Résultats de la recherche

82 résultats correspondent à CARA
Actualité
Annonce de soutenance de la thèse de doctorat d’Hasna Chebaicheb (IMT NE & Ineris, Programme CARA)
Hasna Chebaicheb soutiendra sa thèse de doctorat intitulée « Etude de la composition chi
Vendredi 4 mars 2022
Rapport
Cahier des charges pour l’étalonnage des ACSM
Depuis 2014, le réseau national pour la surveillance de la qualité de l’air s’est équipé d’ACSM (Aerosol Chemical Speciation Monitor)[1],[2]. Ces instruments permettent de mesurer en continu la composition chimique des particules non-réfractaires (nitrate, ammonium, sulfate, chlore et matière organique) contenues dans la fraction PM1. En 2021, dix ACSM sont répartis dans sept AASQA sur l’ensemble de la métropole. Deux autres sites de mesures (SIRTA et Lille), opérés par des laboratoires de recherche (respectivement LSCE-Ineris et IMT Nord Europe), complètent ce dispositif dans le cadre du programme CARA (https://www.lcsqa.org/fr/le-dispositif-cara). L’ensemble de ce parc d’instrument est constitué de neuf Q-ACSM équipés d’un spectromètre de masse de type « quadrupôle », et d’un TOF-ACSM équipé d’un spectromètre de masse de type temps de vol ». Le LCSQA est en charge du suivi et de l’optimisation de l’utilisation des analyseurs automatiques de la composition chimique des particules. Dans ce contexte, depuis la mise en œuvre des premiers ACSM, il s’attache à définition des procédures de contrôle et d’assurance qualité, il assure la réalisation des étalonnages des ACSM et réalise des campagnes de comparaisons inter laboratoires (CIL). Jusqu’ici, les étalonnages ont été réalisés, en accord avec les recommandations du LCSQA, une fois par an sur chaque instrument. Ceux-ci pouvaient être réalisés en station, ou bien lors des CIL. A partir de 2022, les étalonnages seront pris en charge par les AASQA. Des étalonnages seront cependant toujours réalisés par le LCSQA dans le cadre des CILs (tous les 2 ans) qu’il continuera d’organiser. Dans ce contexte, les AASQA pourront choisir de réaliser les étalonnages en interne ou par un tiers, dans le cadre par exemple d’une prestation commerciale. Afin d’assurer la qualité des étalonnages et donc des données produites par les ACSM, le LCSQA propose dans ce document de définir les protocoles expérimentaux à appliquer, les exigences de performances relatives au banc d’étalonnage utilisé ainsi que les critères à considérer pour valider l’étalonnage réalisé. Dans le cadre d’une prestation commerciale, ce document pourra servir de cahier des charges, permettant à l’AASQA d’organiser et de réceptionner la prestation. Ce document est dédié à l’étalonnage des Q-ACSM, une mise à jour de ce document pourra être effectuée à destination du TOF-ACSM   [1] Rapport LCSQA 2011 : Méthodologies de détermination de la composition chimique des particules submicroniques en temps réel , O. Favez. [2] Rapport LCSQA 2014 : Description du Programme CARA, O.Favez et E.Leoz-Garziandia .     Specifications for the calibration of ACSM Since 2014, the national air quality monitoring network has been equipped with ACSM (Aerosol Chemical Speciation Monitor)1,2. These instruments allow continuous measurement of the chemical composition of non-refractory particles (nitrate, ammonium, sulphate, chlorine and organic matter) contained in the PM1 fraction. Currently, in 2021, ten ACSMs are distributed in seven AASQAs throughout metropolitan France. Two other sites (SIRTA and Lille), operated by research laboratories (LSCE-Ineris and IMT Nord Europe respectively), complete this system within the framework of the CARA programme (https://www.lcsqa.org/fr/le-dispositif-cara). The entire instrument fleet consists of nine Q-ACSMs equipped with a "quadrupole" mass spectrometer, and one TOF-ACSM equipped with a "time-of-flight" mass spectrometer. The LCSQA is in charge of monitoring and optimising the use of automatic analysers of the chemical composition of particles. In this context, since the implementation of the first ACSMs, LCSQA has been working on defining quality control and assurance procedures, ensuring that the ACSMs are calibrated and carrying out inter-laboratory comparison (ILC) campaigns. Until now, calibrations have been carried out, in accordance with LCSQA recommendations, once a year on each instrument. This could be done at the station or during the CIL. From 2022 onwards, calibrations will be carried out by the AASQA. However, calibrations will still be carried out by the LCSQA within the framework of CIL (every 2 years). In this new context, the AASQAs will be able to choose to carry out the calibrations internally or by a third party, for example within the framework of a commercial service. In order to ensure the quality of the calibrations and therefore of the data produced by the MSCAs, the LCSQA proposes in this document to define the experimental protocols to be applied, the performance requirements relating to the calibration bench used as well as the criteria to be considered for validating the calibration. Within the framework of a commercial service, this document can be used as specifications, allowing the AASQA to organise and accept the service. This document is dedicated to the calibration of the Q-ACSM, an update of this document could be made for the TOF-ACSM.
