Résultats de la recherche

349 résultats correspondent à AASQA
Mercredi 2 mars 2022
Rapport
Performances Prev’air en 2020
Ce rapport présente les performances des prévisions nationales opérées dans le cadre de la plateforme Prev’Air (www.prevair.org). L’objectif est de montrer en toute transparence des éléments d’appréciation de la qualité de la production Prev’air. Ce rapport traite successivement de l’évaluation des prévisions des concentrations des quatre polluants O3, NO2, PM10 et PM2.5, fournis quotidiennement par le système Prev’Air, du jour courant J jusqu’au J+3. L’estimation du comportement des outils est réalisée grâce à des indicateurs statistiques qui permettent de comparer les résultats de modélisation avec les observations validées de la base de données nationale GEOD’air, elle-même alimentée par les AASQA (associations de surveillance de la qualité de l’air) et développée par le LCSQA. Une attention particulière est portée à l’évaluation des performances de Prev’Air concernant la détection des seuils réglementaires. Cet exercice a pour objectif d’estimer l’aptitude des modèles à prévoir spécifiquement les épisodes de pollution. L’ozone est évalué sur les mois de l’été 2020 (avril à septembre). Les autres polluants (PM10, PM2.5, NO2) sont évalués sur l’ensemble de l’année 2020. L’année 2020 a été marquée par la crise Covid-19 et par les confinements que celle-ci a entraînés au sein des pays de l’Europe, perturbant ainsi les activités humaines habituelles et les émissions de polluants associées. Le système Prev’Air a cependant continué de produire des prévisions sur la base de ses émissions standard, donc sans modulation vis-à-vis de ces perturbations. Notons toutefois que le système Prev’Air bénéficie d’une approche de correction automatique statistique et géostatistique qui repose sur les observations en temps réel, permettant ainsi de prendre en compte indirectement l’effet des confinements. Une prévision opérationnelle complémentaire a été produite à partir de mars 2020, intégrant une estimation de baisse des émissions liée aux mesures de lutte contre la pandémie Covid[1], mais elle ne fait pas l’objet d’une évaluation dans le cadre de ce rapport. Peu d’épisodes persistants d’ampleur nationale ont été relevés sur les périodes étudiées : un pour l’ozone, du 6 au 12 août, et trois pour les PM10, du 21 au 26 janvier (avec dépassement du seuil d’alerte), du 27 au 28 mars, et du 22 au 27 novembre. L’évaluation de ces épisodes est effectuée à la fois sur les prévisions brutes de Prev’Air et sur les calculs de l’adaptation statistique, qui visent à corriger les biais systématiques du modèle brut par un processus d’apprentissage historique. Les gains obtenus par le modèle statistique résident dans sa capacité à corriger les biais de représentativité du modèle brut. Cette prévision corrigée statistiquement sert généralement de référence à l’expertise de l’équipe Prev’air pour la communication en cas d’épisode de pollution de l’air, et sert également de base aux calculs du module AMU, qui vérifie les critères de l’arrêté mesure d’urgence[2]. Les prévisions Prev’Air pour les DROM des caraïbes ont également été évaluées et montrent des performances satisfaisantes. Dans l’ensemble, le comportement de Prev’Air est satisfaisant avec une bonne aptitude à respecter les objectifs de qualité définis dans le référentiel technique national[3] qui a établi ces valeurs cibles pour les différents scores ainsi que le contenu à faire figurer dans les rapports annuels d’évaluation des plateformes de prévisions constituant le dispositif national de surveillance de la qualité de l’air. Les prévisions avec adaptation statistique disponibles sur la métropole respectent les objectifs de performance et ont permis la plupart du temps d’anticiper l’occurrence des épisodes de pollution et d’identifier les principales zones affectées. Les prévisions brutes rencontrent plus de difficultés à satisfaire les objectifs de qualité notamment dans les DROM. La composition des PM1 prévue par Prev’air a été évaluée pour la première fois avec l’aide des données CARA[4].  