

Evaluation d'un analyseur d'oxydes d'azote NO, NO₂, NO_x par chimiluminescence

Appareil Environnement S.A. AC 32 M

Laboratoire Central de Surveillance de la Qualité de l'Air

Danièle GUILLARD - Yves GODET

Unité « Qualité de l'Air » Direction des Risques Chroniques

Evaluation d'un analyseur d'oxydes d'azote NO, NO2, NOx par chimiluminescence

Appareil Environnement S.A. AC 32 M

Laboratoire Central de Surveillance de la Qualité de l'Air

Loi sur l'Air - Convention 18/99

D. GUILLARD - Y. GODET

Ce document comporte 69 pages (hors couverture et annexes).

	Rédaction	Vérification	Approbation
NOM	Danièle GUILLARD	Rémi PERRET	Michel NOMINE
	Yves GODET		Martine RAMEL
Qualité	Qualité de l'Air	Qualité de l'Air	Direction des Risques
	Direction des Risques Chroniques	Direction des Risques Chroniques	Chroniques
Visa			

TABLE DES MATIERES

1.	RÉS	SUMÉ	5
2.	INT	RODUCTION	9
3.	PRI	NCIPE DE LA MESURE	9
	3.1	Rappel	9
	3.2	Application de la mesure des oxydes d'azote avec l'appareil AC 32 M	9
4.	DES	CRIPTION SOMMAIRE DE L'ANALYSEUR	10
	4.1	Cycles d'analyse	10
	4.2	Mode de fonctionnement de l'appareil	10
	4.3	Caractéristiques techniques de l'AC 32 M	13
	4.4	Présentation de l'appareil	14
	4.5	Vue interne de l'appareil	19
5.	DES	SCRIPTION DE LA CHAINE DE MESURE	19
	5.1	Banc d'essai	19
	5.2	Banc pour titration en phase gazeuse	23
	5.3	Fluides utilisés	23
	5.4	Chaîne d'acquisition de données	23
	5.5	Validation de la chaîne d'acquisition de données	24
	5.6	Test du banc de dilution des gaz	24
	5.7	Conclusion sur les points de validation	24
	5.8	Titration en phase gazeuse sur l'analyseur de comparaison et l'analyseur tester.	
6.	ESS	AIS METROLOGIQUES	25
	6.1	Temps de réponse, temps mort, temps de montée et de descente	25
	6.2	Limite de décision, limite de détection, limite de quantification	38
	6.3	Linéarité	42
	6.4	Dérive	57
7.	ETU	DE DE L'INTERFERENCE DE PARAMETRES PHYSIQUES	61
	7.1	Influence de la pression atmosphérique	61
	7.2	Influence de la température	63
	7.3	Influence de l'humidité	64

	7.4	Influence de la tension d'alimentation électrique sur le fonctionnement de l'analyseur	
8.	INF	LUENCE DES INTERFERENTS GAZEUX	67
	8.1	Définition	67
9.	RE	MARQUES SUR L'APPAREIL AC 32 M	67
	9.1	Mise en service	67
	9.2	Fonctionnement de l'appareil	67

1. RESUME

L'analyseur d'oxydes d'azote par chimiluminescence ENVIRONNEMENT S.A. type AC 32 M a été évalué selon la norme X 20 300. La gamme de mesure était de 0 à 1 000 ppb.

Les valeurs des caractéristiques métrologiques qui ont été déterminées, sont indiquées dans les tableaux récapitulatifs ci-après, et comparées au projet de spécifications étudié dans le cadre du groupe de travail AFNOR (commission X 43 B et D), en date du 4 avril 2001.

Cette comparaison montre que l'appareil a, dans l'ensemble, des performances meilleures que les spécifications.

Le paramètre d'influence le plus important est l'humidité de l'air (comme sur tous les appareils à chimiluminescence) ; l'étude de l'influence de la température a donné des résultats difficiles à interpréter et mériterait d'être complété.

Par ailleurs, lors de variations rapides de concentrations (fluctuations à l'échelle de la minute), l'appareil surestime les concentrations en NO₂.

