Résultats de la recherche
322 résultats correspondent à Air ambiant
Jeudi 12 octobre 2017
Rapport
Intercomparaison des moyens de mesures mobiles (Amiens 2016)
Dans l’objectif de vérifier le respect des exigences de la directive européenne 2008/50/CE, le LCSQA propose annuellement aux AASQA une inter-comparaison de moyens mobiles pour les polluants SO2, O3, NO, NO2 et CO à différents niveaux de concentration et tout particulièrement au voisinage des seuils horaires d’information ou d’alerte pour les polluants NOx, O3, SO2, et de la valeur limite sur 8h pour le CO.
Un exercice d’inter-comparaison de moyens de mesures mobiles a été réalisé en mars 2016 en collaboration avec ATMO PICARDIE. Il a réuni 5 participants (3 AASQA, l’ISSEP (Belgique) et le LCSQA/INERIS) et moyens mobiles, constituant un parc de 33 analyseurs. Vu le faible nombre de participants à cet exercice, l’estimation des incertitudes de mesure peut être sensiblement impactée en cas d’écart de l’un des participants.
Durant cette inter-comparaison, le système de dopage du LCSQA/INERIS permettant une distribution homogène des gaz sur 4 axes a été mis en œuvre. Le temps de résidence inférieur à 3 secondes (pour les NOx et l’ozone) dans les lignes d’échantillonnage n’a pas totalement été respecté malgré la mise en place de lignes fluidiques courtes et d’un boitier de distribution de gaz individuel pour les participants ayant les analyseurs de plus faibles débits. Le non-respect de ce critère n’a toutefois pas eu d’influence significative sur la dispersion des mesures des participants concernés.
Le déroulement de l’exercice a comporté une phase préliminaire à la réalisation de paliers de dopages pour l’ensemble des polluants, consistant en une circulation de gaz étalon en aveugle visant à évaluer la cohérence des raccordements entre les niveaux 2 et 3 de la chaîne nationale d’étalonnage et les éventuels défauts de linéarité des appareils.
Peu de dysfonctionnements d’appareils ont été observés en cours d’exercice sur les différents analyseurs, sans conséquences sur le déroulement de l’exercice.
Lors de la circulation de gaz pour étalonnage en aveugle, les écarts par rapport à la tolérance de 4 % (5% dans le cas du NO2) sur la lecture de concentrations étalons sont peu nombreux et dans quelques cas limités, assez élevés. Pour chaque polluant, on relève des écarts de mesure de l’ordre de -12 à +8 % sur au plus un des appareils du parc. Les causes ont été identifiées (dérive, temps de chauffe insuffisant, analyseur de référence non modifiable). On rappellera que cette phase est désormais réalisée en une seule étape, sans étape de rattrapage/correction en cas d’écart excessif, afin d’accéder à des incertitudes de mesures plus proches des conditions réelles de terrain. Ces écarts ont été observés immédiatement après le calibrage des analyseurs par les AASQA avec leurs propres gaz d’étalonnages de niveau 2 ou 3.
On note également que les analyseurs de SO2 présentent depuis l’exercice 2014 un nombre d’écarts réduits par rapport aux années antérieures, avec cette année la particularité d’être du même ordre que ceux des autres polluants. Cette nette amélioration s’explique par les précautions particulières appliquées aux bouteilles étalons et sans doute au soin pris par les participants lors de la phase de lecture de ces bouteilles compte tenu de l’évolution des consignes de la circulation de gaz étalons en aveugle.
Pour l’exercice d’inter-comparaison en propre, les intervalles de confiance de répétabilité et de reproductibilité ont été déterminés pour chaque polluant et les différents paliers de dopage, en application de la norme NF ISO 5725-2. On signalera que le nombre de valeurs aberrantes détectées lors de l’application des tests de Cochran et Grubbs reste faible avec moins de 2% de données éliminées et ces dernières reposent en général sur un seul participant. L’élimination de données sur avis d’expert n’a pas été nécessaire.