L’ammonium, les nitrates et les sulfates sont relativement bien prévus par le modèle CHIMERE. La partie organique est fortement sous-estimée. Quant au chlore, une nette amélioration devrait être constatée à partir de fin 2021 avec la mise en place de la nouvelle version de CHIMERE (v2020)   Performances of Prev’air in 2019   This report presents the performance of the national forecasts carried out within the Prev'Air platform (www.prevair.org). The objective is to assess the quality of Prev'air production. This report deals successively with the evaluation of the O3, NO2, PM10 and PM2.5 concentrations forecasts, daily provided by the Prev'Air system, from day D to D+3. The behavior of this system is estimated using conventional statistical indicators, which allow the modelling results to be compared with validated observations from the national GEOD'air database, itself fed by the AASQA (air quality monitoring associations) and developed by the LCSQA. Particular attention is paid to the evaluation of Prev'Air's forecasts regarding the detection of regulatory thresholds. The objective of this exercise is to estimate the capacity of the models to specifically anticipate pollution episodes. Ozone is evaluated over the summer months of 2020 (April to September). The other pollutants (PM10, PM2.5, NO2) are assessed over the whole year 2020. The year 2020 was affected by the Covid-19 crisis and by the lockdowns that occurred in European countries, thus disrupting the usual human activities and associated emissions of pollutants. However, the Prev'Air system continued to produce forecasts based on its standard emissions, without modulation regarding these disturbances. However, it should be noted that the Prev’Air system benefits from an automatic statistical and geostatistical correction approach based on real-time observations, thus making it possible to indirectly consider the effect of confinements. An additional operational forecast was produced starting from March 2020, implementing an estimation of the reduction in emissions due to measures taken against the Covid pandemic[1], but its assessment is not included in this report. Few persistent episodes of national scope were noted over the studied periods: one for ozone, from August 6 to 12, and three for PM10, from January 21 to 26 (with exceedances of the alert threshold), from March 27 to 28, and from November 22 to 27. The evaluation of these episodes is carried out both on Prev'Air's raw forecasts and on the statistical adaptation of the Chimere which aims at correcting the systematic biases of the raw model through a historical learning process. The gains obtained by the statistical model lie in its ability to correct the representativeness bias of the raw model. This statistically corrected forecast generally serves as a reference to the expertise of the Prev'air team for communication in the event of an air pollution episode. It is also a base for the calculations of the AMU module, which checks the criteria of the emergency measure decree[2]. The Prev'air forecasts for the Caribbean DROMs have been assessed as well and show satisfactory performances. On the whole, the performance of Prev'Air is satisfactory with a good ability to meet the quality objectives defined in the national technical reference document[3] which established these target values for the different scores as well as the content to be included in the annual evaluation reports of the forecasting platforms involved in the national air quality monitoring system. The forecasts with statistical adaptation match the performance objectives and have mostly allowed to anticipate the occurrence of pollution episodes and to identify the main affected areas. Raw forecasts are less satisfactory to comply with the quality objective, particularly in the DROM. The composition of PM1 predicted by Prev’air was assessed for the first-time using CARA[4] data. Ammonium, nitrates and sulphates are predicted relatively well by the CHIMERE model. The organic part is greatly underestimated. Concerning chlorine, an improvement should be noted from the end of 2021 with the implementation of the new version of CHIMERE (v2020).       [1]https://www.ineris.fr/fr/ineris/actualites/confinement-environnement-no… [2] Arrêté du 7 avril 2016 relatif au déclenchement des procédures préfectorales en cas d'épisodes de pollution de l'air ambiant [3] https://www.lcsqa.org/fr/referentiel-technique-national [4] Favez et al. (Atmosphere, 2021) CARA program   .
