AIR POLLUTION HEALTH RISK ASSESSMENT (HRA):

POLICY CONTEXT

MICHAL KRZYZANOWSKI, ScD, PhD

Retired Head, WHO/ECEH Visiting Professor, Kings College London

Policy framework and practice of air pollution HRA in selected countries

Party of the CLRTAP	Formal requirement for HRA	HRA conducted in practice	HRA overview available		
Albania	N	N	N		
Armenia	Y (2014)	N	N		
Austria	N	Υ	N		
Azerbaijan	N	N	N		
Bosnia & Hercegovina	Y	Υ**	N		
Canada	Y	Υ	Υ		
Croatia	N	Υ**	N		
EC	Υ	Υ	N		
FYROM	Y	Υ **	Υ		
Germany	N	Υ	Υ		
Ireland	N	Υ	N		
Kyrgyzstan	N*	Υ **	N		
Moldova	Y (Dec 2013)	N	N		
Norway	N	Υ	N		
Poland	N	Υ	N		
Serbia	Y***	N	N		
Sweden	N	Υ	N		
Switzerland	Υ	Υ	Υ		
Turkey	N	N	N		
Ukraine	Υ	Υ	N		
UK	Υ	Υ	Υ		
USA	Y	Y	Y		

^{*} Response indicates that the air quality assessment is required, but not the health risk assessment

HRA policy context

^{**} Methods do not correspond to WHO methodology

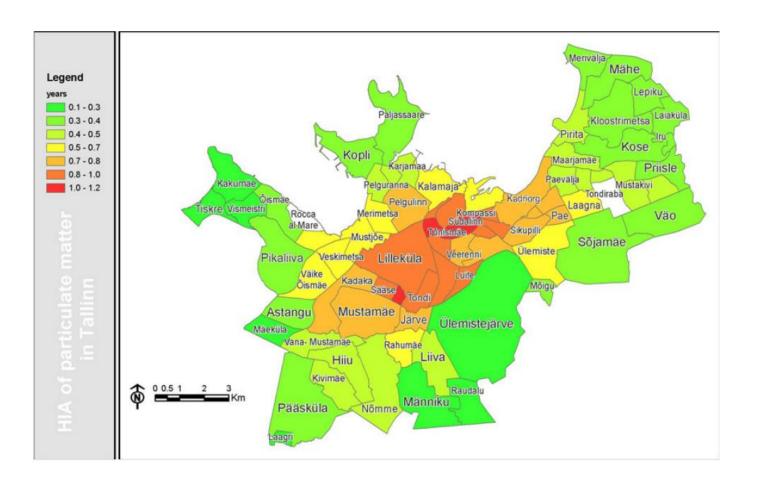
^{***} MoH expects the HRA to be performed by the state PH network but this is not reflected in legal acts.

Purposes of HRA stated in legislation

- The assessment of benefits and costs (including health) of proposed programs, projects, regulations and policies.
- Evaluation the effectiveness of already introduced policies in respect to their objectives.
- A part of the Environmental Impact Assessment (EIA) procedure.
- Part of Public Health legislation (scope of HRA usually not specified).
- Part of a broader regulatory analysis.

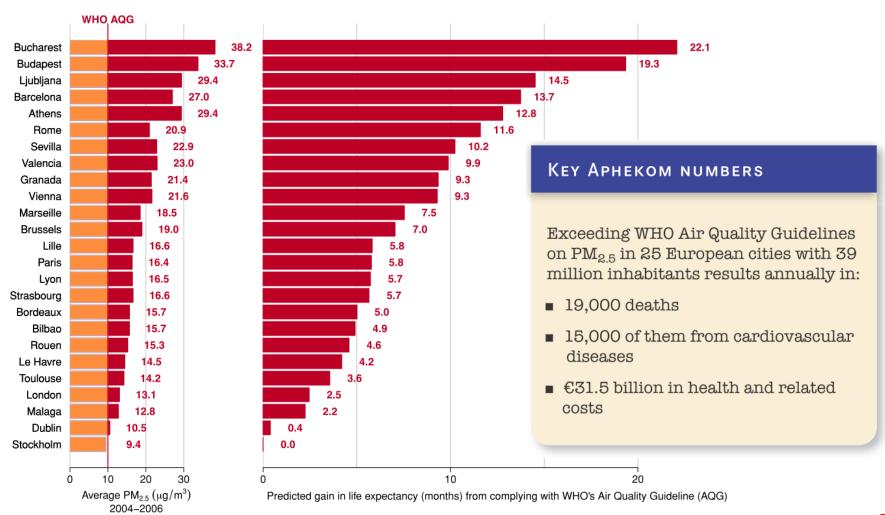
Regulatory Analysis – definition by US OMB

