Résultats de la recherche

322 résultats correspondent à Air ambiant
Actualité
Nouvelle directive européenne sur la surveillance de la qualité de l'air : une mobilisation de tous les instants pour les experts du LCSQA
La nouvelle directive européenne relative à la qualité de l’a
Jeudi 28 octobre 2021
Rapport
Guide méthodologique pour la mesure des concentrations en ammoniac dans l’air ambiant
  Référentiel technique national Ce guide fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air. Il a été approuvé en CPS (comité de pilotage de la surveillance) du 1er octobre 2021. Mise en application : 1er janvier 2022     La mesure de l’ammoniac (NH3) dans l'air ambiant est un enjeu sensible et prioritaire en raison de ses effets néfastes sur la santé humaine et les écosystèmes. Les méthodes de mesure sont nombreuses et très diversifiées (méthodes directes/indirectes, avec ou sans préconcentration). Cependant, ce polluant n’étant pas réglementé dans l’air ambiant à la date de la publication de ce guide, ces méthodes manquent de cadrage technique détaillé permettant d’assurer la fiabilité des données sur la base des critères QA/QC usuels (sur l’étalonnage, la traçabilité, le calcul d’incertitude, etc…).  Ce document constitue une première version du guide méthodologique LCSQA relatif à la détermination des concentrations en ammoniac dans l’air ambiant. Ce guide a pour objectifs : - d’identifier l’adéquation entre les méthodologies de mesures existantes et les usages possibles ; - de faire un état des lieux des points de vigilance associés à la mise en œuvre des méthodes les plus employées par les AASQA pour s’assurer notamment de leur comparabilité. Ce guide méthodologique n’a pas vocation à fournir des modes opératoires ou des prescriptions d’utilisation des différents appareillages ou dispositifs présentés. Le lecteur est invité à se reporter aux informations fournies par les distributeurs de matériel. Ce document s’attache à recenser les bonnes pratiques, les opérations d’installation et de maintenance ainsi que les critères à prendre en compte pour la validation des données. Ce guide s’articule de la façon suivante : Partie 1 : Présentation des méthodes existantes pour la mesure de l’ammoniac dans l’air ambiant mises en œuvre par le dispositif national de surveillance de la qualité de l’air en France Partie 2 : Mise en œuvre sur le terrain et recommandations relatives aux approches par méthodes optiques directes Partie 3 : Mise en œuvre sur le terrain et recommandations relatives aux approches par prélèvements passifs Il a été rédigé sur la base des documentations des constructeurs ou fournisseurs et de l’état de l’art scientifique. Il s’appuie aussi sur : les retours d’expériences des utilisateurs des AASQA, notamment lors des journées techniques de l’air (JTA 2016 - Marseille et JTA 2019 - Le Havre) ; les échanges avec les membres du groupe de travail CEN/TC 264/WG 11 « Qualité de l’air ambiant - Echantillonneurs passifs pour la détermination des gaz et vapeurs - Recommandations et méthodes » et avec les partenaires du projet MetNH3 (Joint Research Project ENV55 « Metrology for Ammonia in Ambient Air », 2014-2017) ; les enseignements tirés lors de la campagne intensive menée dans le cadre du projet Amp’Air (ADEME/Primequal « Agriculture et qualité de l’air ») et lors des essais de comparaison sur le terrain organisés par le CEH d’Edimbourg (Centre for Ecology and Hydrology, Penicuik) en août 2016. Ce guide pour la mesure de l’ammoniac pourra être remis à jour en fonction des retours d’expériences des utilisateurs, des préconisations des constructeurs ou des avancées de l’état de l’art scientifique et des évolutions réglementaires le cas échéant.     Guide for measuring ammonia concentrations in ambient air Measuring ammonia (NH3) in ambient air is a sensitive and priority issue because of its harmful effects on human health and ecosystems. The measurement methods are numerous and very diversified (direct / indirect methods, with or without preconcentration). However, since this pollutant is not regulated in ambient air, these methods are often poorly characterized and always they do not allow reliable measurements considering effective quality assurance and quality control (QC/QA) parameters (calibration, traceability, maximum allowed uncertainty, etc.). This document is the first version of a methodological guide for determination of ammonia concentrations in ambient air. Its objectives are to identify the adequacy between the existing methodologies and the possible uses and to list conditions of field implementation of most popular methods for French networks in order to guarantee their comparability. This methodological guide is