Mardi 3 mai 2011
Rapport
Mesure des particules en suspension dans l'air ambiant par absorption de rayonnement beta
1. Présentation des travaux Dans le cadre des activités du Laboratoire Central de Surveillance de la Qualité de l'Air, l'Ecole des Mines de Douai mène depuis plus de 15 ans des études sur la thématique de la mesure des particules en suspension dans l'air ambiant, basées sur des tests sur terrain effectués pour la plupart sur une plate-forme de mesure de la phase particulaire implantée sur le site même de l'Ecole des Mines de Douai.Les polluants PM10 et PM2.5 sont actuellement majoritairement mesurés en AASQA par TEOM-FDMS et 1405 F. Ces appareils, basés sur la variation de fréquence avec traitement de l’échantillon, sont issus d’un seul fabricant étranger (le constructeur américain Thermo Fisher Scientific) et sont commercialisés sur le sol français par un seul distributeur (la société Ecomesure). Ils sont homologués par les pouvoirs publics aussi bien en PM10 qu’en PM2.5 car le TEOM-FDMS a fait l’objet d’une Démonstration d’Equivalence par le LCSQA. L’autre méthode de mesure homologuée (mais uniquement pour les PM10) est l’absorption de rayonnement bêta. Cette méthode normalisée (norme NF ISO 10473 « Air ambiant - Mesurage de la masse des matières particulaires sur un milieu filtrant - Méthode par absorption de rayons bêta » de mai 2000) est au catalogue d’un nombre important de fabricants et est largement utilisée à l’étranger, aussi bien en PM10 qu’en PM2.5.Bien que cette technique concerne plusieurs constructeurs, seul le fabricant français Environnement SA est représenté en AASQA, compte tenu de l’homologation de son appareil la jauge bêta MP101M-RST basée sur sa démonstration d’équivalence en PM10 faite par le LCSQA. Dans le cadre de la surveillance réglementaire européenne, cette technologie a des caractéristiques de performance suffisantes.Les résultats obtenus lors de la campagne d’intercomparaison, organisée en 2010 sur un site d’AASQA en attestent. Cette campagne demandée par les pouvoirs publics avait pour principal objectif de vérifier le statut de méthode équivalente des différents appareils utilisés en AASQA pour leurs missions de mesure réglementaire.Cette démarche anticipe une exigence à venir de la part de la Commission Européenne, notamment dans le cadre de la révision des Directives prévue en 2013.Cependant, l’utilisation en AASQA de la jauge bêta est restée marginale jusqu’à présent. Plusieurs éléments peuvent changer cette situation : les coûts d’investissement et de fonctionnement moindres par rapport à la concurrence, la démonstration d’équivalence de la MP101M en PM2.5 (prévue par le constructeur en 2011), les innovations technologiques de la part d’Environnement SA (améliorations sur l’appareil, ajout de module additionnel complétant la mesure de la jauge).L’objectif de cette étude est de maintenir la méthode par absorption de rayonnement bêta pour la mesure des particules en suspension dans l’air ambiant comme une des techniques de mesure usuelle en AASQA, d’accompagner les AASQA dans la mise en oeuvre de cet appareil sur le terrain, notamment au travers de la mise en place du système centralisé de gestion des sources radioactives (en lien avec l’ASN) ainsi que d’un programme d’Assurance Qualité./ Contrôle Qualité (QA/QC) spécifique et d’étudier les améliorations technologiques développées par le constructeur.   2. Principaux résultats obtenus Compte tenu du nombre réduits d’appareils de type MP101M utilisés en AASQA, (une soixantaine fin 2009), le LCSQA a entamé auprès de l’Autorité de Sûreté Nucléaire (ASN) et de l’Institut de radioprotection et de Sûreté Nucléaire (IRSN) des démarches de simplification de la gestion administrative des sources radioactives présentes dans ces appareils. L’obtention en avril 2010 de l’autorisation d’utiliser des sources radioactives scellées de faible activité à des fins non médicales offre donc maintenant aux AASQA plus de souplesse pour l’achat et l’utilisation de ce type d’appareil. Cela a nécessité un accompagnement dans la mise en oeuvre de cet appareil au sein du dispositif français de surveillance de la qualité de l’air, dans le cadre du système centralisé de gestion des sources radioactives (en lien avec l’ASN et l’IRSN).Afin de vérifier la qualité des mesures des appareils homologués par les pouvoirs publics pour les mesures réglementaires, une campagne mettant en oeuvre les méthodes de référence gravimétriques pour la mesure des PM10 et des PM2,5 (des préleveurs séquentiels en accord avec les normes EN 12341 et EN 14907), ainsi les appareils automatiques utilisés en AASQA (TEOM-FDMS, TEOM 1405 F, MP101M) a été réalisée en collaboration avec l’AASQA Atmo Picardie sur une station urbaine de fond. Les résultats obtenus pour la jauge radiométrique MP101M sont satisfaisants, confirmant son statut de méthode équivalente en PM10 et montrant son aptitude à « donner des résultats équivalents à ceux obtenus avec la méthode de référence gravimétrique manuelle en PM2.5 ».En complément, le LCSQA - EMD, compte tenu de son expérience sur ce type de métrologie, a étudié les améliorations technologiques de cet appareil développées par le constructeur, à savoir un module de mesure en temps réel, permettant la classification par comptage optique des PM10, PM2.5 et PM1 (nombre/L) et une mesure massique totale en continu calée par rapport à la mesure bêta. Cedéveloppement est une réponse au besoin des utilisateurs en terme de communication (calcul d’indice prévisionnel, procédure d’alerte) en améliorant la résolution temporelle de la jauge radiométrique. Les résultats observés sur le site de Douai lors de la comparaison avec ceux de la méthode manuelle de référence par gravimétrie et ceux des appareils homologués en France sont très corrects Cestravaux sont utiles dans le cadre des actions actuelles du CEN WG15 sur l’établissement d’une méthode normalisée pour la mesure automatique des particules.
