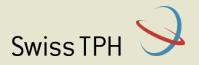
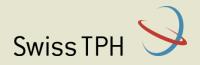


Swiss Tropical and Public Health Institute Schweizerisches Tropen- und Public Health-Institut Institut Tropical et de Santé Publique Suisse


Associated Institute of the University of Basel

Department of Epidemiology and Public Health Chronic Disease Epidemiology Unit Air pollution and Health Group

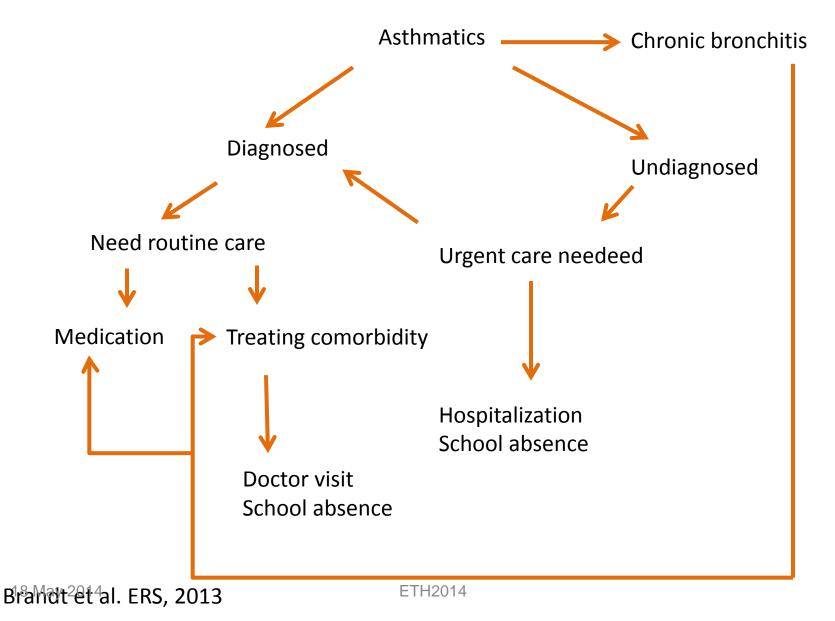
# Morbidity impacts State of the science for air pollution health risk assessment at various scales


## Laura Perez, PhD

WHO Expert Meeting: Methods and tools for assessing the health risks of air pollution at local, national and international level Bonn, Germany 12-13 May 2014



#### Outline


- □ Identification of general principles and recommendations about methods/data to use
- Limitations and gaps in knowledge, including uncertainties
- Future opportunities for methodological advancements
- □ Case studies and examples



#### Morbidity impacts and policy

- Obtain more precise estimates of the true cost of air pollution
- Make more evident the morbidity costs bore by families or health systems
- Better evaluate effectiveness of policy measures
- Identify and reduce sources of inequality due to air pollution exposure
- □ Improve communication with stakeholders