Tableau récapitulatif (1/2)

ABLEAU RECAPITULATIF DE L'EVALUATION D'UN ANALYSEUR DE NO-NOx PAR CHIMILUMINESCENCE : AC32M n°12			
SELON LA	A NORME NFX 20-3	00	
AC 32M r	n°12	OBSERVATIONS	
cycle croissant	cycle décroissant		
49.5 secondes	47 secondes		220 secondes
24.6 secondes	23.1 secondes		
52.5 secondes**	36 secondes	Ce temps de réponse est calculé à 90% de la réponse stabilisée:	
		_233ppb*0.9=209.7ppb	
		_	
		ment (à l'échelle de la minute)	220 secondes
43.3 secondes	45.7 secondes		
AC 32M r	n°12		
		Le mode de calcul du test 't' tel que l'indique la norme	5% de la valeur
test "t" respecté	0,70%	•	entre 20 et 1000pp
toot "t" roopooté	2.200/		5% de la valeur
lest t respecte	3,30%	révèle une linéarité complète sur la gamme 10-300 ppb	entre 20 et 1000pp
		pour le NO2	
AC 32M r	n°12	1	
0.11%<écart type relatif moyen < 0.32%		de 5 à 60% de la gamme -pour le NO	5 ppb
		de 2.5 à 30% de la gamme pour le NO2	5 ppb
1.5ppb	,		
S DES LIMITES			
AC 32M r	1°12	-	
037ppb			
0.72 ppb		valeur estimée	
AC 32M r	1°12		
0.35 ppb			
0.35 ppb 0.79ppb		valeur estimée	
	n°12	valeur estimée	
0.79ppb	n°12	valeur estimée	5 ppb
0.79ppb AC 32M r	n°12		
0.79ppb AC 32M r	n°12	valeur estimée valeur estimée	5 ppb 5 ppb
0.79ppb AC 32M r			
0.79ppb AC 32M r 0.70 ppb 1.38ppb			
0.79ppb AC 32M r 0.70 ppb 1.38ppb AC 32M r			
0.79ppb AC 32M r 0.70 ppb 1.38ppb AC 32M r			5 ppb pas de spécifications
0.79ppb AC 32M r 0.70 ppb 1.38ppb AC 32M r AC 32M r	1°12		5 ppb
0.79ppb AC 32M r 0.70 ppb 1.38ppb AC 32M r + 0.02 % / j ± 0.02 - 0.014 % / j ± 0.02	1°12		5 ppb pas de spécifications
0.79ppb AC 32M r 0.70 ppb 1.38ppb AC 32M r + 0.02 % / j ± 0.02 - 0.014 % / j ± 0.02	1°12		5 ppb pas de spécifications
0.79ppb AC 32M r 0.70 ppb 1.38ppb AC 32M r + 0.02 % / j ± 0.02 - 0.014 % / j ± 0.02	1°12		5 ppb pas de spécifications
0.79ppb AC 32M r 0.70 ppb 1.38ppb AC 32M r + 0.02 % / j ± 0.02 - 0.014 % / j ± 0.02 AC 32M r	1°12		5 ppb pas de spécifications pas de spécifications
	AC 32M respecté AC 32M	AC 32M n°12 cycle croissant 49.5 secondes 24.6 secondes 52.5 secondes*** AC 32M n°12 cycle décroissant 36 secondes 36 secondes AC 32M n°12 cycle décroissant 37 secondes 28.8 secondes 43.3 secondes 45.7 secondes AC 32M n°12 test "t" respecté 0,70% test "t" respecté 3,30% AC 32M n°12 0.11%< AC 32M n°12 0.11%< AC 32M n°12 0.15ppb 0.19%< AC 32M n°12 0.11%< AC 32M n°12	AC 32M n°12 cycle croissant 49.5 secondes 23.1 secondes 52.5 secondes** AC 32M n°12 cycle décroissant 36 secondes 23.1 secondes 22.3 secondes 36 secondes 29.8 secondes 45.7 secondes 45.7 secondes 45.7 secondes 45.7 secondes 45.7 secondes 45.8 secondes 45.8 secondes 45.9 secondes 45.7 secondes 46 calcul du test 't' tel que l'indique la norme révète une linéarité complète sur la gamme 20 - 600ppb pour le NO 4C 32M n°12 0.11% AC 32M n°12 0.11% AC 32M n°12 0.11% 0.19% cécart type relatif moyen < 0.32% 0.9ppb 0.19%