Jeudi 1 mars 2018
Rapport
Circulation du jeu de filtres optiques pour aethalomètre au sein des AASQA
  Suite à la note technique présentée début 2017 concernant la procédure d’étalonnage des filtres optiques utilisés pour les aethalomètres AE33 (Magee Scientific), cette note présente le circuit effectué fin 2017-mi 2018 par le jeu de référence. A l’issue de ces utilisations in situ par les AASQA, un test de sensibilité devra être mené sur les aethalomètres AE33 (Magee Scientific) afin de quantifier l’impact de l’écart entre les valeurs « constructeur » et les valeurs de référence déterminées par le LCSQA/LNE sur les mesures de Black Carbon. Il sera également proposé pour 2018 une certification des jeux de filtres optiques des AASQA par le LCSQA/LNE tout en laissant circuler le jeu de référence au sein des autres AASQA volontaires.
Mardi 19 février 2019
Rapport
Surveillance des métaux dans les particules en suspension
La surveillance du plomb (Pb), de l’arsenic (As), du cadmium (Cd) et du nickel (Ni) dans les PM10 est effectuée par l’ensemble des AASQA de façon continue ou ponctuelle depuis 2007, en accord avec les directives européennes (2008/50/CE et 2004/107/CE modifiées par la directive 2015/1480/CE). Les objectifs de l’IMT Lille Douai, au sein du LCSQA, sont d'assurer un rôle de conseil et de transfert de connaissances auprès des AASQA, de procéder à des travaux permettant de garantir la qualité des résultats, de participer activement aux travaux de normalisation français (AFNOR X43D) et européens (WG14, WG20, WG44). Il s’agit également de réaliser une veille technologique sur les nouvelles méthodes de prélèvement et d’analyse susceptibles d’optimiser les coûts tout en respectant les objectifs de qualité et de participer à la valorisation des activités de surveillance et des études menées en collaborations avec les AASQA. En 2018, les travaux réalisés ont porté sur la fourniture de filtres vierges en fibre de quartz. Des filtres ont été achetés par lots et leurs caractéristiques chimiques ont été contrôlées, avant d’être redistribués aux AASQA sur simple demande de leur part. En 2018, 1825 filtres vierges en fibre de quartz (Pall et Whatman) ont été distribués auprès de 9 AASQA différentes après avoir été contrôlés et caractérisés chimiquement vis à vis de leurs teneurs en métaux et métalloïdes. Le LCSQA IMT Lille Douai a également participé aux GT « Caractérisation chimique et sources des PM » organisé en 2018. Il a enfin réalisé les analyses des métaux, métalloïdes et éléments majeurs dans des échantillons de PM10 collectés dans le cadre du programme CARA à Nogent sur Oise, en Guadeloupe et en Martinique pendant l’année 2017. Le traitement statistique (ACP, PMF) de ces données a permis l’identification des principales sources de particules affectant la zone (site récepteur) et leurs contributions relatives à la masse des PM10 (voir note CARA).