Regulatory analysis is a tool regulatory agencies use to anticipate and evaluate the likely consequences of rules. It provides a formal way of organizing the evidence on the key effects, good and bad, of the various alternatives that should be considered in developing regulations. The motivation is to:

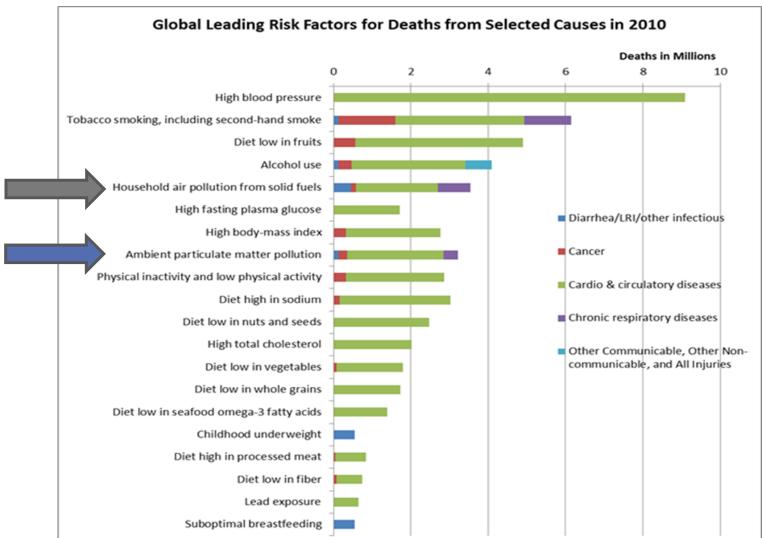

- (a) learn if the benefits of an action are likely to justify the costs or
- (b) discover which of various possible alternatives would be the most cost-effective.
- ... Since agencies often design health and safety regulation to reduce risks to life, evaluation of these benefits can be the key part of the analysis.

- 1. What is the public health burden associated with recent levels of air pollution?
- 2. What are the human health benefits associated with changing air quality policy or attaining a more stringent AQ standard?
- 3. What are the human health impacts of emissions from specific sources or selected economic sectors, and what are benefits of policies related to them?
- 4. What are the human health impacts of current policy or implemented action?
- 5. What are the policy implications of the uncertainties of the assessment?

- 1. What is the public health burden associated with recent levels of air pollution?
- 2. What are the human health benefits associated with changing air quality policy or attaining a more stringent AQ standard?
- 3. What are the human health impacts of emissions from specific sources or selected economic sectors, and what are benefits of policies related to them?
- 4. What are the human health impacts of current policy or implemented action?
- 5. What are the policy implications of the uncertainties of the assessment?