not intended to provide operating procedures or instructions for using the various equipment or devices presented. The reader is invited to refer to the information provided by distributors. This document identifies good practices, installation and maintenance operations as well as the criteria to be considered for data validation. The different parts of this guide are as follows: Part 1: Presentation of existing methods for monitoring ammonia in ambient air and implemented by the French air quality networks Part 2: Field implementation and recommendations relating to direct optical method approaches Part 3: Field implementation and recommendations relating to passive sampling approaches It was written considering the documentation from manufacturers or suppliers and scientific literature. It is also based on: - feedback from French networks, in particular during technical workshops (JTA 2016 - Marseille and JTA 2019 - Le Havre); - exchanges with members of the CEN / TC 264 / WG 11 working group "Ambient air quality - Passive samplers for the determination of gases and vapors - Recommendations and methods" and with the partners of the MetNH3 project (Join Research Project ENV55 “Metrology for Ammonia in Ambient Air”, 2014-2017); - lessons of the intensive campaign carried out within the framework of the Amp'Air project (ADEME / Primequal "Agriculture and air quality") and during the field comparison exercice organized by the CEH in Edinburgh (Center for Ecology and Hydrology, Penicuik) in August 2016. This guide for measuring ammonia may be updated with the feedback from users, recommendations from manufacturers or advances in the state of the art  
Mercredi 9 juillet 2025
Rapport
Guide méthodologique : mesure de la composition chimique des particules submicroniques non réfractaires (NR-PM1) par Aerosol Chemical Speciation Monitor (ACSM) - Révision 2025
  Référentiel technique national Ce guide fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air ambiant.  Il a été approuvé en CPS (comité de pilotage de la surveillance) du 12 juin 2025. Mise en application : 15 septembre 2025. Ce guide annule et remplace la version de 2018   Ce document constitue une mise à jour de la première version du guide méthodologique pour la mesure de la composition chimique des particules submicroniques non-réfractaires (NR-PM1) par ACSM (Aerosol Chemical Speciation Monitor). Il concerne l’utilisation des ACSM de type quadripôle (Q-ACSM), fabriqués par la société « Aerodyne R.I. ». Cette version modifiée du guide porte d'abord sur une réorganisation des différents chapitres de l'ancienne version, suivie d'une réévaluation des critères de validation des données. Cela concerne en premier lieu les paramètres d’assurance et contrôle qualité (QA/QC) des données (par exemple : Airbeam, humidité relative, température du vaporiseur, etc.), ainsi que l'ajout de méthodologies pour certaines opérations de maintenance. Dans un deuxième temps, une mise à jour des procédures de validation environnementale a été réalisée, notamment concernant la balance ionique et la comparaison avec des mesures externes. Une nouvelle section dédiée à la validation annuelle et aux différentes vérifications à effectuer a également été ajoutée. Enfin, le dernier chapitre, traitant de l'intégration des données dans les postes centraux, a également été mis à jour après concertations avec les Associations agrées de surveillance de la qualité de l’air (AASQA). Ce guide ne constitue pas un mode opératoire ou un manuel d’utilisation. Le lecteur est invité à se reporter au manuel fourni par le distributeur pour les informations relatives au fonctionnement de l’instrument lui-même. Ce document s’attache à recenser les bonnes pratiques, les fréquences de maintenance ainsi que les étapes de validation des données à respecter. Il a été rédigé sur la base des documents des constructeurs, des échanges avec le distributeur, de l’état de l’art scientifique et des bonnes pratiques mutualisées dans le cadre du réseau européen ACTRIS, ainsi que des retours d’expériences des utilisateurs des AASQA émis notamment lors des réunions du « Groupe Utilisateurs ACSM ». Ce guide relatif à l’utilisation des ACSM pourra être remis à jour en fonction des retours d’expériences des utilisateurs, des préconisations du constructeur ou des avancées de l’état de l’art scientifique international.
Actualité
Réunion technique d’experts européens sur la normalisation des méthodes de caractérisation de la qualité de l’air – 18 et 19 juin 2024
L’IMT Nord Europe et l'Ineris, en tant que membres du LCSQA, ont participé avec l’AFNOR à la réunion annuelle du CEN TC 264 "Qualité de l’air" organisée par le VDI* à Düsseldorf (Allemagne).