Lundi 23 mars 2020
Rapport
Intercomparaison de moyens mobiles 2019 – Site de Lyon
La directive européenne 2008/50/CE du 21 mai 2008 dédiée à la qualité de l’air appelle au respect de valeurs limites ou valeurs cibles, en leur associant une exigence en termes d’incertitude maximale sur la mesure. Les associations agréées de surveillance de la qualité de l'air (AASQA) sont tenues de participer régulièrement aux essais d'intercomparaison (destinées aux organismes agréés de surveillance de la qualité de l’air) mis en place dans le cadre du Laboratoire Central de Surveillance de la Qualité de l'Air (article 16 de l’arrêté modifié du 19 avril 2017). Dans l’objectif de vérifier le respect des exigences de la directive européenne 2008/50/CE, le LCSQA propose annuellement aux AASQA une intercomparaison de moyens mobiles pour les polluants SO2, O3, NO, NO2 et CO à différents niveaux de concentration et tout particulièrement au voisinage des seuils horaires d’information ou d’alerte pour les polluants NOx, O3, SO2, et de la valeur limite sur 8h pour le CO. Un exercice d’intercomparaison de moyens de mesures mobiles a été réalisé en mars 2019 sur l’hippodrome de Parilly à Lyon. Il a réuni 8 participants (7 AASQA et le LCSQA/INERIS) et 7 moyens mobiles (AirBreizh partageant le moyen mobile d’Air Pays de la Loire équipé de 2 têtes de prélèvement indépendantes) le tout constituant un parc de 39 analyseurs. L’exercice d’intercomparaison n’a pu être réalisé sur l’ozone, le générateur d’ozone haute concentration de l’INERIS étant tombé en panne lors de l’installation du matériel. Les résultats de cette intercomparaison permettent d’évaluer la qualité de mise en oeuvre des méthodes de mesures par les AASQA en conditions réelles. D’une manière générale, les résultats du traitement statistique suivant la norme NF ISO 13 528 et permettant la détermination des z-scores sont homogènes et très satisfaisants pour les participants. Les z-scores des participants sont compris entre ±2 sauf ceux du Laboratoire 8 concernant le CO pour qui le z-score est de -2,3 sur le palier 1 (1,5 ppm) et -2,4 sur le palier 2 (2 ppm). On notera que depuis 2008, les résultats obtenus en termes d’incertitude de mesure sont conformes aux exigences de la Directive Européenne et confirment dans la durée la fiabilité du système de mesure national.
Vendredi 12 mars 2021
Rapport
CAPT'AIR : La base de données nationale pour le recensement des expérimentations de capteurs / systèmes capteurs
L’ensemble des éléments issus de l’état de l’art associés aux retours d’expérience des Associations Agréées de Surveillance de la Qualité de l'Air (AASQA) et du Laboratoire Central de Surveillance de la Qualité de l’Air (LCSQA) ou tirés de la littérature en matière d’utilisation de capteurs ou systèmes capteurs pour les mesures de qualité de l’air ont servi de base au développement d’un nouvel outil informatique dénommé « Capt’Air », disponible à l’adresse suivante : https://captair-lcsqa.fr/. Cette base de données a pour objectifs d’accélérer et d’organiser le partage d’informations sur les capteurs / systèmes capteurs et leurs usages en France et à l’international, afin de permettre aux utilisateurs de sélectionner les capteurs ou les types de capteur / systèmes capteurs adaptés à un usage prédéfini. Elle répertorie, pour des dispositifs disponibles sur le marché, des caractéristiques techniques issues des spécifications constructeurs  (références fabricant, type d’élément sensible, variables mesurées, taille, poids, mode de transmission des données, etc.), mais aussi des performances techniques obtenues par des expérimentateurs pour un polluant donné et dans un contexte d’utilisation spécifique (campagnes de terrain, qualifications en laboratoire et sur site, cartographies à partir de moyens mobiles, etc.). L’outil Capt’Air est actuellement réservé aux AASQA, au ministère chargé de l’environnement et au LCSQA, mais pourrait être accessible à terme, aux institutions intéressées par les retours d’expérience sur l’utilisation des micro-capteurs.     Capt’Air: French IT tool for census of  information on air quality sensors and their uses   characteristics taken from technical specifications of systems currently available on the market (manufacturer references, type of sensor elements, measurand, size, weight, data transmission mode, etc.), but also technical performances by pollutant for a specific use as reported by users (field campaigns, laboratory and field qualifications, mapping with mobile measurements, etc.). The tool Capt’Air is currently restricted for French AQ monitoring networks (AASQA), the Ministry of the Environment and the French national reference laboratory (LCSQA), but could eventually be accessible to other institutions interested in having information on the use of sensors.
