 2007 2008 2009 2010 2011 Raccordements Niveau 1/ Niveaux 2 146 180 180 180 180 180 Raccordements BTEX 38 42 37 40 38 33 Raccordements LCSQA-INERIS 12 21 18 20 36 39 Raccordements ORA 0 8 6 6 5 7 Raccordements Madininair 16 24 13 25 19 13 Vérification « Air zéro » (Airparif, Oramip, APL, ORA) 4 4 4 7 6 12   Somme totale des raccordements 216 279 258 278 284 284   Ce rapport fait également la synthèse des problèmes techniques rencontrés en 2011 par le LCSQA-LNE lors des raccordements, à savoir : - Les problèmes rencontrés sur les matériels du LCSQA-LNE, -  Les problèmes rencontrés au niveau des raccordements, -  Les problèmes rencontrés au niveau du transport des matériels. Concernant la mesure des particules, le bilan sur les mises à disposition de moyens de contrôle d’étalonnage d’appareils effectués par le LCSQA-EMD dans le cas des particules est donné dans le présent rapport. Il convient de rappeler que la chaîne d’étalonnage nationale ne concernant que les polluants atmosphériques gazeux (SO2, NO, NO2, CO, O3 et BTX), une mise à disposition de moyens de contrôle de l'étalonnage des analyseurs PM10 et PM2.5 sur site est assurée dans l’attente de l’intégration de ces polluants dans la chaîne. Ces dispositifs de transfert consistent en des cales étalon pour les analyseurs automatiques de particules (microbalances à variation de fréquence et jauges radiométriques) permettant aux AASQA de vérifier l’étalonnage et la linéarité de leurs appareils directement en station de mesure, en y associant le débit de prélèvement. Pour l’année 2011, 14 mises à disposition ont été effectuées. Le respect de la consigne pour le débit de prélèvement est globalement constaté pour 29 appareils vérifiés dont 10 FDMS (soit environ 6% du parc d’analyseurs automatiques actuellement en station de mesure) et les essais montrent un comportement correct de l’ensemble des appareils contrôlés. Concernant le contrôle de la constante d’étalonnage de la microbalance, la moyenne de la valeur absolue de l’écart observée en AASQA varie entre 0,64 et 1,54% (soit pour l’ensemble des AASQA contrôlées une moyenne ± écart-type de 0,97 ± 0,34%). L’étendue de l’écart réel constaté sur le terrain est restreinte car comprise entre -4,1 et +2,7 % pour 62 appareils contrôlés dont 20 FDMS (soit environ 12% du parc de microbalances TEOM actuellement en station de mesure). Le contrôle de la linéarité montre l’excellent comportement des appareils sur ce paramètre sachant que 26 appareils (dont 6 FDMS) ont été contrôlés soit environ 5% du parc de microbalances TEOM actuellement en station de mesure. Concernant les jauges radiométriques MP101M de marque Environnement SA, un contrôle de cale étalon d’AASQA (vérification par le LCSQA-EMD des valeurs de cales étalon fournies par le constructeur) ainsi qu’une mise à disposition de cales étalon permettant le contrôle sur site de l’étalonnage de jauges ainsi que leur linéarité ont été assurés. Comme pour la microbalance, le contrôle du moyen d’étalonnage et la linéarité montre l’excellent comportement des jauges sur ces paramètres sachant qu’a minima 4 appareils ont été contrôlés soit environ 8% du parc de jauges actuellement en station de mesure. Le comportement de cette « chaîne de contrôle pour la mesure des particules » assurée par le LCSQA-EMD peut être qualifié de satisfaisant. Les résultats obtenus pour les microbalances TEOM (concernant les paramètres débit de prélèvement, étalonnage et linéarité) et pour les radiomètres bêta MP101M (concernant le contrôle de moyens d’étalonnage) sont des éléments probants de l’Assurance Qualité / Contrôle Qualité (QA/QC) appliquée aux analyseurs automatiques de particules en suspension et sont des sources d’information nécessaires dans le cadre du calcul de l’incertitude de mesure sur ce type d’appareil. Le maintien et l’extension du programme QA/QC pour les analyseurs automatiques de particules rentrent dans les missions pérennes du LCSQA. L’extension à des modèles de jauges radiométriques autres que la MP101M d’Environnement SA est à envisager, sous réserve de leur homologation par le Dispositif National de Surveillance de la Qualité de l’Air. Par ailleurs, en 2010, le LNE a rédigé un document de synthèse dont l’objectif était de réaliser un bilan du dispositif d'assurance qualité actuellement mis en œuvre sur le territoire français (fonctionnement des chaînes d'étalonnage, bilan des exercices d'intercomparaison…) pour garantir la qualité des mesures effectuées par les AASQA dans l’air ambiant. En 2011, le LNE a rédigé un projet de plaquette de 4 pages résumant le document de synthèse. Le but de cette plaquette est de rendre plus visibles les actions entreprises par la France pour garantir la qualité des mesures effectuées par les AASQA dans l'air ambiant et pourra être distribué lors de réunions, de congrès, de séminaires…