L’examen des intervalles de confiance de reproductibilité, déterminés expérimentalement, a conduit à des résultats satisfaisants en termes de respect des recommandations des Directives Européennes (15% d’incertitude de mesures aux valeurs limites réglementaires) :
• pour le polluant CO, l’intervalle de confiance de reproductibilité est de 4,5% à la valeur limite horaire ;
• pour le polluant SO2, cet intervalle est de 8,9% à la valeur limite horaire ;
• pour le polluant O3, l’intervalle de confiance de reproductibilité est de 5,6% à la valeur limite horaire de 180 ppb. On notera que les incertitudes estimées aux autres seuils de concentration disponibles pour l’ozone, à savoir 90 ppb (seuil d’information) et 120 ppb (seuil d’alerte horaire sur 3 heures), respectent également les exigences de la Directive Européenne ;
• l’intervalle de confiance de reproductibilité est de 9,9% à pour le NO et de 6,6% pour le NO2 aux valeurs limites horaires correspondantes.
D’une manière générale, les résultats du traitement statistique suivant la norme NF ISO 13 528 et permettant la détermination des z-scores sont homogènes et très satisfaisants pour une majorité de participants. Une très large majorité des z-scores est comprise entre ±1. Les z-scores plus élevés, imposant des actions préventives et correctives, sont anecdotiques et concentrés sur peu de participants. Ainsi on relève des z-scores supérieurs à 4 pour le laboratoire n°1 sur 2 paliers de CO, un z-score supérieur à 2 pour le laboratoire n°4 sur 1 palier de CO, et un z-score supérieur à 2 pour le laboratoire n°2 sur 1 palier dans le cas de l’ozone.
Les résultats de cette inter-comparaison permettent d’évaluer la qualité de mise en œuvre des méthodes de mesures par les AASQA en conditions réelles. On notera que depuis 2008, les résultats obtenus en termes d’incertitudes de mesure sont conformes aux exigences de la Directive Européenne et confirment dans la durée la fiabilité du système de mesure national.
Ceci est à rapprocher du fait que le parc d’analyseurs dispose d’un temps de chauffe et de stabilisation important (>2 jours), ce qui tend à réduire les écarts entre appareils en début de campagne et conditionne l’obtention d’intervalles de confiance réduits.
Cet exercice a permis de renouveler pour la quatrième année le test in situ du dispositif de dopage au niveau des têtes de prélèvement, permettant d’intégrer celles-ci au calcul d’incertitude expérimental.
Ce dispositif reprend le système de génération basé sur la dilution de gaz concentrés, dilués dans un flux d’air ambiant puis distribués par coiffage de la tête de prélèvement par un sac en Tedlar, inerte aux polluants classiques. Ce dispositif peut autoriser le coiffage et la distribution simultanée de gaz sur un maximum de 12 têtes de prélèvements.
On aura pu constater pour l’ensemble des polluants, la bonne cohérence des mesures faites simultanément dans les sacs Tedlar soit via les têtes de prélèvements soit via des lignes individuelles, indiquant à une exception près l’influence négligeable des têtes de prélèvement dans la chaîne de mesure.
Le traitement statistique des données, identique à celui de l’exercice classique présenté ci-dessus, a isolé de nombreuses données ciblées sur le participant n°2, confirmant les observations faites au travers des données brutes du comportement douteux de certains appareils qui s’est avéré lié à l’influence de grilles de filtration à l’entrée des lignes fluidiques des appareils. Dans ce cas de figure, les analyseurs concernés ont fait l’objet d’une élimination du jeu de données sur avis d’expert.
Les intervalles de confiance expérimentaux calculés sont :
• pour le polluant CO : 5,4% à la valeur limite 8 heures ;
• purement indicatif, pour le polluant SO2 : 23% (repose sur 3 participants uniquement) à la valeur limite horaire ;
• pour le polluant O3 : 1,8% à la valeur limite horaire ;
• pour le polluant NO : 5,5% à la pseudo-valeur limite horaire ;
• pour le polluant NO2 : 6,2% à la valeur limite horaire.
On note une bonne cohérence des valeurs d’incertitude entre les exercices avec et sans coiffage des têtes de prélèvement pour l’ensemble des polluants (hors SO2).
Ces résultats confirment les observations faites lors des tests précédents de ce dispositif de dopage sur 4 années consécutives et conduisent le LCSQA à valider définitivement le dispositif de dopage des têtes de prélèvement qui englobe toutes les incertitudes de mesures en conditions réelles.
Ainsi, dès 2017, ce dispositif se substituera au dispositif classique en boitiers. Ceci permettra de respecter de manière plus systématique le critère de temps de résidence inférieur à 3 secondes pour les polluants O3 et NOx, et de procéder à quelques tests approfondis sur l’influence de la ligne de prélèvement (injection en tête de ligne par exemple).