6

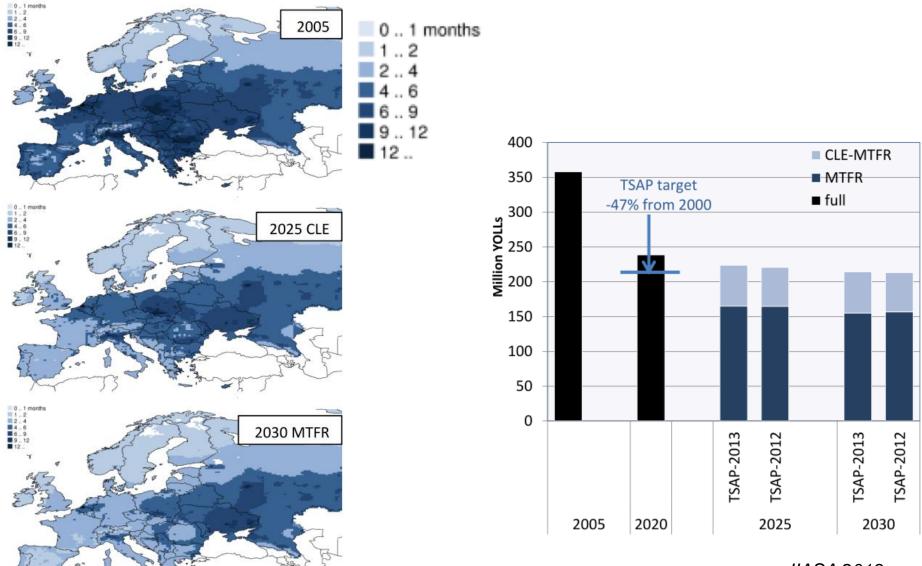
Decrease in life expectancy due to locally emitted PM_{2.5} pollution in Tallinn, Estonia – effects of LOCAL pollution


The APHEKOM results:

Expected gain in life expectancy (months) for a decrease in average annual level of $PM_{2.5}$ to 10 $\mu g/m^3$ (WHO AQG) – comparison between cities

HRA policy context

Global Burden of Disease 2010 – comparison with other risk factors



Lim et al 2012

- 1. What is the public health burden associated with recent levels of air pollution?
- 2. What are the human health benefits associated with changing air quality policy or attaining a more stringent AQ standard?
- 3. What are the human health impacts of emissions from specific sources or selected economic sectors, and what are benefits of policies related to them?
- 4. What are the human health impacts of current policy or implemented action?
- 5. What are the policy implications of the uncertainties of the assessment?

LOSS IN STATISTICAL LIFE EXPECTANCY (MAPS) AND YEARS OF LIFE LOST (YLL) DUE TO EXPOSURE TO $\rm PM_{2.5}$ FROM ANTHROPOGENIC SOURCES IN EU

ESTIMATED NUMBER OF AVOIDED $PM_{2.5}$ HEALTH IMPACTS FOR NATIONAL AAQ STANDARD ALTERNATIVES

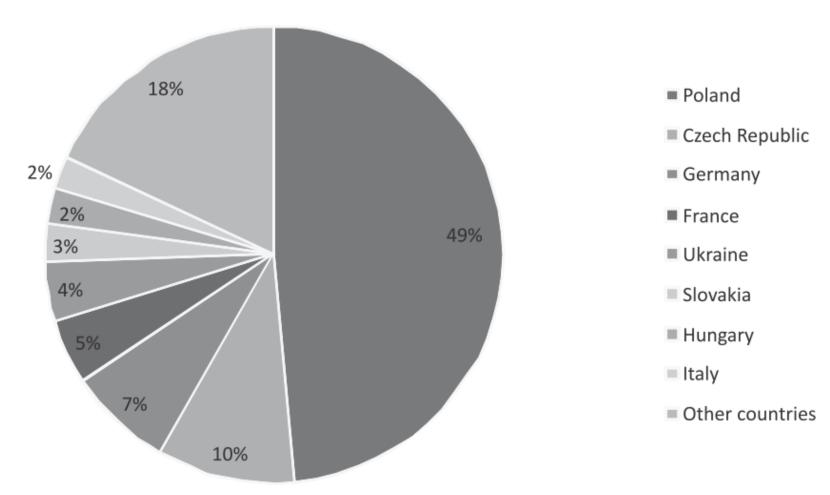
	Alternative Annual Standards				
Health Effect	13 μg/m ³	12 μg/m³	11 μg/m³		
Adult Mortality					
Krewski et al. (2009) (adult)	140	460	1,500		
Lepeule et al. (2012) (adult)	330	1,000	3,300		
Woodruff et al. (1997) (infant)	0	1	4		
Non-Fatal Heart Attacks (age >18)					
Peters et al. (2001)	160	480	1,600		
Pooled estimate of 4 studies	17	52	170		
Hospital admissions—respiratory (all ages)	31	110	380		
Hospital admissions—cardiovascular (age > 18)	43	140	480		
Emergency department visits for asthma (all ages)	67	230	810		
Acute bronchitis (age 8–12)	280	870	2,700		
Lower respiratory symptoms (age 7–14)	3,500	11,000	34,000		
Upper respiratory symptoms (asthmatics age 9–11)	5,100	16,000	49,000		
Asthma exacerbation (age 6–18)	13,000	40,000	120,000		
Lost work days (age 18–65)	22,000	71,000	230,000		
Minor restricted-activity days (age 18–65)	130,000	420,000	1,300,000		