Mardi 21 avril 2020
Page
Le dispositif CARA
Vendredi 18 mars 2016
Rapport
Impact de la combustion de biomasse sur les concentrations de PM10 (programme CARA - hiver 2014-2015)
Rapport "Impact de la combustion de biomasse sur les concentrations de PM10 dans 10 agglomérations du programme CARA au cours de l’hiver 2014-2015". Cette étude s’inscrit dans la continuité des travaux menés depuis une dizaine d’années par le LCSQA (en étroite collaboration avec des laboratoires de recherche, dont le LGGE) afin de mieux évaluer l’impact du chauffage résidentiel au bois sur les niveaux de PM10 enregistrés sur différentes stations du dispositif national de surveillance. Pour réaliser ce type d’étude, il est généralement recouru à l’analyse de marqueurs organiques spécifiques, tel que le levoglucosan, prélevés sur filtres. Il est ensuite possible d’estimer la quantité de matière particulaire (PM) provenant de la combustion de biomasse en appliquant différents facteurs multiplicatifs aux concentrations obtenues pour ces marqueurs. Ces dernières années ont également vu l’émergence d’analyseurs automatiques de la composition chimique des particules permettant notamment l’identification et la mesure en temps réel des particules liées à cette source. En particulier, de récents tests en AASQA ont permis de vérifier la robustesse et la fiabilité de l’Aethalomètre multi-longueurs d’onde de type AE33, conduisant à son implantation sur différents sites urbains de fond du dispositif national entre 2013 et 2014. Dans le cadre de ses travaux pour le LCSQA, l’INERIS a alors proposé de réaliser une étude combinant des mesures sur filtres et des mesures par AE33 au cours de l’hiver 2014-2015. Le présent rapport rend compte des résultats obtenus à l’aide des mesures sur filtres, réalisées pour 10 sites de fond urbain du programme CARA au sein de grandes agglomérations françaises (constituant à ce jour le plus large panel de sites étudiés simultanément en France). Les prélèvements ont été réalisés sur une période hivernale élargie s’étendant de mi-novembre 2014 à mi-avril 2015. Sur cette période, les contributions journalières moyennes aux PM10 de la combustion de biomasse sont globalement comprises entre 18% et 36%, les plus faibles niveaux étant obtenus pour Marseille et les plus élevés pour Grenoble. Parmi les autres agglomérations étudiées, Bordeaux et Poitiers présentent également des contributions journalières très élevées (environ 30%). Pour les autres sites (Rouen, Reims, Strasbourg, Nantes, Lyon, et Nice), cette contribution est estimée à environ 20%. Ces résultats sont en bon accord avec ceux obtenus précédemment, pour certains de ces sites ou pour d’autres agglomérations françaises, confirmant l’importance de l’influence du chauffage résidentiel au bois sur la qualité de l’air de l’ensemble du territoire métropolitain en hiver. Les résultats obtenus dans le cadre decette étude permettront d’affiner la méthodologie d’exploitation des données issues de la mesure automatique.