# The «disease carrier» of an asthma case: more than just the sum of exacerbations

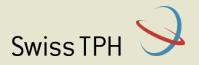




#### MEAN ANNUAL FREQUENCY AND DIRECT AND INDIRECT COSTS OF CARE FOR A TYPICAL ASTHMA CASE

Per year, a child with asthma cost an extra ~\$4,000

Brandt et al. ERS, 2013


|                                 | Mean* † | Direct cost<br>per<br>outcome* |                  | t costs per<br>come* |
|---------------------------------|---------|--------------------------------|------------------|----------------------|
| Outcome                         |         |                                | <u>Riverside</u> | Long Beach           |
| Asthma-specific office<br>visit | 1.5     | \$113                          | \$45             | \$40                 |
| Emergency room visits           | 0.2     | 844                            | 112              | 100                  |
| Inpatient hospitalizations      | 0.04    | 12,776                         | 506              | 451                  |
| School days missed              | 5.9     | NA                             | 230              | 205                  |
| Medication                      |         |                                |                  |                      |
| Inhaled corticosteroid          | 2.2     | 125                            | NA               | NA                   |
| Cromolyn                        | 1.1     | 95                             | NA               | NA                   |
| Albuterol                       | 6.8     | 55                             | NA               | NA                   |
| Co-morbidities                  |         |                                |                  |                      |
| Non-urgent office visits        | 0.9     | 113                            | 45               | 40                   |
| Mean cost of antibiotics        | 2.2     | 85                             | NA               | NA                   |
| Urgent care visits              | 0.2     | 113                            | 112              | 100                  |
| Inpatient days                  | 0.03    | 6,646                          | 230              | 205                  |
| Bronchitic episodes             |         |                                |                  |                      |
| Office visits                   | 0.5     | 113                            | 45               | 40                   |
| Emergency room visits           | 0.02    | 844                            | 112              | 100                  |
| Inpatient hospitalizations      | 0.004   | 16,625                         | 759              | 677                  |
| School absences                 | 0.8     | NA                             | 230              | 205                  |
| Antibiotics                     | 0.5     | 85                             | NA               | NA                   |

WHO expert meeting: Morbidity impacts



#### General principles of cost-benefit analysis

- Complete assessment of all impacts
- Pair outcome-exposure selected based on evidence
- □ Minimize double-counting
- Transparently identify, describe, and test uncertainties



#### Advances in knowledge (REVIHAAP)

### □PM (long-term)

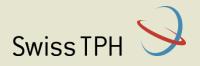
✓Markers of atherosclerosis such as thickness of the intima-media, coronary artery calcification, or pulse pressure

- ✓ Development of respiratory diseases, such has infections, bronchiolitis and low lung function in children and lung function development in adults
- ✓ Diabetes, neurological development in children and disorders in adults
  ✓ Birth outcomes

#### □Ozone (Short-term/long-term)

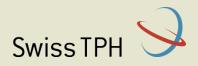
- Asthma incidence, asthma severity, hospital care for asthma and lung function growth
- Cognitive development and reproductive health, including preterm birth




#### Near-road traffic pollution (independent of PMs or ozone)

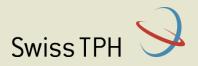
✓Morbidity effects related to proximity to road include several markers of cardiovascular diseases, asthma hospitalization, lung function reduction, and lung cancer.

 $\checkmark$  Respiratory conditions in children appear the most robust with NO<sub>2</sub>


✓ Short-term effects of  $NO_2$  have been principally associated with respiratory hospital admissions, evidence on cardiovascular admission more uncertain.

✓ Pollutant at cause unknown. Tailpipe primary PM may be a cause, but non-exhaust emissions also associated with some effects.




# HRAPIE Proposed outcomes for cost-benefit analysis LIMITED

|                | PM                                                                                                                                                                                            | Ozone                                                                                                                                                                                                          | NO <sub>2</sub>                                                                                                                                                                        |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Short-<br>term | PM <sub>2.5</sub> daily mean.<br>Hospital admissions,<br>CVD diseases (includes<br>stroke), resipratory,<br>adults all ages<br>(Meta-analysis, 4 single<br>city studies and one<br>multicity) | O <sub>3</sub> , daily maximum<br>8-hour mean.<br>Hospital admissions,<br>CVD (includes<br>stroke) and<br>respiratory diseases,<br>age 65+<br>(APHENA study,<br>eight European<br>cities-adjusted for<br>PM10) | NO <sub>2</sub> 24-hour mean.<br>Hospital<br>admissions due to<br>respiratory<br>diseases, all ages<br>(Meta-analysis, city<br>studies. Estimate<br>robust after<br>adjustment for PM) |