COST-BENEFIT ANALYSIS FOR NEW AQ STANDARD ALTERNATIVES

Table ES-3. Benefit-to-Cost Ratios for Alternative Standards at 3% and 7% Based on Projected Benefits and Costs in 2020

13 μg/m³		12 μg/m³	11 μg/m³	
Benefit-Cost Ratio 3% ^a	13 to 272	12 to 171	8 to 90	
Benefit-Cost Ratio 7%	11 to 246	11 to 154	7 to 81	

^a Due to data limitations, we were unable to discount compliance costs for all sectors at 3%. See Chapter 7, Section 7.2.2 for additional details on the data limitations. As a result, the net benefit calculations at 3% were computed by subtracting the costs at 7% from the monetized benefits at 3%.

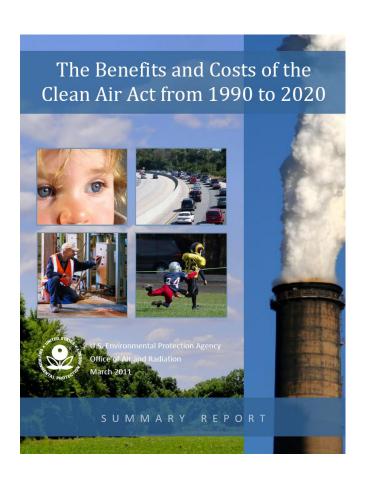


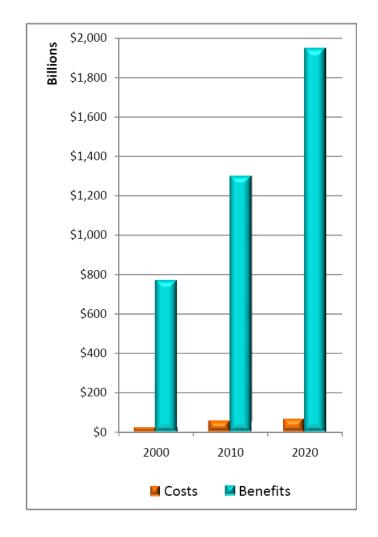
- 1. What is the public health burden associated with recent levels of air pollution?
- 2. What are the human health benefits associated with changing air quality policy or attaining a more stringent AQ standard?
- 3. What are the human health impacts of emissions from specific sources or selected economic sectors, and what are benefits of policies related to them?
- 4. What are the human health impacts of current policy or implemented action?
- 5. What are the policy implications of the uncertainties of the assessment?