Mardi 18 décembre 2018
Rapport
Programme CARA : bilan des travaux 2017
Ce rapport synthétise les principaux travaux 2017 du programme CARA (« CARActérisation chimique des particules ») du dispositif national de surveillance de la qualité de l’air. Fonctionnant en étroite collaboration avec les AASQA volontaires et des laboratoires universitaires, ce programme permet notamment de documenter la nature et les origines des épisodes de pollution particulaire de grande échelle spatiale à l'aide d'un dispositif de prélèvements sur filtres et de mesures automatiques unique en Europe. Les actions réalisées en 2017 ont indiqué le rôle majeur joué par les émissions locales de combustion (chauffage et transport routier) dans la survenue d’épisodes de pollution aux PM10 en décembre 2016 et janvier 2017. Les résultats simulés par CHIMERE dans la configuration de PREV’AIR pour les épisodes de décembre 2016 ont pu être comparés aux mesures in situ de composition chimique. Cette comparaison mesures/modèle indique des résultats globalement satisfaisants pour la simulation des aérosols inorganiques secondaires, avec néanmoins des tendances à la surestimation du sulfate et à la sous-estimation du nitrate sur la période étudiée. En revanche, une forte sous-estimation de matière organique provenant de la combustion de biomasse est également observée, confirmant la nécessité d’améliorer la modélisation de la fraction carbonée des particules (notamment via une meilleure paramétrisation des émissions). Par ailleurs, l’exploitation avec Atmo Grand-Est d’un jeu de données correspondant à des prélèvements sur filtres en 2015-2016 a permis d’identifier et de quantifier les sources de particules en fond urbain à Metz. Pour ce faire, les résultats issus d’un modèle statistique (Positive Matrix Factorization) ont été couplés aux informations de vent et de rétro-trajectoires de masses d’air. Alors que les émissions primaires par le trafic automobile représentent près de 20% des PM10 en moyenne annuelle, la combustion de biomasse constitue la source la plus intense en hiver (34%). Ces deux sources présentent un caractère local marqué, suggérant que des actions ciblées à l’échelle de la métropole messine pourraient y avoir un impact significatif pour l’amélioration de la qualité de l’air. Parallèlement, les espèces secondaires, comme le nitrate et le sulfate d’ammonium, montrent un caractère plus régional/transporté, et souligne le besoin d’une meilleure connaissance sur les origines de leur précurseur gazeux, comme l’ammoniac. Un travail d’optimisation méthodologique a également été réalisé en 2017 afin de tester une nouvelle approche de traitement de données pour l’estimation de la matière organique liée aux émissions par le chauffage au bois à partir des mesures AE33. Cette approche se base sur les propriétés optiques de la fraction organique des PM absorbant le rayonnement lumineux dans le proche ultraviolet (« Brown Carbon », BrC). Les résultats obtenus indiquent une très bonne homogénéité spatiale du facteur de conversion entre ces mesures d’absorption par le BrC et les concentrations de PM issue de la combustion de biomasse (et estimées à partir des mesures de levoglucosan). Il semble ainsi envisageable de proposer une valeur moyenne (0,5) pour ce facteur de conversion sur l’ensemble des sites de fond urbain du dispositif national équipés d’un AE33. Il convient maintenant de tester la robustesse de cette méthodologie alternative sur un panel le plus large possible de jeux de données et de stations de mesure en collaboration avec les AASQA le souhaitant.