Tableau récapitulatif (2/2)

TABLEAU RECAPITULATIF DE L'EVALUATION D'UN ANALYSEUR DE NONOX PAR CHIMILUMNESCENCE : AC32M n°12				
	SELONLA NORWENFX 20-300			
INFLUENCE DESPA	INFLUENCE DES PARAMETRES PHYSIQUES OBSERVATIONS			
PRESSIONATIMOSPHERIQUE	AC32Mn°12			
NOderns NONO2/N2	1.7ppb/1kPaà420ppb	au 0.4%/Kpa	1%/Kpa	
NO2 dans NO-NO2/N2	21ppb/1kPaà187ppb	ou 1.12%/Kpa	1%/Kpa	
TEMPERATURE	AC32Mn°12	_		
.= =	Entre 15 et 20°C entre 20 et 35°C			
NOdans NONO2/N2	0.17%/℃ -0.04%/℃		0.3%℃	
NO2 dans NONO2/N2	-1.95%/°C +0.14%/°C		0.3%°C	
HYGROMETRIE	AC32Mn°12			
HIGROVEINE	POSZVIII IZ	-	pas de spécifications	
NOdans NONO2/N2	-0.15%/%HR ou-7.59%50%HR	Effet importantde l'humidité sans doutelié au phénomène de "quenching"		
O2 dans NO-NO2/N2 -0.17%/ %HR ou-7.4%/ 50%HR		Calculs tenant compte de la correction de l'humidité de l'échantillon	pas de spécifications	
ALIMENTATION ELECTRIQUE	AC32Mn°12			
	U+10% U-10%			
NOdans NONO2/N2	+0.06% +1.23%		Pas de spécification	
NO2 dans NO-NO2/N2	-0.06% +2.16%		pas de spécifications	
INFLUENCE DESPECES CHIMQUES	AC32Mn°12			
(à 95% de la limite de confiance)	SO2			
NOdans NONO2/N2	0	200ppb dinterférent	Pas de spécification	
NO2dans NO-NO2/N2	0			
NOdans NONO2/N2	N - B 0 0	200ppb dinterférent	Pas de spédification	
NO2dans NO-NO2/N2	U			
RENDEMENT DUFOUR NO dans mélange NO / N2	Avant évaluation Après évaluation 99,60% 98,80%	Résultats calculés sur la moyenne de 3 TPG	pas de spécifications	

2. INTRODUCTION

Ce rapport a pour objet de rendre compte des essais d'évaluation de l'analyseur AC 32 M ENVIRONNEMENT S.A. pour la détermination de la teneur en NO et NO₂ dans l'air par chimiluminescence. Les essais ont été effectués sur l'appareil n° 12 réglé sur la gamme d'utilisation 0-1 000 ppb.

Le programme d'essais a été établi avec le Ministère de l'Aménagement du Territoire et de l'Environnement, le constructeur ENVIRONNEMENT S.A. et l'INERIS sur la base de la norme NF X 20-300.

L'évaluation a été effectuée entre le 21 octobre 2000 et le début du mois de mars 2001 dans les laboratoires de l'INERIS.

3. PRINCIPE DE LA MESURE

3.1 RAPPEL

La chimiluminescence provient de la réaction du monoxyde d'azote avec l'ozone en excès, selon la réaction :

$$NO + O_3 \rightarrow NO_2^* + O_2$$
 puis $NO_2^* \rightarrow NO_2 + hv$
* à l'état excité

La radiation de chimiluminescence, dont l'intensité est proportionnelle à la quantité de monoxyde d'azote dans l'air prélevé, est sélectionnée par un filtre optique et convertie en signal électrique par un photomultiplicateur.

Pour la mesure du NO₂, l'air échantillonné est introduit dans un convertisseur où le dioxyde d'azote est réduit en monoxyde d'azote mole pour mole et le mélange est analysé comme précédemment décrit. Le signal électrique est alors proportionnel à la somme des concentrations en monoxyde d'azote et en dioxyde d'azote appelée NO_x. La quantité de dioxyde d'azote est calculée par différence entre cette concentration et celle obtenue pour le monoxyde d'azote uniquement (lorsque l'air échantillonné n'a pas traversé le convertisseur).