Actualité
Le bois énergie et les particules
A l'occasion de la JNQA 2025, le LCSQA, en partenariat avec l'Ademe, le
Actualité
Publication du Bilan de la qualité de l'air en France 2023
A l’occasion de la Journée nationale de la qualité de l’air, le S
Lundi 27 janvier 2025
Rapport
Performances Prev'air en 2023
Ce rapport présente les performances des prévisions nationales opérées dans le cadre de la plateforme Prev’Air (www.prevair.org) pour l’année 2023. L’objectif est de montrer des éléments d’appréciation de la qualité de la production Prev’air. Ce rapport traite successivement de l’évaluation des prévisions des concentrations des quatre polluants O3, NO2, PM10 et PM2.5, fournis quotidiennement par le système Prev’Air, du jour courant J jusqu’à J+3. L’estimation du comportement des outils est réalisée grâce à des indicateurs statistiques qui permettent de comparer les résultats de modélisation avec les observations validées de la base de données nationale GEOD’air, elle-même alimentée par les AASQA (associations agréées de surveillance de la qualité de l’air) et développée par le LCSQA. Une attention particulière est portée à l’évaluation des performances de Prev’Air concernant la détection des seuils réglementaires. Cet exercice a pour objectif d’estimer l’aptitude des modèles à prévoir spécifiquement les épisodes de pollution. L’ozone est évalué sur une période de 6 mois comprenant les mois de l’été 2023 (avril à septembre). Les autres polluants (PM10, PM2.5, NO2) sont évalués sur l’ensemble de l’année 2023. L’année 2023 a connu peu d’épisodes de pollution persistants d’ampleur nationale. L’évaluation de ces épisodes est effectuée à la fois sur les prévisions brutes de Prev’Air et sur les prévisions avec adaptation statistique, qui visent à corriger les biais systématiques du modèle brut par un processus d’apprentissage historique en fonction des conditions météorologiques. Cette prévision corrigée statistiquement sert généralement de référence à l’expertise de l’équipe Prev’Air pour la communication en cas d’épisode de pollution de l’air, et sert également de base aux calculs du module AMU, qui vérifie les critères de l’arrêté mesure d’urgence[1]. Les prévisions Prev’Air pour les DROM des caraïbes ont également été évaluées. Les prévisions sur les DROM de l’océan Indien, produites à partir de mai 2022, sont, quant à elles, évaluées pour la première fois dans ce rapport. Dans l’ensemble, le comportement de Prev’Air est satisfaisant avec une bonne aptitude à respecter les objectifs de qualité définis dans le référentiel technique national[2] (RTN), qui a établi ces valeurs cibles pour les différents scores concernant l’ozone et les PM10. Le RTN définit aussi le contenu à faire figurer dans les rapports annuels d’évaluation des plateformes de prévisions constituant le référentiel technique national. Les prévisions avec adaptation statistique disponibles sur la métropole respectent les objectifs de performance et ont permis la plupart du temps d’anticiper l’occurrence des épisodes de pollution et d’identifier les principales zones affectées. Les prévisions brutes rencontrent plus de difficultés à satisfaire les objectifs de qualité, notamment dans les DROM. La composition chimique des particules (PM1) et du carbone suie prévue par Prev’Air a été évaluée avec l’aide des données CARA[3]. Dans l’ensemble, ces performances sont stables par rapport à l’année précédente.   [1] Arrêté du 7 avril 2016 relatif au déclenchement des procédures préfectorales en cas d'épisodes de pollution de l’air    ambiant [2] https://www.lcsqa.org/fr/referentiel-technique-national [3] Favez et al. (Atmosphere, 2021) CARA program   Performances of Prev’air in 2023   This report presents the performances in 2023 of the national forecasts carried out within the Prev'Air platform (www.prevair.org). The objective is to assess the quality of Prev'Air production. This report deals successively with the evaluation of the O3, NO2, PM10 and PM2.5 concentrations forecasts, daily provided by the Prev'Air system, from day D to D+3. The behavior of this system is estimated using conventional statistical indicators, which allow the modelling results to be compared with validated observations from the national GEOD'air database, itself fed by the AASQA (accredited air quality monitoring associations) and developed by the LCSQA. Particular attention is paid to the evaluation of Prev’Air’s forecasts regarding the detection of regulatory thresholds. The objective of this exercise is to estimate the capacity of the models to specifically anticipate pollution episodes. Ozone is evaluated over a period of six months including the months of summer 2023 (April to September). The other pollutants (PM10, PM2.5, NO2) are assessed over the whole year 2023. Few persistent episodes of national scope were noted during 2023. The evaluation of these episodes is carried out both on Prev’Air’s raw forecasts and on the statistical adaptation of CHIMERE which aims at correcting the systematic biases of the raw model through a historical learning process based on meteorological conditions. This statistically corrected forecast