La réalisation d’exercices réguliers d’inter-comparaison permet au dispositif de surveillance national d’enrichir les procédures de maintenance périodique et le transfert des bonnes pratiques de mesure (cas du laboratoire 2 par ex.). Elle permet également aux AASQA accréditées qui y participent d’alimenter la démonstration du maintien de leurs compétences auprès du COFRAC. Dans cet objectif, le maintien de cet exercice annuel reposera sur une nouvelle planification ne retenant alternativement que les sites d’Atmo-Rhône/Alpes et de l’INERIS.
Mardi 11 avril 2017
Rapport
Protocole de détermination des caractéristiques de performance métrologique des micro-capteurs - étude comparative des performances en laboratoire de micro-capteurs de NO2
Mise en ligne du rapport intitulé : "Validation du protocole de détermination des caractéristiques de performance métrologique des micro-capteurs pour la mesure indicative des polluants gazeux réglementaires – étude comparative des performances en laboratoire de micro-capteurs de NO2"
L'objectif de ce travail est est de faire évoluer le protocole proposé dans sa première version en mars 2016 et qui permet d'évaluer la capacité de micro-capteurs de gaz "low cost" à mesurer la concentration des polluants gazeux réglementés de manière "indicative".
La démarche proposée est de réviser pas à pas le processus simplifié du rapport d'étude de 2016 en tenant compte des contraintes spécifiques au contexte de ce travail.
Ce rapport rend compte de l’évolution des réflexions menées sur les différentes étapes de la première version du protocole éditée en Mars 2016 : la définition des types de capteurs entrant dans le périmètre de la caractérisation y est révisée, tout comme la liste des paramètres métrologiques de caractérisation. Des précisions ont été apportées quant à la configuration optimale de la chambre d’exposition nécessaire à cette démarche. La pertinence, ainsi que la robustesse du protocole proposé ont été testées par des essais de validation de capteurs de dioxyde d’azote (NO2). Ce protocole pour l’évaluation métrologique de micro-capteurs pour la mesure indicative des polluants gazeux réglementaires, évoluera et sera remis à jour régulièrement en fonction des remarques et propositions des utilisateurs. Les modalités d'évolution de ce document sont à définir collectivement.
Les micro-capteurs de gaz « low cost » constituent, depuis quelques années, des outils émergents qui permettraient par exemple d’obtenir des mesures indicatives de la qualité de l’air. Ces données sont particulièrement intéressantes pour les AASQA car, en complément des méthodes de référence, ces instruments permettraient une surveillance continue et spatialisée à coût modéré. En fonction des niveaux de concentrations relevés durant la phase d’évaluation préliminaire, la Directive européenne 2008/50/CE sur la qualité de l’air définit le nombre de points de mesure et le type de méthode à mettre en œuvre pour la détermination des teneurs en polluants gazeux et particulaires et leurs adéquation vis-à-vis des valeurs cibles et limites définis. Par exemple pour le dioxyde d’azote et les particules, si ces niveaux sont inférieurs au seuil d’évaluation supérieur (SES), des mesures indicatives ou par estimation objective peuvent être mises en place.
Pour ce type de mesure, il doit être démontré que l’objectif de qualité des mesures ou l’incertitude relative élargie est inférieur à deux fois ce qui est permis pour les méthodes de référence. Le guide de démonstration d’équivalence (2010) [2] apporte des précisions sur la méthode à utiliser pour effectuer cette démonstration mais n’indique pas de protocole particulier destiné aux capteurs utilisés pour les mesures de qualité de l’air. Devant ces manques en matière de protocole de qualification, un groupe de travail au niveau du Comité Européen de Normalisation (CEN, WG 42 « Gas sensors ») s’est constitué pour travailler sur l’élaboration d’une spécification technique sur l’évaluation des performances des capteurs pour la détermination de la concentration des polluants réglementés dans l’air ambiant (gaz dans un premier temps). Les réflexions de ce groupe de travail s’inspirent des études menées par le JRC depuis 2013, et seront également alimentées par la démarche simplifiée d’évaluation et du calibrage des capteurs de gaz low cost adaptée aux gaz réglementés pour le suivi de la pollution de l’air, sur laquelle le LCSQA travaille depuis 2015.
Toutes les remarques peuvent être adressées directement par email à Nathalie Redon (nathalie.redon@imt-lille-douai.fr), ou Sabine Crunaire (sabine.crunaire@imt-lille-douai.fr).