Jeudi 15 avril 2021
Rapport
AASQA concernées par une stratégie nationale de surveillance des polluants réglementés
Ce guide fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air ambiant. Il a été approuvé en CPS (comité de pilotage de la surveillance) du 18 mars 2021. Mise en application : 18 mars 2021
Mardi 24 novembre 2020
Rapport
Comparaison Inter-Laboratoires (CIL) 2018 des analyseurs de mesure automatique des particules (PM)
L’arrêté du 19 avril 2017 relatif au dispositif national de surveillance de la qualité de l’air ambiant (modifié par l'arrêté du 17 juillet 2019) définit les missions que l’état confie aux trois acteurs de ce dispositif (LCSQA, AASQA et consortium PREV’AIR). Ainsi, le LCSQA a pour mission d’organiser des comparaisons inter-laboratoires (CIL) pour les mesures et la modélisation auxquelles les AASQA doivent participer. Dans ce contexte, le LCSQA organise régulièrement des CIL portant sur la mesure de particules (PM) en continu à l’aide d’analyseurs automatiques de PM (AMS-PM). Cet exercice met en œuvre un système de dopage de particules, développé par l’Ineris lors d’études précédentes, permettant une distribution homogène de particules pour l’ensemble des instruments participants. La génération de particules est assurée par la nébulisation de sels dissous de sulfate d’ammonium et de nitrate d’ammonium jusqu’à des concentrations de plus de 100 µg/m3. Lors de l’exercice réalisé en octobre 2018 à la station fixe de mesure de la qualité de l’air de « La Faiencerie Creil » d’Atmo Haut-de-France, une seule AASQA (Atmo Grand-Est) a pu se porter candidate avec la mise à disposition de deux TEOM-FDMS 1405-F, deux MP101M+ et un BAM 1020. Etant donné le faible nombre d’instruments mobilisés, les scores de performances (score Z) n’ont pas pu être calculés en utilisant l’approche consensuelle à savoir : l’utilisation de la moyenne robuste des instruments comme valeur de référence ainsi que la dispersion des mesures comme critère de performance. En effet, l’incertitude de mesure de l’ensemble des instruments participants aurait été trop importante. Ainsi, un préleveur Leckel été mis en place par l’INERIS dans le but d’obtenir une mesure de référence pour les PM10, laquelle a été utilisée pour évaluer les résultats des participants. Les biais de chaque analyseur à cette mesure de référence ont été comparés aux exigences réglementaires à savoir : 25% d’incertitude élargie à la concentration définie pour la valeur limite (VL) journalière (50µg/m3). Ce pourcentage a ensuite été pris comme critère de performance pour l’ensemble des niveaux de concentration de la CIL. L’estimation des scores de performances des analyseurs automatiques de cette étude obtenus ainsi montre que ces derniers respectent, en moyenne pour chaque niveau de concentration étudié entre 15 et 150µg/m3, les exigences de la Directive européenne en termes d’incertitude.