Estimated current health damage due to PM and benefits and costs from air pollution abatement options in Ulaanbaatar

	Ann	ual number of cases	Monetized (mill USD)				
	All-cause mortality (chronic)	ality (Respiratory disease) / (Chronic) (Respiratory disease)		Chronic bronchitis / Hospital admissions (Respiratory disease) / Hospital admissions (CVD)	SUM (mill USD)	Share of GDP in UB (2008)	
	1591	1411 / 4465 / 4063	352	100 / 4.71 / 6.92	463	18.8 %	
Current health	(385 - (1219 - 1516)* / (1828 -		(85 -	(86 - 107)* / (1.9 – 8.5)* /	(177 –	(7.2 –	
damage	2721)*	8083)* / (2290 - 6122)*	601)*	(3.9 – 10.4)*	727)*	29.5)*	
30% reduction of							
Ger stoves	63	74 / 619 / 528	14	5 / 0.65 / 0.90	21	0.8 %	
80% reduction of							
Ger stoves	198	253 / 1663 / 1444	44	18 / 1.75 / 2.46	66	2.7 %	
30% reduction of							
HOBs	3	3 / 28 / 24	1	0 / 0.03 / 0.04	1	0.0 %	
80% reduction of HOBs	7	8 / 75 /64	2	1/0.08/0.11	2	0.1 %	
30% reduction of suspended dust	53	60 / 520 / 443	12	4 / 0.55 / 0.75	17	0.7 %	
80% reduction of suspended dust	159	199 / 1395 / 1205	35	14 / 1.47 / 2.05	53	2.1 %	
30% reduction of all 3 sectors	129	159 / 1172 / 1009	29	11 / 1.24 / 1.72	43	1.7 %	
80% reduction of all 3 sectors	522	707 / 3169 /2822	115	50 / 3.34 / 4.81	174	7.0 %	

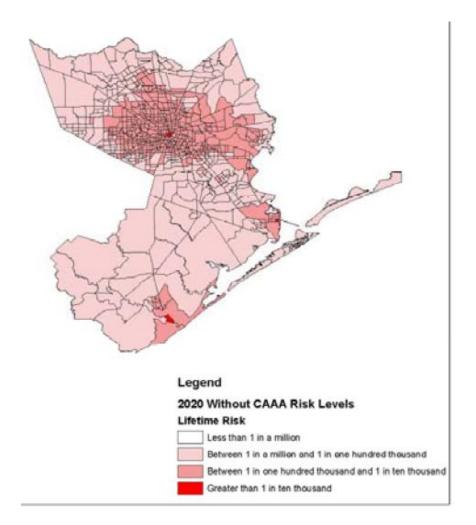
Contribution of anthropogenic emissions in various countries to premature mortality due to PM exposure in Poland

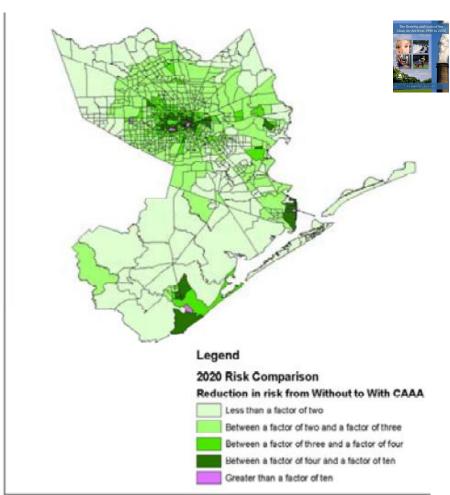



HRA policy context

Taino et al, 2010

- 1. What is the public health burden associated with recent levels of air pollution?
- 2. What are the human health benefits associated with changing air quality policy or attaining a more stringent AQ standard?
- 3. What are the human health impacts of emissions from specific sources or selected economic sectors, and what are benefits of policies related to them?
- 4. What are the human health impacts of current policy or implemented action?
- 5. What are the policy implications of the uncertainties of the assessment?