generally serves as a reference to the expertise of the Prev’Air team for communication in the event of an air pollution episode. It is also a base for the calculations of the AMU module, which checks the criteria of the emergency measure decree[1]. The Prev'Air forecasts for the Caribbean DROMs have been assessed as well. The forecasts for the Indian Ocean overseas territories, produced from May 2022, are evaluated for the first time in this report. On the whole, the performance of Prev’Air is satisfactory with a good ability to meet the quality objectives defined in the national technical reference document[2] which established these target values for the different scores for ozone and PM10. This document also defines the content to be included in the annual evaluation reports of the forecasting platforms involved in the national air quality monitoring system. The forecasts with statistical adaptation match the performance objectives and have mostly allowed to anticipate the occurrence of pollution episodes and to identify the main affected areas. Raw forecasts are less satisfactory to comply with the quality objective, particularly in the DROM. Elemental carbon and composition of PM1 predicted by Prev’Air was assessed using CARA[3] data. Overall, those performances are stable compared to the previous year.   [1] Decree of 7 April 2016 relating to the triggering of prefectural procedures in the event of episodes of ambient air    pollution [2] https://www.lcsqa.org/fr/referentiel-technique-national [3] Favez et al. (Atmosphere, 2021) CARA program   .
Samedi 12 juillet 2025
Episode de pollution
Episode du 12/07/2025 - PM10 - GUADELOUPE - Information & Recommandation
Vendredi 21 février 2025
Rapport
Bibliographie relative aux systèmes de prélèvement des aérosols en mobilité
  La surveillance de la qualité de l'air est essentielle pour que les villes puissent élaborer des plans de gestion favorables à la santé de la population. L’apparition et la démocratisation de solutions de mesure facilement déployables et autonomes ont conduit à considérer de nouveaux paradigmes pour les stratégies de surveillance à l’échelle urbaine. Parmi les nouvelles méthodes envisagées, la surveillance mobile de la qualité de l'air à l'aide de capteurs peu coûteux déployés sur des flottes de véhicules de routine présente de nombreux avantages comme la détection en continu et à moindre coût de variations de polluants à petite échelle dans les villes. A ce jour, il n’existe que peu d’études sur l’évaluation des performances métrologiques de telles solutions de mesure mobiles. Ce manque est notamment dû à l’absence de méthodes et d’outils permettant de réaliser de telles études. Cette note propose une revue bibliographique des différentes méthodes de prélèvement des particules en mobilité. Ces méthodes visent à limiter les biais et les modifications des aérosols prélevés afin que les échantillons puissent refléter le plus fidèlement possible la composition, la taille, et la concentration des particules présentes dans l'air étudié. Parmi l’ensemble des solutions techniques considérées, les sondes à corps d’oblong, bien que plus complexes à concevoir, proposent une approche adaptée à une mise en œuvre sur le terrain en assurant de manière passive la conservation d’une isocinéticité relative sur plage de vitesse identifiée. L’objectif est ensuite, sur la base de ce travail, de pouvoir sélectionner une ou des solutions disponibles sur le marché, permettant de proposer un outil portatif de mesure de référence des particules en mobilité adapté à la surveillance de la qualité de l’air ambiant. Review on mobile aerosol sampling systems Air quality monitoring is essential for cities to develop management plans that promote public health. The emergence and widespread adoption of easily deployable and autonomous measurement solutions have introduced new paradigms for urban-scale monitoring strategies. Among the new methods being considered, mobile air quality monitoring using low-cost sensors deployed on routine vehicle fleets offers numerous advantages, such as continuous and cost-effective detection of small-scale pollutant variations within cities. To date, few studies have evaluated the metrological performance of such mobile measurement solutions. This gap is largely due to the lack of methods and tools necessary to conduct such evaluations. This note proposes a bibliographic review of the various particle sampling methods used in mobility. These methods aim to minimize biases and alterations to the sampled aerosols, ensuring that the samples accurately reflect the composition, size, and concentration of particles present in the studied air. Among the technical solutions considered, oblong-bodied probes, although more complex to design, offer an approach well-suited for field implementation. They ensure, in a passive manner, the conservation of relative isokinetic conditions over an identified speed range. The goal, based on this work, is to identify one or more commercially available solutions to propose a portable reference tool for mobile particle measurement, tailored to ambient air quality monitoring.