Jeudi 29 janvier 2015
Rapport
Synthèse instrumentation 2013 - 2014
Le LCSQA apporte son appui technique concernant la chaîne d’acquisition et de transmission de données sur la qualité de l’Air à l’ensemble des AASQA ainsi qu’au Ministère de l’Ecologie, du Développement Durable et de l’Energie.   Les travaux menés en 2013 et 2014 sur cette thématique sont les suivants :   Réalisation d’un outil de répétabilité sur site :   Cet outil découle du besoin exprimé par les AASQA, suite à la parution de nouvelles normes sur le mesurage des gaz, de pouvoir réaliser le test métrologique de répétabilitésur les sites de mesures. Ce test consiste à vérifier la stabilité du signal des analyseurs. Le logiciel réalisé permet de se connecter aux différents modèles de stations d’acquisition pour y récupérer les mesures et réaliser le test de manière automatisée. Dans le cadre de ce projet, le LCSQA a réalisé le recueil du besoin auprès des utilisateurs, l’élaboration du cahier des charges et des spécifications, le suivi et la réception des développements ainsi que la diffusion de l’outil aux AASQA et son suivi en phase opérationnelle.   Modification des postes centraux :   Les nouvelles normes sur le mesurage des gaz ont nécessité certaines modifications au sein des postes centraux et des stations d’acquisition. La principale fonctionnalité concernée a été la gestion des calibrages dont les principes ont été revus au sein de la chaine d’instrumentation. Des modifications mineures ont également été apportées aux postes centraux et aux stations d’acquisition pour permettre de paramétrer les nouveaux facteurs de conversion ou encore le traitement des mesures autour de la limite de détection. Le travail du LCSQA a consisté à spécifier les modifications nécessaires, à suivre les développements réalisés par les constructeurs et à assurer la réception des modifications réalisées.   TAM :   Suite au recensement lancé auprès des AASQA sur les outils existants et les besoins relatifs à la réalisation des tests métrologiques des analyseurs suivant les normes CEN, le logiciel TAM (Tests Automatiques Métrologie), développé par Atmo Poitou-Charentes et AIRPARIF, est apparu comme la solution de contrôle métrologique la plus répandue et la plus aboutie. Les besoins exprimés par les réseaux non équipés ou ceux souhaitant évoluer vers une solution harmonisée et suivie, ont conduit le LCSQA a proposé un pilotage national relatif au suivi et à la maintenance de TAM afin d’en faire une solution mise à disposition de toutes les AASQA qui souhaiteraient l’utiliser. Dans ce cadre le LCSQA a mené les actions suivantes : - prise en main de l’outil TAM, - rédaction de la documentation d’installation et d’utilisation, - support technique, - mise en ligne sur le site web du LCSQA de la dernière version de l’application et de la documentation utilisateur, - mise en ligne d’une plateforme de suivi des incidents et des demandes d’évolution.   Assistance aux AASQA :   A la demande des AASQA le LCSQA a été amené à étudier plusieurs problèmes de communication. Tout d’abord un problème relatif à l’intégration des fichiers de calibrage sur les postes centraux Xr ainsi que deux problématiques liées à la communication station/analyseur pour les appareils DA80 et TEOM 1405f. Le LCSQA réalisé des tests sur les différents types de postes centraux et de stations d’acquisition ainsi que sur les analyseurs concernés afin de reproduire les problèmes rencontrés et aider les fabricants à mettre en oeuvre une solution. En outre, à la demande du MEDDE, le LCSQA a travaillé sur la question de la mutualisation du poste central sur la zone Antilles Guyane. Dans ce cadre le LCSQA a contacté les AASQA concernées, les réseaux ayant déjà mutualisé leur poste central ainsi que le constructeur ISEO. Le LCSQA a ensuite rédigé une note reprenant les solutions techniques applicables aux différentes problématiques soulevées telles que le décalage horaire entre les réseaux, le poste de secours...   Problématique de la chaîne d’acquisition :   Le LCSQA a rencontré des difficultés dans les travaux liés aux nouvelles normes dues aux dérives existantes sur la chaîne d’acquisition : coexistence de plusieurs versions du langage de commande et de l’IP, différence d’interprétation du LCV3.1 entre les constructeurs… Cette situation donne lieu à une absence d’interopérabilité entre les stations et les postes centraux de différents constructeurs. Face à ce constat, la CSIA a proposé la constitution d’un GT consacré à la rénovation de la chaine d’acquisition. Ce GT a été approuvé par le CPS en Novembre 2014.