3.2 APPLICATION DE LA MESURE DES OXYDES D'AZOTE AVEC L'APPAREIL AC 32 M

Dans le cas présent, il s'agit d'un analyseur simple ou monochambre. L'air ne traverse le convertisseur que pendant une fraction du temps. Ce type d'analyseur d'oxydes d'azote est dit « cyclique ». Pendant une certaine période de temps, il analyse la quantité de monoxyde d'azote et, pendant la période de temps suivante, la somme de dioxyde d'azote et de monoxyde d'azote.

La mesure du NO₂ sera le résultat de deux lectures consécutives (NO_x et NO).

Ces deux étapes sont examinées par rapport à un cycle de référence où l'échantillon est dirigé dans une chambre de préréaction afin de s'affranchir de la dérive de l'optique.

4. DESCRIPTION SOMMAIRE DE L'ANALYSEUR

(Données partielles du manuel du constructeur)

4.1 CYCLES D'ANALYSE

La mesure se décompose en « 3 cycles » :

• « Cycle de référence » (figure 1 tracé bleu) :

l'échantillon est dirigé dans une chambre de « préréaction » pour être mélangé à l'ozone.

Le NO est oxydé en NO₂, puis est dirigé vers la chambre de réaction.

Le signal mesuré est le « signal de référence »

• « Cycle NO » : (figure 1 tracé rouge) :

L'échantillon contenant le NO est directement oxydé par l'ozone dans la chambre de réaction et de mesure.

Le signal mesuré par le photomultiplicateur est proportionnel à la concentration en molécules de NO.

• « Cycle NOx » (figure 1 tracé vert) :

L'échantillon qui contient NO₂ et NO passe par le four convertisseur contenant de l'oxyde de molybdène.

 NO_2 est réduit à l'état de NO ($NO + NO_2 \rightarrow NO_x$).

Le signal mesuré est proportionnel à la concentration en molécules de NO.

L'ensemble des cycles donne :

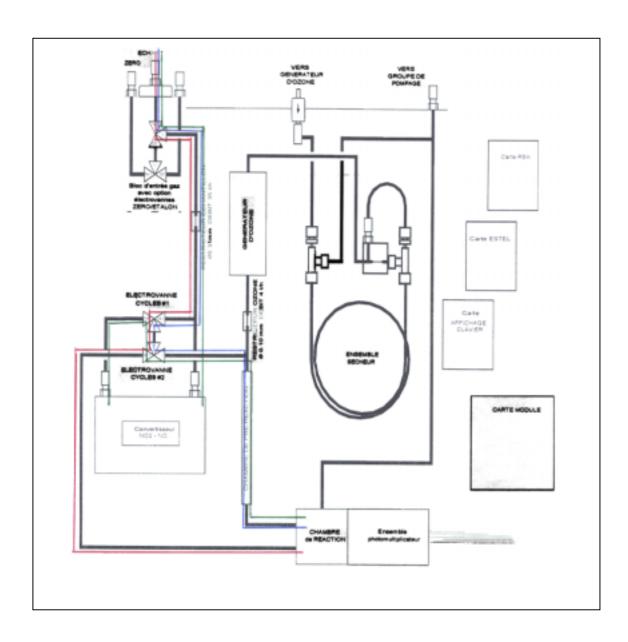
$$NO_x (NO + NO_2 \text{ réduit}) - NO (NO + NO_2 \text{ non réduit}) = NO_2.$$

Il est à noter que les « cycles NOx » et les « cycles NO » sont calculés par rapport au cycle de référence ce qui a l'avantage de compenser toute dérive optique éventuelle.

4.2 MODE DE FONCTIONNEMENT DE L'APPAREIL

4.2.1 Mode standard

Pour l'essentiel, on peut noter :


- Les gammes de mesures programmables de 0,05 à 50 ppm.
- Séquences de zéro et calibration automatique programmables.
- Temps de réponse automatique.
- Contrôle automatique des paramètres influant sur la métrologie et test de fonctionnement.
- Valeurs de mesure exprimées soit en ppb (ou ppm) soit en μg/m³ (ou mg/m³).
- Mémorisation de moyennes sur des périodes programmables.