# HRAPIE Proposed outcomes for cost-benefit analysis (EXTENDED)

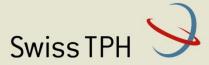
|                | PM                                                                                                                                                           | Ozone                                                                                                          | NO <sub>2</sub>                                                                                                                                                                  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Long-<br>term  | PM <sub>10</sub> , annual mean. Prevalence of<br>bronchitis in children, age 6-12<br>years (or 6-18)<br>(Meta-analysis 9 countries)                          | ۰                                                                                                              | NO <sub>2</sub> annual mean.<br>Prevalence of bronchitic<br>symptoms in asthmatic<br>children<br>(one study, US, adjusted<br>for OC, estimate higher<br>after adjustment for PM) |
|                | PM10, annual mean. Incidence of<br>chronic bronchitis in adults<br>(2 studies, US+CH)                                                                        | "                                                                                                              |                                                                                                                                                                                  |
| Short-<br>term | PM <sub>10</sub> daily mean. Incidence of<br>asthma symptoms in asthmatic<br>children 5-19 years<br>(Meta-analysis 36 panel studies on<br>asthmatics Europe) | O <sub>3</sub> , daily maximum 8-hour<br>mean . Minor restricted activity<br>days, all ages<br>(one study, US) | ۰ <u></u>                                                                                                                                                                        |
|                | PM <sub>2.5</sub> two-week average. Restricted activity days, all ages** (one study, US)                                                                     |                                                                                                                |                                                                                                                                                                                  |
|                | PM <sub>2.5</sub> two-week average. Work loss days, among working population (one study, US)                                                                 |                                                                                                                |                                                                                                                                                                                  |



#### **Baseline health data: scale of availability**

| Outcome                                                        | Scale              | Example of source of background health data in Europe                                                                                                                                                            |  |
|----------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Hospital admissions                                            | National,<br>local | European hospital morbidity database.<br>or local registries                                                                                                                                                     |  |
| Prevalence of bronchitic symptoms in asthmatic children        | National           | The background rate of asthmatic children: "asthma<br>ever" in Lai et al (2009).<br>Prevalence of bronchitic symptoms among asthmatic<br>children 21.1% to 38.7% (Migliore et al,2009, McConnell<br>et al, 2003) |  |
| Prevalence of bronchitis in children, age 6-12 years (or 6-18) | Study              | Mean prevalence from PATY study: 18.6% (range 6% - 41%)                                                                                                                                                          |  |
| Incidence of chronic bronchitis in adults (age >=18)           | Study              | Annual incidence 3.9 per 1000 adults based on Swiss study SAPALDIA                                                                                                                                               |  |
| Incidence of asthma symptoms in asthmatic children 5-19 years  | National           | The prevalence of asthma in children based on "severe<br>asthma" in ISAAC (Lai et al 2009). Daily incidence of<br>symptoms in this group: 17% (interpolation from several<br>panel studies)                      |  |
| Restricted activity days, all ages                             | Study              | 19 RADs per person per year, 7.8 days/year for minor<br>RADS: baseline rate from Ostro and Rothschild (1989)<br>study                                                                                            |  |
| Work loss days, among working population                       | National           | Health for All database (HFA-DB).<br>(http://data.euro.who.int/hfadb/), local occupational data                                                                                                                  |  |




#### Limitations

- □ Limited evidence for some long-term outcomes
- □ Limited/extended dichotomization
- □ Effect of sources
  - No sufficient evidence to differentiate source and constituents that may be more closely related to health outcomes
  - RA with PM/ozone as sole pollutant indicator of long-term exposure will underestimate the whole burden of air pollution. Multi-pollutant models not available.
- □ Range of exposure CRFs are assumed to be valid at any levels of exposure
- Double-counting. Greater potential for overlapping of health endpoints used in different CRFs than in the mortality domain. Mortality/morbidity differenciation difficult to know in some studies.
- Baseline health rates. General lack of relevant baseline health data in most settings
- Outdoor/indoor. For some pollutants (ozone) exposure depend on indoor sources and activity patterns relating to housing activity. But as far as CRFs based on outdoor levels, impact has to be calculated with that.
- □ Well-being not integrated



#### Conclusions

- Morbidity impact can help policy-making and communication
- □ Specifically useful at local scales
- Evidence and methods are less robust than for mortality
- Some effects are still not established thus ignored in the risk assessment process
- Disease modelling and forecasting: building on existing tools from other disciplines



Swiss Tropical and Public Health Institute Schweizerisches Tropen- und Public Health-Institut Institut Tropical et de Santé Publique Suisse

Associated Institute of the University of Basel

# Thank you for your attention