Actualité
Conformité technique d’analyseurs automatiques pour la mesure réglementaire de la qualité de l’air ambiant
Quatre analyseurs de polluants réglementés ont récemment fait l’objet d’une vérification de leur conformité technique pour la surveillance réglementaire de la qualité de l’air ambiant extérieur. Il s’agit des analyseurs de dioxyde de soufre (SO2) modèle AF 22e, de monoxyde de carbone (CO) modèle CO 12e et d’ozone (O3) modèle O3 42e de la marque française Environnement S.A (photo ci-dessous) ainsi que l’analyseur de PM10 & PM2.5 modèle FIDAS (sous les versions 200 - photo ci-dessous -, 200S et 200E) de la marque allemande PALAS. L’avis de conformité technique a été émis par le LCSQA sous couvert de la Commission de Suivi « Mesures automatiques », sur la base du respect des exigences du processus de vérification mis en place par le LCSQA.
Jeudi 23 octobre 2014
Rapport
Description du programme CARA du dispositif national de surveillance de la qualité de l'air
Ce document fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air ambiant.
Cette note propose une description synthétique du programme CARA (CARActérisation chimique des particules) mis en place en 2008, à l’initiative du LCSQA, pour répondre à une forte demande du ministère et des AASQA :
· de documenter la nature des principaux épisodes de pollution particulaire d’ampleur nationale
· d’identifier et quantifier les principales sources de PM à l’échelle (pluri-)annuelle, sur différents points du dispositif national
· de servir de référence pour l’optimisation des modèles
· d’assurer un transfert de compétences et de connaissances de la recherche vers l’opérationnel
Ce programme est basé sur la spéciation chimique des particules selon deux approches complémentaires :
1) A partir de prélèvements sur filtres PM10 sur une quinzaine de stations (urbaines, majoritairement) du dispositif national.
Points forts : taille du dispositif, implication des AASQA, diversité des paramètres mesurés
Points faibles : lourdeur et coût des analyses, délais de réponse (2-3 jours à plusieurs mois)
2) A l’aide d’analyseurs automatiques (en cours de mise en place).
Points forts : rapidité de réponse (« quasi temps réel »), variations temporelles fines des polluants, en lien avec l’évolution de leurs sources « anthropiques »
Points faibles : coûts d’investissement, sélectivité des mesures
Les principaux points d’amélioration de ce programme portent sur le renforcement du dispositif automatique en complément du dispositif manuel, la structuration du partage des informations dans le cadre d’un accord national collectif volontaire, et la valorisation des résultats obtenus.
Mercredi 9 novembre 2011
Rapport
Guide technique et méthodologique pour l'analyse de l'Arsenic, Cadmium, Nickel et Plomb dans l'air ambiant (2011)
Ce document fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air ambiant.
Attention : Ce guide 2011 sera obsolète fin 2022 ; il a fait l'objet d'une révision en 2021
applicable au 1er janvier 2023.
Lire le guide mis à jour (version 2021)
Ce guide se conçoit comme le Référentiel Français en termes d’exigence de qualité des données obtenues sur l’ensemble du territoire pour l’analyse des
métaux réglementés dans les PM10 (EN 14902 : 2005) et dans les dépôts humides ou totaux (EN 15841 : 2009). Pour les mesures des métaux dans les
PM10, il préconise des critères de qualité en termes de Limite de Quantification (LQ) et de gestion des blancs plus stricts qui doivent être pris en compte par
les laboratoires d’analyses effectuant des prestations pour les AASQA. Il doit être considéré comme un cahier des charges à transmettre aux laboratoires en
charge des analyses de métaux et comme une aide à la gestion des résultats de concentration en métaux pour les AASQA.
AVANT PROPOS :
Ce guide doit faciliter la prise de décision concernant la surveillance des métaux dans l’air ambiant par les AASQA en synthétisant l’ensemble des procédures de prélèvement et
d’analyse préconisées au niveau français (LCSQA) et européen. L’aspect stratégie de prélèvement fait l’objet d’une réflexion spécifique en cours au sein du Groupe de Travail
« 4ième directive européenne : les nouveaux polluants » dont les propositions seront transmises en 2007 et ne sera donc pas abordé dans ce guide.
Dans le cadre des 1ère et 4ième directives européennes, les réseaux sont amenés à surveiller quatre éléments chimiques (As, Cd, Ni, Pb) dans les PM10.
Les particules sont prélevées sur filtres selon les spécifications de la norme EN 12341. Les teneurs en éléments visés sont de l'ordre de quelques dizaines à quelques centaines de ng/filtre.