4.2.2 En option

- L'analyseur peut être équipé de sorties analogiques donnant la concentration NO- NO_x et NO₂.
- Possibilité de télésignalisation des fonctions « mesure », « zéro », « calibration » et « alarme ».
- Banc de perméation.

4.2.3 Matériel associé

- Ensemble de pompage.
- Enregistreur.
- Sécheur silicagel extérieur de protection « ozoneur ».

<u>Figure 1</u> (selon manuel du contructeur)

4.3 CARACTERISTIQUES TECHNIQUES DE L'AC 32 M

(Extrait du manuel constructeur).

Elles sont données par le constructeur dans la notice d'utilisation ci-dessous.

Gamme de mesure : Programmable (maximum 50 ppm)

Unité : Ppb, ppm ou μ g.m⁻³, mg.m⁻³ (programmable) Bruit (σ) : 0,2 ppb (temps de réponse automatique) Minimum détectable (2σ) : 0,4 ppb (temps de réponse automatique)

Temps de réponse minimum (0-90 %) : 40'' (programmable)

Dérive de zéro : <1 ppb./24 heures

Dérive d'étalonnage : <1 % / 7 jours

Linéarité : $\pm 1 \%$ Répétabilité : 1 %

Débit échantillon : 0,57 l/min.

Débit ozone : 0,06 l/min.

Dépression chambre : 200 mm Hg

(avec pompe KNF PM 7837-026)

Convertisseur $NO_2 \rightarrow NO$: Molybdène à 320° C Température P.M : Régulée à 8° C

Température chambre de réaction : 60° C

Affichage : LCD 240 x 128 mode texte et graphique

Clavier de commande : 6 touches

Signaux d'entrée / sortie (option carte ESTEL) : 4 sorties analogiques 0-1 V, 4-20 mA en option

4 entrées analogiques 0-2,5 V 4 entrées télécommande

6 sorties contact NO libre de potentiel

Sortie numérique (option carte RS4i : 2 ports de communication format RS232 ou RS 422 Alimentation : 220 V - 50 Hz (115 V - 60 Hz sur demande) + terre

Consommation : 400 VA maximumTempérature d'utilisation : $+5^{\circ} \text{ C à} + 40^{\circ} \text{ C}$ Contrôle d'alarmes : - Permanent

Détection et indication des anomalies de fonctionnement :

température, débits, paramètres électriques,

- Dépassement seuil de mesure NO, NO_x, NO₂

(programmables)

Tests et diagnostics pour maintenance : Sélection au clavier et affichage de tous les paramètres

Durée de sauvegarde des données mémorisées en

RAM et de l'horloge temps réel

> 6 mois par batterie incorporée

Ensemble pompe et filtre charbon actif : externe

Caractéristique de stockage : -10° C à $+60^{\circ}$ C

4.4 PRESENTATION DE L'APPAREIL

4.4.1 Encombrement et masse

L'appareil se présente sous la forme d'un rack normalisé 19 pouces de largeur et 3 unités de hauteur :

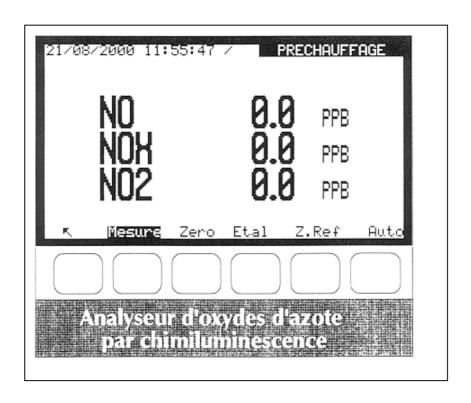
- longueur: 591 mm - largeur: 483 mm - hauteur: 133 mm - masse: 25 kg.

4.4.2 Face avant (figure 2)

- interrupteur général.
- afficheur à cristaux liquides rétro-éclairé (Figure 3).
- 1 clavier avec 6 touches visibles sensitives permettant d'accéder à un menu déroulant dont les principaux menus sont donnés ci-dessous *figure 4*.
- Dans son manuel, le constructeur indique comment utiliser ces menus et sousmenus. La *figure 3* reproduit un écran comparable à celui que l'utilisateur rencontrera.