Jeudi 7 mai 2020
Rapport
Travaux LCSQA 2018 dans le domaine de la normalisation française et européenne
Le rapport « Travaux LCSQA dans le domaine de la normalisation française et européenne » fait état des principales activités dans lesquelles le LCSQA s'est impliqué au niveau national et européen en 2018. Au niveau européen, les Groupes de Travail et différentes instances techniques (AQUILA, FAIRMODE) ont impliqué jusqu’à 14 experts membres du LCSQA en 2018. Les principales informations associées aux différents documents normatifs et réglementaires traités cette année sont les suivantes : Ø sur le plan de la réglementation européenne, le processus de Fitness Check s’est terminé et ses conclusions sont attendues pour 2019, Ø concernant la réglementation nationale, l’arrêté du 19 avril 2017 qui précise les rôles et responsabilités des différents acteurs (AASQA, LCSQA) et qui structure désormais le Référentiel Technique National devrait être révisé en 2019. Il convient de noter que ce référentiel mentionne des textes normatifs européens qui ne sont pas inscrits dans les directives européennes (par exemple  la norme EN 16450 sur les analyseurs automatiques de PM, la norme EN 16339 sur la mesure du NO2 par tube à diffusion, la Spécification Technique TS 16976 sur la détermination de la concentration en nombre de particules de l’aérosol atmosphérique), Ø s’agissant de la normalisation, tant européenne que (inter)nationale, 2018 est une année de transition et de préparation à la sortie de textes (soit nouveaux, soit révisés) sur la période 2019-2020 : F EN 17346 « Qualité de l'air ambiant - Méthode de détermination de la concentration d'ammoniac par échantillonnage diffusif »  F NF EN 14211 « Air ambiant - Méthode standard pour le mesurage de la concentration en dioxyde d'azote et monoxyde d'azote par chimiluminescence » F NF EN 14212 « Air ambiant - Méthode standard pour le mesurage de la concentration en dioxyde de soufre par fluorescence UV » F NF EN 14625 « Air ambiant - Méthode standard de mesurage de la concentration en ozone par photométrie UV » F NF EN 14626 «  Air ambiant – Méthode normalisée de mesurage de la concentration en monoxyde de carbone par spectroscopie à rayonnement infrarouge non dispersif » F EN 14662-1 « Qualité de l'air ambiant — Méthode normalisée pour le mesurage de la concentration en benzène — Partie 1 : Echantillonnage par pompage suivi d'une désorption thermique et d'une méthode chromatographie en phase gazeuse » F EN 12341 « Air ambiant - Méthode normalisée de mesurage gravimétrique pour la détermination de la concentration massique MP10 ou MP2,5 de matière particulaire en suspension » F EN 16450 « Air ambiant - Systèmes automatisés de mesurage de la concentration de matière particulaire (PM10; PM2,5) » F TS 17434 « Air ambiant - Détermination de la distribution granulométrique de particules d’un aérosol atmosphérique à l’aide d’un spectromètre de granulométrie à mobilité électrique (SMPS) » F TS 16868 « Air ambiant - Échantillonnage et analyse des grains de pollen dans l'air et des spores fongiques pour les réseaux d'allergie - Méthode volumétrique Hirst » F TS (référence non encore attribuée) sur l’évaluation des performances de capteurs pour la détermination de la concentration de polluants gazeux dans l’air ambiant F TS 17458 « Air ambiant — Méthode d’évaluation de la performance d’applications d’un système de modélisation de la répartition des sources » F TS (référence non encore attribuée) sur la définition et l’utilisation d’objectifs de qualité d’un système de modélisation pour l’évaluation de la qualité de l’air ambiant   Ces textes (dont certains sont déjà mentionnés dans le Référentiel Technique National) impacteront vraisemblablement le fonctionnement du dispositif national de surveillance. La « mise sous normalisation » des nouveaux outils d’évaluation de la qualité de l’air (capteurs, outils numériques) est un enjeu majeur pour le dispositif, notamment en ce qui concerne les exigences stipulées dans ces textes susceptibles de devenir des documents de référence.