Benefits and costs of the Clean Air Act of the USA

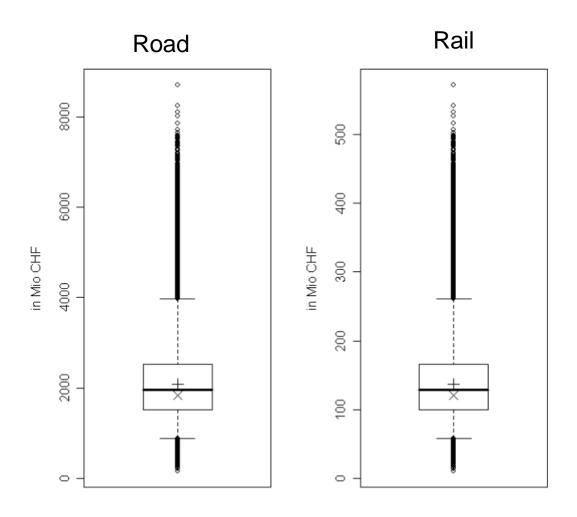


HRA policy context Source: US EPA 2011

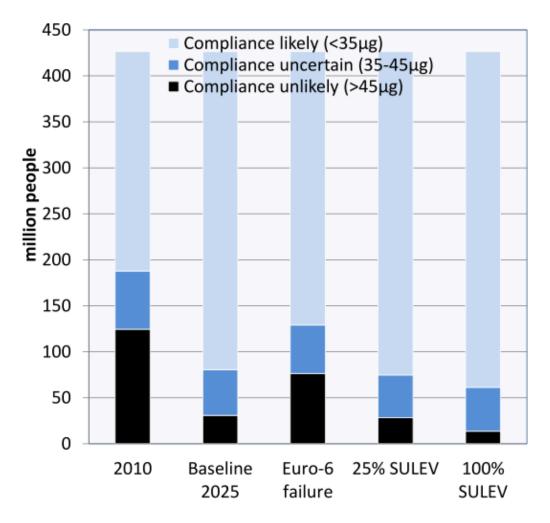
Effect of the Clean Air Act on lifetime risks of benzene-related leukaemia in the Houston area

Expected* and observed (Real) mortality reductions associated with the observed decrease in pollutant levels in intervention studies

Study	City/area	Assessed pollutant	All-cause		Respiratory		Cardiovascular	
			Real (%)	Expected (%)	Real (%)	Expected (%)	Real (%)	Expected (%)
Clancy et al. (2002)	Dublin	BS	-5.7	-2.1	-15.9	-2.8	-10.3	-1.4
Rich et al. Abstract, 2009	Cork	BS	- 7	-1	-8	-1.3	-13	-0.7
Pope et al. (1992)	Utah Valley (Steel mill)	PM_{10}	-3.2	-0.6	-4.3	-0.7	-2	-0.7
Pope et al. (2007)	Utah Valley (Copper smelter)	SO ₂	-2.5	-0.2	n.a.	n.a.	n.a.	n.a.
Hedley et al. (2002)	Hong Kong	SO_2	-2.1	-1.4	-3.9	-2.3	-2	-1.9


HRA policy context

Henschel et al 2012


^{*} The expected mortality reductions are calculated using the observed decrease in pollutant levels (μ g/m³) from the reviewed interventions and the effect estimates of Katsouyanni et al. (1997) and for cardio-respiratory deaths and PM₁₀ of Samoli et al. (2005)

- 1. What is the public health burden associated with recent levels of air pollution?
- 2. What are the human health benefits associated with changing air quality policy or attaining a more stringent AQ standard?
- 3. What are the human health impacts of emissions from specific sources or selected economic sectors, and what are benefits of policies related to them?
- 4. What are the human health impacts of current policy or implemented action?
- 5. What are the policy implications of the uncertainties of the assessment?

Costs of health effects of air pollution due to road and rail transport in Switzerland: Monte Carlo simulation of uncertainty

EU population living in areas with various probability of NO_2 LV (40 $\mu g/m^3$) compliance under various policy scenarios

SULEV: super ultra low emission vehicles

Conclusions

Formal requirements for HRA – varying between countries.

- Questions to HRA include quantification of health effects of the past, present and future emissions.
- Full scenario analysis requires use of a series of models linking emission from specific sources with health effects.
- Good support to policies in countries with well defined institutional arrangements and capacities for HRA.