4.4.3 Face arrière (figure 5)

Regroupe toutes les prises de raccordement électrique et les entrées-sorties de gaz données par la notice.


4.4.3.1 Entrées / sorties gaz

- « 3 » : entrée échantillon.
- « 4 » : entrée du gaz étalon.
- «5 » : entrée air de zéro.
- « 6 » : sortie pompe.

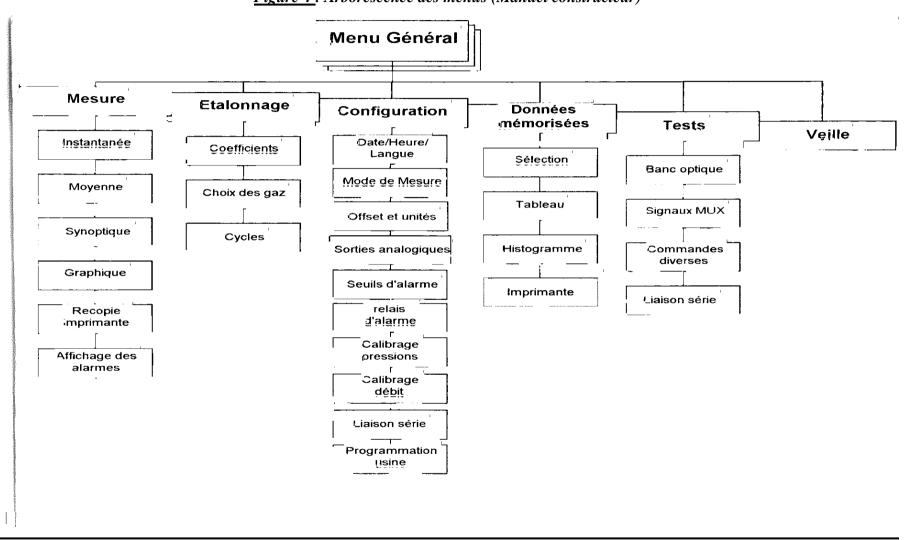
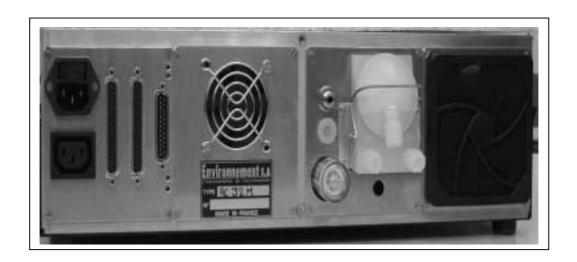
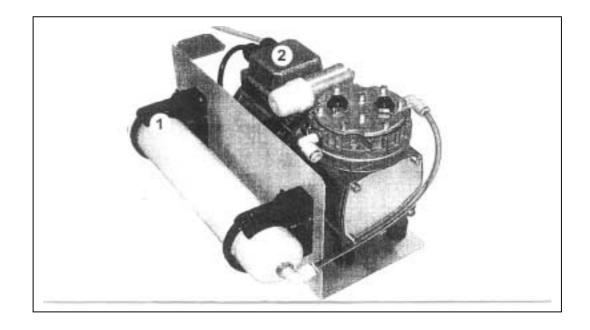
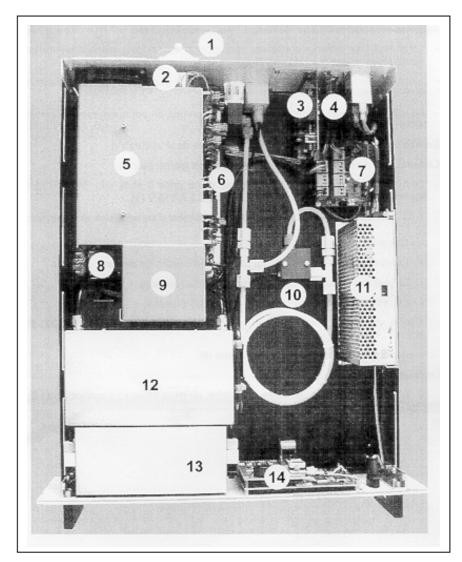

Les raccords sont effectués par des tubes 4/6 mm, des écrous et bagues Téflon.