Les techniques d’analyse préconisées par la norme EN14902 sont dites par voie chimique humide et requièrent une préparation préalable de l'échantillon (mise en solution des
éléments visés).
Les premières questions techniques à se poser lorsque l’on démarre une campagne de prélèvement sont :
Est ce que j’utilise un système de prélèvement préconisé par la norme EN 12341 ou équivalent (par exemple, bas débit type Partisol 2025 ou haut débit type DA 80) ?
Est ce que j’utilise les filtres adéquats, Téflon ou Quartz, manipulés selon la bonne procédure, pour effectuer des prélèvements respectivement journaliers ou hebdomadaires ?
Mon laboratoire prestataire utilise-t-il la norme EN 14902 pour effectuer la mesure des 4 éléments réglementés et obtient-il des limites de quantification méthodologiques
et des blancs de laboratoire et de terrain compatibles avec les concentrations mesurées dans l’airambiant ?
Ce laboratoire est il agrémenté ou a-t-il participé à l’une des inter-comparaisons effectuée par le LCSQA ?
Si oui, quels ont été ses résultats par rapport aux critères de qualité requis par la 4ième directive fille ?
Vendredi 27 juillet 2012
Rapport
Assistance aux AASQA pour les calculs d’incertitude
Au niveau réglementaire, les directives européennes relatives à la surveillance de la qualité de l’air fixent des seuils d’incertitude sur les concentrations mesurées par les Associations Agréées de Surveillance de la Qualité de l’Air (AASQA) « au voisinage de la valeur limite appropriée ».
Il est donc nécessaire d’évaluer les incertitudes associées aux mesurages. Aussi, les normes décrivant les méthodes de mesure, élaborées depuis 2005, intègrent-elles des procédures ou des exemples d'estimation de ces incertitudes. Une lecture attentive de ces normes montre qu’elles ne sont cependant pas très faciles d’application et qu‘elles peuvent être interprétées de diverses façons, ce qui peut conduire à des résultats très différents.
Par conséquent, pour répondre aux exigences des directives et aider les AASQA à estimer leurs incertitudes sur la base de procédures harmonisées, le LCSQA a rédigé un guide pratique pour estimer l’incertitude sur les mesures effectuées à l’air ambiant.Ce guide est structuré en huit parties, correspondant chacune à une technique de mesure particulière applicable à un ou plusieurs composés. Une fois finalisées, les différentes parties ont été validées en Commission de normalisation X43D « Air ambiant » de l’AFNOR et publiées sous forme de fascicules de documentation.
Il a également été élaboré un document de « Recommandations techniques pour la mise en œuvre de la partie 2 du guide d'estimation des incertitudes portant sur les mesurages automatiques de SO2, NO, NO2, NOx, O3 et CO réalisés sur site ».
Dans le cadre de l’assistance aux AASQA pour le calcul des incertitudes, la mission du LCSQA en 2011 a porté sur les 2 points suivants :
· Etat des lieux sur les estimations des incertitudes de mesure réalisées par les AASQA en se basant sur les fascicules de documentation AFNOR ;
· Développement d’une démarche pour l'estimation des incertitudes sur les moyennes temporelles, jusqu’alors traitée de façon théorique et pas assez explicite et documentée dans les différentes parties du guide.
L’état des lieux sur les estimations des incertitudes de mesure réalisées par les AASQA en se basant sur les fascicules de documentation AFNORa été effectuée par le biais d’une enquête menée auprès des AASQA. Vingt trois AASQA ont répondu à cette enquête dont les conclusions sont les suivantes :
ü Mise en œuvre des calculs d’incertitude conformément aux fascicules de documentation :
o Mesures automatiques de SO2, NO/NOx/NO2, O3 et CO : il est important de souligner que plus de la moitié des AASQA ont réalisé les calculs d’incertitude. Pour les autres, la démarche est initiée.
Les principales remarques mentionnées concernent :
§ Une crainte de la part de certaines AASQA, d’une hétérogénéité des valeurs d’incertitude entre les différentes associations en raison de postulats différents retenus. Il est normal que les modes d’évaluation des incertitudes puissent varier en fonction notamment du retour d’expérience et de la gestion métrologique de chaque AASQA, mais au final, les valeurs d’incertitudes fournies dans le cadre de la présente enquête montrent des niveaux du même ordre de grandeur.