Mercredi 22 mai 2013
Rapport
Programme CARA : bilan des travaux 2012
Le présent rapport recense les principaux résultats obtenus en 2012, dans le cadre du programme CARA, du dispositif national de surveillance de la qualité de l’air. Après une description du contexte de ce programme, les différentes actions du cahier des charges défini avec les AASQA et le Ministère en charge de l’environnement sont reprises une à une. Ce bilan accompagne différents rapports et notes disponibles sur le site web du LCSQA (www.lcsqa.org/rapports). En outre, une synthèse de différentes études d’épisodes nationaux de pollution aux particules réalisées dans le cadre du programme CARA depuis 2008 a pu être proposée à la revue Pollution Atmosphérique et publiée au sein de son numéro spécial « Particules » de novembre 2012. Cette synthèse est reprise en Annexe A du présent rapport. Les résultats présentés ici confirment en particulier le rôle majeur joué par les conditions météorologiques hivernales et printanières sur les dépassements de valeurs limites fixées pour les PM. Ces conditions favorisent notamment l’accumulation des émissions anthropiques (en particulier la combustion de biomasse) lors de phénomènes d’inversion thermique prononcée en début et milieu d’hiver, ainsi que la formation d’aérosols secondaires (en particulier de nitrate d’ammonium) lors d’épisodes photochimiques de large échelle en fin d’hiver et début de printemps. Par ailleurs, l’étude initiée en 2011, en collaboration avec l’Observatoire Réunionnais de l’Air, a été finalisée en 2012. Le LCSQA/INERIS avait été sollicité courant 2011 pour réaliser une estimation du rôle joué par les sels de mer sur les dépassements systématiques de valeurs limites de PM10 au niveau de la station Bons Enfants. Sur la base de ces résultats, cette station a pu être sortie du contentieux Européen pour non-respect des valeurs limites. Concernant l’influence du salage-sablage sur les niveaux de PM en site de proximité automobile, une étude réalisée en 2012 avec Air Rhône-Alpes et le LGGE a notamment permis de réaliser des tests de sensibilité de différentes modalités de calcul, en vue de l’élaboration d’un guide méthodologique d’ici fin 2013. Quelque soit la méthode de calcul envisagée, le salage a un impact relativement faible sur le nombre de dépassements du seuil journalier fixé pour les PM10 sur le site trafic étudié en milieu urbain, et un impact significatif sur le site situé aux abords d’une autoroute de montagne (présentant néanmoins peu de dépassements du seuil journalier, par comparaison au premier). Le présent rapport consacre également une large place à la mise en oeuvre d’étude de type « modèles récepteurs », en particulier sur les sites urbain de fond de Lens et Rouen - Petit Quevilly. Concernant les sources primaires régionales, on retiendra l’importance de la combustion de biomasse (environ 15% en moyenne annuelle), ainsi que des activités anthropiques liées à la combustion de fioul lourd sur ces deux sites. Enfin, les activités de veille bibliographique et technique, ainsi que d’accompagnement aux travaux de recherche sont également présentées ci-dessous.
Jeudi 19 novembre 2020
Rapport
Evaluation de deux Q-ACSM équipés d’une lentille aérodynamique PM2,5
Depuis 2014, le réseau national pour la surveillance de la qualité de l’air s’est équipé d’ACSM (Aerosol Chemical Speciation Monitor).[1],[2] Ces instruments permettent de mesurer en continu la composition chimique des particules (nitrate, ammonium, sulfate, chlore et matière organique) contenu dans la fraction PM1. Depuis, plusieurs années, des travaux sont menés par le constructeur afin de mettre au point des ACSM permettant de mesurer la fraction PM2.5. Ces travaux visent notamment à modifier les lentilles aérodynamiques qui permettent l’échantillonnage des particules dans l’instrument, permettant une comparaison plus directe avec les mesures réglementaires de particules fines. L’Ineris, en tant que membre de l’ACMCC (Aerosol Chemical Monitor Calibration Centre), organise les CIL du réseau européen ACTRIS. Dans ce cadre, et dans le cadre du programme CARA, le LCSQA-Ineris a pu réaliser des tests sur deux ACSM équipés de lentilles aérodynamiques PM2,5, mis à disposition par le LSCE (Laboratoire des Science du Climat et de