Mardi 16 novembre 2021
Rapport
CAPT'AIR : exploitation des données de la base nationale pour le recensement des expérimentations de capteurs pour la qualité de l'air
Ce rapport présente une synthèse des informations disponibles dans la base de données Capt’Air mise en place depuis 2019 pour recenser des systèmes capteurs utilisés pour l’évaluation de la qualité de l’air et des expérimentations menées en laboratoire ou sur le terrain avec ces derniers. La première partie établit une comparaison avec d’autres bases de données nationales ou internationales permettant de bien cerner les forces, mais également certaines limites de Capt’Air. Les principaux avantages de Capt’Air résident dans le fait que c’est une base de données évolutive et qu’elle est complétée par des utilisateurs expérimentés, membres du dispositif national de surveillance de la qualité de l’air (AASQA et LCSQA). L’hétérogénéité des protocoles tests est aussi un fort de Capt’Air. En effet, le fait que les expérimentations recensées sont menées selon différents protocoles permet de pouvoir extrapoler les performances de certains usages définis. Néanmoins, Capt’Air montre également quelques limitations comme l’absence d’informations sur certains paramètres fondamentaux (reproductibilité, taux de recouvrement de données etc..) Ou encore le manque d’informations sur les protocoles utilisés pour les expérimentations renseignées qui peut laisser à interprétation les résultats consignés.  Puis, une exploitation statistique des informations disponibles dans la base de données montre que les polluants pour lesquels des expérimentations sont renseignées, sont principalement les polluants réglementés au sens de la Directive 2008/50/CE et plus particulièrement les PM2,5, les PM10 et le NO2. De plus, la très grande majorité de ces expérimentations sont des évaluations métrologiques (80-90%), de courte durée (< 6 mois) et menées en air ambiant extérieur (>70%). Pour finir, il est à noter que plus de 60% des 69 systèmes capteurs recensés ne sont associées qu’à 1 à 2 expérimentations. Par ailleurs, une analyse plus fine des données présentes dans Capt’Air a permis d’identifier les systèmes capteurs présentant les meilleures performances globales vis-à-vis de plusieurs critères qualitatifs (mise en œuvre, versatilité, énergie et fiabilité) et quantitatifs (R2Max et pente associée à R2MAX) . On retrouve notamment : l’ATMOTRACK version 1.2 et le POLLUTRACK pour la mesure des concentrations massiques en PM2,5 ; l’ATMOTRACK version 1.2 pour la mesure des concentrations massiques en PM10 ; le système WT1 de RUBIX et le CAIRNET V2 pour la mesure des concentrations en NO2 ; l’AQMESH version 4.0 pour la mesure des concentrations en O3. Enfin, au regard des résultats de l’exploitation ainsi que d’un premier retour d’expérience des utilisateurs de Capt’Air, des évolutions sont envisagées afin d’améliorer la base de données. La possibilité de faire une recherche en fonction de l’utilisation envisagée ( cartographie, amélioration de la couverture spatiale et/ou temporelle etc..)  fait partie des pistes de réflexion principale.     Analysis of data from Capt’Air: the French IT tool for census of  information on air quality sensors and their uses   This report presents a review of the database Capt’Air set up since 2019 to identify sensor systems used for the assessment of air quality and experiments carried out in the laboratory or in the field with them. In the first section, a comparison with other data bases from all around the world puts forward strength but also limitations of Capt’Air. The main advantages of Capt’Air come from its own definition. Indeed, Capt’Air is meant to be an evolutive database filled out by members of the national air monitoring network (LCSQA and AASQA). The heterogeneity of experimental protocols is also a strength of Capt'Air. Indeed, the fact that the identified experiments are carried out according to different protocols makes it possible to extrapolate performances for certain defined uses. However, Capt’Air also shows some limitations such as some missing fundamental information (reproducibility, data recovery rate, etc..) Or the lack of information on the protocols used for the informed experiments which may leave the recorded results open to interpretation. At this stage, the statistical exploitation of the database shows that PM2.5, PM10 and NO2 are the main pollutants studied in Capt’Air. Moreover, the majority of experiments are short metrological experiments with ambient outdoor air[1]. Another point is the fact that a lot of sensor system found in Capt’Air are associated with only few experiments. Sensor system with best performances regarding some qualitative (implementation, versatility, energy and reliability) and quantitative (R2MAX and slope associated to R2MAX) criteria are also put forward. We found in particular:  ATMOTRACK 1.2 and POLLUTRACK for PM2.5, ATMOTRACK 1.2 for PM10, RUBIX WT1 and CAIRNET V2 for NO2,  AQMESH 4.0 for O3. Finally, based on the statistical exploitation results and also a feedback from Capt’Air users, upgrades are considered in order to develop the database. A reflection will be undertaken on the possibility to do a search based on considered use   [1] We insist that we do not judge, we only extract informations provided on a limited and non-exhaustive number of systems and experiments.