§ Un manque de données notamment sur les plages de variation de paramètres d’influence, les valeurs de ces paramètres et les concentrations en mesurande appliquées lors des tests d’évaluation des analyseurs, données nécessaires pour le calcul des incertitudes : le guide de recommandation mentionné ci-dessus fournit les éléments manquants.
o Mesures de benzène par tubes à diffusion et pompage (FD X43-070-3 et FD X43-070-5) : très peu d’AASQA ont réalisé le calcul. L’enquête ne permet pas de déterminer si la non-estimation des incertitudes sur le benzène est due à des données manquantes liées au prélèvement ou à l’incertitude d’analyse.
o Mesures de NO2 sur tubes à diffusion : très peu d’AASQA ont réalisé le calcul.
o Mesures des particules : le nombre d’AASQA ayant fait les calculs est très limité (6 sur 23 AASQA ayant répondu). Le principal obstacle semble être la connaissance de la valeur de la reproductibilité de la méthode de mesure. A noter que par défaut, il pourrait être utilisé les écarts-types de reproductibilité déterminés lors des campagnes de démonstration de l’équivalence des méthodes automatiques (par préleveurs par microbalance à variation de fréquence et par jauges radiométriques par absorption de rayonnement b) à la méthode de référence (méthode gravimétrique au moyen de préleveurs séquentiels sur filtre) fournis dans lefascicule de documentation FD X43-070-7.
o Mesures de métaux et de HAP: respectivement 1 et 2 AASQA ont déclaré avoir évalué leur incertitude. L’enquête ne permet pas de déterminer si la non-estimation des incertitudes sur le benzène est due à des données manquantes liées au prélèvement ou à l’incertitude d’analyse.
- Estimation de l’incertitude associée aux concentrations moyennes, en cas de couverture incomplète de la période de moyennage visée : l’enquête a montré que les fascicules de documentation ne sont pas suffisamment détaillés pour permettre aux AASQA d’estimer ces incertitudes, et que la norme NF ISO 11222[1], qui définit une méthode d’estimation de l’incertitude associée à une moyenne temporelle en tenant compte des données manquantes, présente certaines limites d’application. En conséquence, il est apparu nécessaire d’expliciter davantage la mise en œuvre de la norme NF ISO 11222 en soulignant ses limites, et de développer une autre approche lorsque la norme NF ISO 11222 n’est pas applicable.
- Recensement d’un besoin d’aide en termes d’outils informatiques pour le traitement des données et l’estimation des incertitudes : les tableaux excel des exemples numériques des guides peuvent être fournis à la demande à titre de base de travail, mais doivent être adaptés aux pratiques spécifiques de chaque AASQA, car ces tableaux ne peuvent pas couvrir toutes les approches métrologiques, de gestion et de mise en œuvre des matériels de mesure. Par conséquent, il n’est pas possible de prévoir des listes de choix exhaustives, ni d’effectuer une validation des fichiers qui serait adaptée à tous les cas.
- Non-réception des fascicules de documentation AFNOR par certaines AASQA.
Pour rappel, les parties 1 à 5 ont été envoyées par le LCSQA-LNE à chaque AASQA courant 2007 ; les parties 6 à 8 sont parues en mai 2011 sous la forme de fascicules de documentation AFNOR et devraient être envoyées prochainement par le LCSQA aux AASQA.
Néanmoins, toutes les parties sont disponibles sous la forme de rapports sur le site du LCSQA.
Pour répondre au besoin exprimé au travers de l’enquête, des travaux ont été menés sur l'estimation des incertitudes sur les moyennes temporelles.
Dans la norme NF ISO 11222, il est défini une incertitude liée à une couverture incomplète de la période de moyennage par les concentrations Cind,j. Cependant, les résultats d’études menées par certaines AASQA montrent que ce calcul est adapté pour l'estimation de l'incertitude due aux données manquantes sur les moyennes « long terme » (mensuelles et annuelles), mais pas à celle due aux données manquantes sur les moyennes « court terme » (horaires, 8 heures et journalières).
Outre la nécessité d’expliciter davantage le mode de calcul proposé par la norme NF ISO 11222 pour estimer l’incertitude associée à une moyenne temporelle en cas de données manquantes, la référence à cette méthode dans différentes parties du guide étant actuellement insuffisante pour être appliquée, par les AASQA, il a été décidé de développer une autre méthodologie, plus adaptée au cas des périodes de moyennage les plus courtes : moyennes horaires, 8 heures et journalières.
[1]Norme NF ISO 11222 Qualité de l'air - Détermination de l'incertitude de mesure de la moyenne temporelle de mesurages de la qualité de l'air