l’Environnement) et le EPA (Environmental Protection Agency, Irlande), afin de mieux appréhender les performances de ces instruments. Ce rapport reporte deux études menées par le LCSQA-INERIS pour évaluer les performances de deux ACSM équipés de lentilles aérodynamique PM2,5. La première a consisté à mesurer l’efficacité de transmission des lentilles PM2,5 entre 60 et 300nm pour les comparer à celle des lentilles PM1. Un autre test a consisté à comparer les mesures de l’air ambiant obtenues par deux Q-ACSM PM2,5 et d’un Q-ACSM PM1 colocalisés. Les résultats obtenus avec l’ACSM PM2,5 équipé d’un vaporiseur standard semblent confirmer les préconisations du constructeur, à savoir que l’utilisation de lentille PM2,5 doit absolument être couplée à l’utilisation d’un « capture vaporiser ». Les résultats obtenus avec l’ACSM équipé d’une lentille PM2,5 et d’un « capture vaporiser » sont cohérents avec ceux obtenus par l’ACSM PM1 et les mesures PM FIDAS, dans un contexte ou la majorité de la masse de particules étaient réparties dans les gammes de tailles les plus petites entre 100 et 500 nm et ou le rapport PM1/PM2,5 est proche de 1. Associés aux mesures de la transmission des lentilles aérodynamique en dessous de 300nm, ce résultat indique que les pertes dans ces gammes de tailles semblent négligeables. Néanmoins, à ce jour, il reste nécessaire de conduire d’autres études, notamment dans un contexte de plus forte concentration de PM2,5, avant de pouvoir conclure sur l’intérêt de ce type de configuration d’ACSM au sein du dispositif national de surveillance de la qualité de l’air.   [1] Rapport LCSQA 2011 : Méthodologies de détermination de la composition chimique des particules submicroniques en temps réel , O. Favez. [2] Rapport LCSQA 2014 : Description du Programme CARA, O.Favez et E.Leoz-Garziandia     Evaluation of two Q-ACSM equiped with a PM2,5 aerdodynamical lense Since 2014, some French regional air quality monitoring networks have been equipped with ACSM (Aerosol Chemical Speciation Monitor). These instruments allow continuous measurement of the chemical composition of the particles (nitrate, ammonium, sulphate, chlorine and organic matter) contained in the PM1 fraction. Using ACSM to measure the PM2,5 fraction would allow better comparison of ACSM measurements with regulatory ones. For several years, work has been carried out by the manufacturer in order to develop ACSMs allowing this fraction to be measured. This work aims in particular to modify the aerodynamic lenses system which allow the sampling of particles in the instrument. Ineris, as a member of ACMCC (Aerosol Chemical Monitor Calibration Centre), has been organising ACSM Inter-Laboratory Comparisons (ILCs) for the European ACTRIS program. In this context, and within the framework of the CARA program, the LCSQA-INERIS was able to test two ACSMs equipped with PM2,5 aerodynamic lenses, made available by the LSCE (Laboratoire des Science du Climat et de l’Environnement) and the EPA (Environmental Protection Agency, Ireland), in order to better understand the performance of these instruments. The first test aims to compare the PM2.5 lenses transmission efficiencies between 60 and 300 nm to those of PM1 lenses. Another test consisted of comparing the ambient air measurements obtained by two collocated Q-ACSM PM2.5 and a Q-ACSM PM1. Results obtained with ACSM PM2.5 equipped with a standard vaporizer seem to confirm recommendations given by the manufacturer, namely that the use of PM2.5 lenses shall be coupled with the use of a "capture vaporizer". The results obtained with the ACSM equipped with a PM2.5 lens and a "capture vaporizer" are consistent with those obtained by ACSM PM1 and PM FIDAS measurements, in an environment where the majority of the mass of particles were distributed in the smallest size ranges between 100 and 500 nm and the PM1/PM2.5 ratio is closed to 1. Combined with measurements of the aerodynamic lens transmission below 300nm, this result indicates that the losses in these size ranges seem negligible. However, it remains necessary to conduct further studies, especially with higher medium size particle (1-2,5µm) concentrations, in order to conclude on the possible interest of this type of ACSM configuration within regional air quality monitoring networks.