Mardi 2 juillet 2024
Rapport
Suivi du financement du dispositif national de surveillance de la qualité de l’air sur la période 2017-2021
L’article 27 de l’arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l’air ambiant dispose que le LCSQA est tenu d’« effectuer le suivi du coût de la mise en œuvre de la surveillance » de la qualité de l’air. Tel est l’objet de ce rapport qui analyse les évolutions budgétaires du dispositif, sur les années 2017-2021. En 2021, le financement total du dispositif national de surveillance de la qualité de l’air est de 87,1 M€, ce qui représente une augmentation de 3% sur 5 ans et de 14% par rapport à l’année 2020. En 2021, l’Etat finance le dispositif national de surveillance de la qualité de l’air par des subventions, à hauteur de 45% et par des moindres recettes fiscales via la taxe générale sur les activités polluantes (TGAP) à hauteur de 26%. La part du financement des AASQA représente en moyenne 92,9% du financement total de la surveillance de la qualité de l’air sur la période. Cette proportion est passée de 93,3% en 2017 à 92,9% du financement total en 2021. Sur ces 5 années, les financements des AASQA ont augmenté de 2,4% passant de 78,9 M€ en 2017 à 80,8 M€ en 2021. La part du financement du LCSQA représente en moyenne 6,7% du financement total de la surveillance de la qualité de l’air sur la période ; il est passé de 6,0% du financement total du dispositif en 2017 à 6,7% en 2021. Le financement du LCSQA a augmenté de 18,3% sur cette période, passant de 5,1M€ en 2017 à 6,0M€ en 2021. La part du financement de la mise en œuvre opérationnelle de Prev’Air représente en moyenne 0,4% du financement total de la surveillance de la qualité de l’air sur la période. Le financement de la mise en œuvre opérationnelle de la plate-forme Prev’Air est en baisse de 44,0% sur 5 ans, passant de 536k€ en 2017 à 300k€ en 2021. De par sa structure et son mode de financement, seul le coût de mise en œuvre opérationnelle du système Prev’Air, hors travaux de développement scientifique, peut être estimé aisément.   Funding follow-up for the national air quality monitoring system over the 2017-2021 period Article 27 of the order of April 16, 2021 relating to the national ambient air quality monitoring system provides that the LCSQA is required to "monitor the cost of implementing monitoring" of air quality. This is the purpose of this report, which analyzes the quantified changes to the system over the last 5 years. In 2021, the total funding for the national air quality monitoring system is €87.1 million, which represents an increase of 3% over 5 years. In 2021, the State will finance the national air quality monitoring system through subsidies, up to 45% and through lower tax revenue via the general tax on polluting activities (TGAP) up to 26%. AASQA funding represents 92.9% of total air quality monitoring funding over the period, increasing over 5 years from 93.3% in 2017 to 92.9% of total funding in 2021. In 5 years, AASQA funding has increased by 2.4% from €78.9 million in 2017 to €80.8 million in 2021. The financing of the LCSQA represents 6.7% over the period with an increase over 5 years, going from 6.0% of the total financing of the scheme in 2017 to 6.7% in 2021. Funding for the operational implementation of the Prev'Air platform is down 44% over 5 years, from €536k in 2017 to €300k in 2021. Due to its structure and method of financing, only the cost of operational implementation of the Prev'Air system, excluding scientific development work, can be easily estimated. Funding for the operational implementation of Prev’Air represents 0.4% of the total funding for air quality monitoring over the period.