Figure 2




<u>Figure 3</u>: Ecran et clavier (manuel constructeur)


<u>Figure 4</u>: Arborescence des menus (Manuel constructeur)

<u>Figure 5</u>: Groupe de pompage

Figure 6

4.4.3.2 Raccordements électriques

- « 1 » : raccordement secteur par un cordon standard et un fusible général 3,15 A /220 V.
- « 9 » : 2 prises SUB D 37 points pour enregistreurs ou raccordements extérieurs.

Ces prises ont été utilisées pour différentes fonctions : sortie analogique, télécommande des cycles de contrôle de l'appareil, sortie d'information en cas d'alarme.

- « 10 » : une prise standard 25 broches pour liaison série RS 232 ou RS 422.
- « 8 » : prise d'alimentation de la pompe externe.

4.4.3.3 Dispositif d'aération

• «2» et «11»: grilles amovibles avec 2 filtres en acrylique et 2 ventilateurs à l'intérieur de l'appareil.

4.4.4 Groupe pompage (figure 5)

Relié à l'AC 32 M (voir § 4-4-3).

La cartouche 1 contient du charbon actif qui doit être remplacé en principe tous les 3 mois.

4.5 VUE INTERNE DE L'APPAREIL

Elle est décrite dans le manuel du constructeur, et se résume par la figure 6.

C'est un appareil monochambre fonctionnant en cycle automatique.

4.5.1 La partie physique :

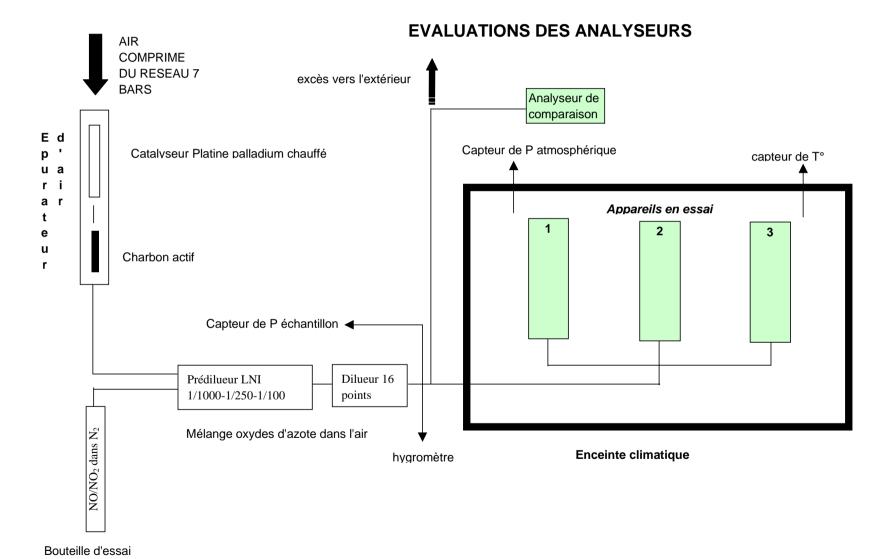
- Filtre électrovannes (1-2)
- Bloc de chambre de mesure (9)
- Générateur d'ozone (13)
- Convertisseur (12)
- Circuit d'ozone : sécheur d'air (10) et ozoneur (13).

4.5.2 La partie électronique :

La partie électronique se trouve à droite de la figure avec différents types de carte module, microprocesseur, convertisseur analogique, multiplexeur, capteurs...(11-6-8), carte entrée, sorties analogiques ou logiques (4) et différents modes de dialogues (2-4).

5. DESCRIPTION DE LA CHAINE DE MESURE

5.1 BANC D'ESSAI


L'évaluation des instruments est effectuée sur un banc d'essai installé à l'Institut National de l'Environnement Industriel et des Risques (INERIS) à Verneuil en Halatte (Oise).

Le banc d'essai, représenté schématiquement par la *figure 7*, est constitué :

- d'une enceinte climatique dans laquelle sont disposés tous les appareils à tester,
- d'un générateur d'air de zéro à catalyse pour les dilutions,
- de mélangeurs de gaz SONIMIX permettant la génération des mélanges d'essai,
- d'une chaîne d'acquisition de données AOIP,
- de capteurs de pression, de température, d'hygrométrie contrôlés par l'INERIS ou par un organisme extérieur certifié.