Lundi 10 mai 2021
Rapport
Evaluation de la filière de prévision Prev’air sur Antilles Guyane
Cette note présente une évaluation de la composition des particules PM10 prévue par PREV’AIR par comparaison avec les données issues de la campagne du programme CARA sur la Martinique en 2018. Les prévisions PREV’AIR sur la zone Antilles-Guyane sont assez récentes (en production opérationnelle depuis février 2018) et l’enjeu de cette note est d’analyser la capacité des prévisions à identifier les contributions de plusieurs sources d’émission dans l’évolution des teneurs de PM10. Elle montre notamment que les prévisions arrivent à saisir les contributions majeures qui sont d’origine naturelle et en premier lieu celle des poussières désertiques dans l’évolution des concentrations de particules.       This report provides an evaluation of the performances of the Prev’air air quality forecasts over French oversea territories of the Atlantic west (Caraïbean region). The forecasts for this area were set-up beginning of 2018 with a similar set-up of the one used for France metropolitan and with the objective to anticipate the impact of dust plumes crossing the Atlantic Ocean from the Sahara on the PM10 concentrations. Indeed, dust contributions are responsible of most of the pollution episodes occurring over these territories. The goal of the report was to assess the potential of the Prev’air system to reproduce the evolution of the PM10 concentrations over Martinique Island and to provide relevant composition of the PM10. This work relies on the observations coming from filter analyses collected during the CARA campaign carried out in 2018. The results show that the forecasts manage to capture pretty well the natural contributions of dust and sea salts.
Vendredi 5 février 2010
Rapport
Etude des épisodes de pollution 2008 – 2009 dans le cadre du dispositif CARA
Ce rapport présente la mise en œuvre de la modélisation sur des épisodes identifiés dans le rapport DRC-09-103337-10781A afin de mieux comprendre les aptitudes et lacunes des modèles. Les épisodes de l’année 2008 et janvier 2009 ont été simulés avec le modèle de qualité de l’air CHIMERE. Ainsi, les analyses du dispositif CARA ont permis de montrer que : a) Les concentrations en sulfates sont globalement sous-estimées par le modèle CHIMERE surtout durant l’été, b) Les concentrations en nitrate et l’ammonium sont correctement simulées mais semblent parfois surestimées, c) Les concentrations en matière organique sont nettement sous-estimées essentiellement l’hiver d) Les concentrations en carbone élémentaire sont légèrement sous-estimées e) Les « autres » espèces sont largement sous-estimées par le modèle La sous-estimation de la production de sulfate provient essentiellement d’une sous-production par chimie gazeuse l’été. Concernant le point c), la sous-estimation chronique du modèle pourrait être liée à une source manquante ou mal redistribuée temporellement comme la combustion du bois. Les « autres » espèces pourraient être mal représentées dans les inventaires utilisées, il s’agirait de particules primaires non carbonées émises par les activités humaines. En 2010 certains des épisodes de 2009 seront à nouveau étudiés en considérant les aspects météorologie et émissions. Avant de régler le problème des émissions, un travail sur les simulations météorologiques sera réalisé et seulement ensuite, un travail sur les émissions sera effectué pour mieux caler les émissions de combustion de bois et suivre la part de ces émissions dans le bilan des particules prélevées et analysées. Un travail particulier sur les profils temporels d’émission sera réalisé en collaboration avec les AASQA. Bien que l’essentiel du travail soit réalisé sur des échantillons typiques de certaines régions, ce travail devra être extrapolable au plan national. Une évolution du système de mesure et d’analyse CARA sera envisagée dans le sens suivant: - Mesures des couples Nitrate/Acide nitrique et Ammonium/Ammoniaque en gardant une veille sur les mesures de concentrations de ces espèces ; - Avoir un ou deux points de mesures avec à la fois des analyses sur filtre des PM2,5 et des PM10 en privilégiant un site de fond suburbain voire rural, ceci permettant de voir si la sous-estimation des composés « autres » existe aussi dans la fraction fine des PM ; - Avoir un site de mesures permettant d’évaluer les concentrations de fond de poussières naturelles, ce site devrait être situé près des zones de terres arables.
Mercredi 2 mars 2022
Rapport
Performances Prev’air en 2020
Ce rapport présente les performances des prévisions nationales opérées dans le cadre de la plateforme Prev’Air (www.prevair.org). L’objectif est de montrer en toute transparence des éléments d’appréciation de la qualité de la production Prev’air. Ce rapport traite successivement de l’évaluation des prévisions des concentrations des quatre polluants O3, NO2, PM10 et PM2.5, fournis quotidiennement par le système Prev’Air, du jour courant J jusqu’au J+3. L’estimation du comportement des outils est réalisée grâce à des indicateurs statistiques qui permettent de comparer les résultats de modélisation avec les observations validées de la base de données nationale GEOD’air, elle-même alimentée par les AASQA (associations de surveillance de la qualité de l’air) et développée par le LCSQA. Une attention particulière est portée à l’évaluation des performances de Prev’Air concernant la détection des seuils réglementaires. Cet exercice a pour objectif d’estimer l’aptitude des modèles à prévoir spécifiquement les épisodes de pollution. L’ozone est évalué sur les mois de l’été 2020 (avril à septembre). Les autres polluants (PM10, PM2.5, NO2) sont évalués sur l’ensemble de l’année 2020. L’année 2020 a été marquée par la crise Covid-19 et par les confinements que celle-ci a entraînés au sein des pays de l’Europe, perturbant ainsi les activités humaines habituelles et les émissions de polluants associées. Le système Prev’Air a cependant continué de produire des prévisions sur la base de ses émissions standard, donc sans modulation vis-à-vis de ces perturbations. Notons toutefois que le système Prev’Air bénéficie d’une approche de correction automatique statistique et géostatistique qui repose sur les observations en temps réel, permettant ainsi de prendre en compte indirectement l’effet des confinements. Une prévision opérationnelle complémentaire a été produite à partir de mars 2020, intégrant une estimation de baisse des émissions liée aux mesures de lutte contre la pandémie Covid[1], mais elle ne fait pas l’objet d’une évaluation dans le cadre de ce rapport. Peu d’épisodes persistants d’ampleur nationale ont été relevés sur les périodes étudiées : un pour l’ozone, du 6 au 12 août, et trois pour les PM10, du 21 au 26 janvier (avec dépassement du seuil d’alerte), du 27 au 28 mars, et du 22 au 27 novembre. L’évaluation de ces épisodes est effectuée à la fois sur les prévisions brutes de Prev’Air et sur les calculs de l’adaptation statistique, qui visent à corriger les biais systématiques du modèle brut par un processus d’apprentissage historique. Les gains obtenus par le modèle statistique résident dans sa capacité à corriger les biais de représentativité du modèle brut. Cette prévision corrigée statistiquement sert généralement de référence à l’expertise de l’équipe Prev’air pour la communication en cas d’épisode de pollution de l’air, et sert également de base aux calculs du module AMU, qui vérifie les critères de l’arrêté mesure d’urgence[2]. Les prévisions Prev’Air pour les DROM des caraïbes ont également été évaluées et montrent des performances satisfaisantes. Dans l’ensemble, le comportement de Prev’Air est satisfaisant avec une bonne aptitude à respecter les objectifs de qualité définis dans le référentiel technique national[3] qui a établi ces valeurs cibles pour les différents scores ainsi que le contenu à faire figurer dans les rapports annuels d’évaluation des plateformes de prévisions constituant le dispositif national de surveillance de la qualité de l’air. Les prévisions avec adaptation statistique disponibles sur la métropole respectent les objectifs de performance et ont permis la plupart du temps d’anticiper l’occurrence des épisodes de pollution et d’identifier les principales zones affectées. Les prévisions brutes rencontrent plus de difficultés à satisfaire les objectifs de qualité notamment dans les DROM. La composition des PM1 prévue par Prev’air a été évaluée pour la première fois avec l’aide des données CARA[4].  L’ammonium, les nitrates et les sulfates sont relativement bien prévus par le modèle CHIMERE. La partie organique est fortement sous-estimée. Quant au chlore, une nette amélioration devrait être constatée à partir de fin 2021 avec la mise en place de la nouvelle version de CHIMERE (v2020)   Performances of Prev’air in 2019   This report presents the performance of the national forecasts carried out within the Prev'Air platform (www.prevair.org). The objective is to assess the quality of Prev'air production. This report deals successively with the evaluation of the O3, NO2, PM10 and PM2.5 concentrations forecasts, daily provided by the Prev'Air system, from day D to D+3. The behavior of this system is estimated using conventional statistical indicators, which allow the modelling results to be compared with validated observations from the national GEOD'air database, itself fed by the AASQA (air quality monitoring associations) and developed by the LCSQA. Particular attention is paid to the evaluation of Prev'Air's forecasts regarding the detection of regulatory thresholds. The objective of this exercise is to estimate the capacity of the models to specifically anticipate pollution episodes. Ozone is evaluated over the summer months of 2020 (April to September). The other pollutants (PM10, PM2.5, NO2) are assessed over the whole year 2020. The year 2020 was affected by the Covid-19 crisis and by the lockdowns that occurred in European countries, thus disrupting the usual human activities and associated emissions of pollutants. However, the Prev'Air system continued to produce forecasts based on its standard emissions, without modulation regarding these disturbances. However, it should be noted that the Prev’Air system benefits from an automatic statistical and geostatistical correction approach based on real-time observations, thus making it possible to indirectly consider the effect of confinements. An additional operational forecast was produced starting from March 2020, implementing an estimation of the reduction in emissions due to measures taken against the Covid pandemic[1], but its assessment is not included in this report. Few persistent episodes of national scope were noted over the studied periods: one for ozone, from August 6 to 12, and three for PM10, from January 21 to 26 (with exceedances of the alert threshold), from March 27 to 28, and from November 22 to 27. The evaluation of these episodes is carried out both on Prev'Air's raw forecasts and on the statistical adaptation of the Chimere which aims at correcting the systematic biases of the raw model through a historical learning process. The gains obtained by the statistical model lie in its ability to correct the representativeness bias of the raw model. This statistically corrected forecast generally serves as a reference to the expertise of the Prev'air team for communication in the event of an air pollution episode. It is also a base for the calculations of the AMU module, which checks the criteria of the emergency measure decree[2]. The Prev'air forecasts for the Caribbean DROMs have been assessed as well and show satisfactory performances. On the whole, the performance of Prev'Air is satisfactory with a good ability to meet the quality objectives defined in the national technical reference document[3] which established these target values for the different scores as well as the content to be included in the annual evaluation reports of the forecasting platforms involved in the national air quality monitoring system. The forecasts with statistical adaptation match the performance objectives and have mostly allowed to anticipate the occurrence of pollution episodes and to identify the main affected areas. Raw forecasts are less satisfactory to comply with the quality objective, particularly in the DROM. The composition of PM1 predicted by Prev’air was assessed for the first-time using CARA[4] data. Ammonium, nitrates and sulphates are predicted relatively well by the CHIMERE model. The organic part is greatly underestimated. Concerning chlorine, an improvement should be noted from the end of 2021 with the implementation of the new version of CHIMERE (v2020).       [1]https://www.ineris.fr/fr/ineris/actualites/confinement-environnement-no… [2] Arrêté du 7 avril 2016 relatif au déclenchement des procédures préfectorales en cas d'épisodes de pollution de l'air ambiant [3] https://www.lcsqa.org/fr/referentiel-technique-national [4] Favez et al. (Atmosphere, 2021) CARA program   .