On remarquera que compte tenu de la difficulté d'obtenir des circuits non pollués avec le NO₂ un système de vannes ¼ de tour a permis de travailler en circuit fermé pour éviter toute pollution extérieure au circuit notamment avec l'humidité.

Figure 7

21

Figure 8

Principe du montage pour effectuer la titration en phase gazeuse Air du Labo. Analyseur de comparaison Générateur d'air de zéro LNI Dilueur et ozoneur LNI Analyseur en test avec lampe UV NO/ **TPG** NOx Concentration: 1) Avant mise en service de la lampe : mesure de la teneur en NO NO2 NOx dans NO=92.8 ppm 2) Mise en service de la lampe. Nouvelle mesure de la teneur en NO NO2 N2 NOx=94.4 ppm 3) Rendement du four:100% - ($^{\Delta}$ NOx/ $^{\Delta}$ NO) *100

5.2 BANC POUR TITRATION EN PHASE GAZEUSE

Utilisé pour contrôler le rendement du four convertisseur NO2 \rightarrow NO (*Figure 8*).

- Générateur d'air de zéro.
- Dilueur 10 points avec générateur d'ozone.

5.3 FLUIDES UTILISES

- Azote « N50 » ;
- Mélange de NO/ NO₂ à \cong 70/35 ppm , dans N₂ ;
- Un mélange NO/ N_2 à \cong 90 ppm,
- 1 bouteille de référence raccordée COFRAC 800 ppb de NO dans N₂, et raccordée à la chaîne nationale par le LNE.

5.4 CHAINE D'ACQUISITION DE DONNEES

Elle comprend (Figure 9):

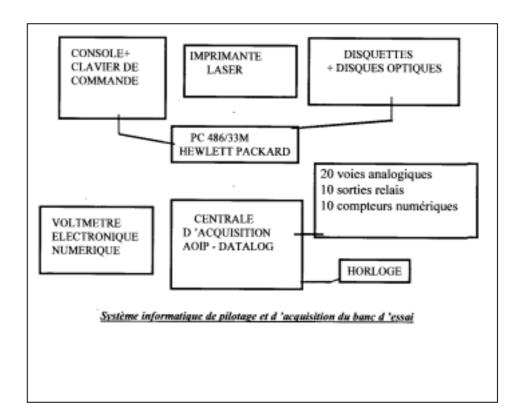


Figure 9

5.5 VALIDATION DE LA CHAINE D'ACQUISITION DE DONNEES

Avant de commencer l'évaluation des analyseurs, les voies de mesure ont été validées de la façon suivante :

- émission de tension de référence de 0 à 1 volt par pas de 100 mV (0-50 mV puis 100..) sur les sorties analogiques correspondant au branchement des capteurs et des sorties analogiques des analyseurs à tester ou de comparaison,
- vérification sur écran ordinateur de la réponse à ± 0.1 mV.

5.6 TEST DU BANC DE DILUTION DES GAZ

- Calibrage de l'analyseur de comparaison avec un étalon de « transfert » NO à 800 ppb (prêté par AIRPARIF), après vérification de la valeur zéro et réglage des temps de réponse (le rendement du four de conversion étant de l'ordre de 99 %).
- Emission d'une valeur proche de 800 ppb en NO à partir de: NO / N_2 à \cong 90 ppm dilué par le banc de génération des gaz et vérification de la réponse sur l'analyseur de comparaison.
- Emission d'une valeur proche de 800 ppb en NOx à partir d'un mélange de gaz NO-NO₂/N₂ et vérification de la réponse sur l'analyseur de comparaison.

5.7 CONCLUSION SUR LES POINTS DE VALIDATION

1/ Les tensions de référence générées sont correctement enregistrées par le système d'acquisition à \pm 0,1 mV.

2/ Les mélanges de NO/ N_2 et NO- NO_2 / N_2 , après dilutions, testés par l'analyseur de comparaison correspondent bien aux valeurs données par les certificats d'analyse à l'incertitude près.

5.8 TITRATION EN PHASE GAZEUSE SUR L'ANALYSEUR DE COMPARAISON ET L'ANALYSEUR A TESTER.

Le banc d'essai utilisé est celui décrit au § 5.2.

- Génération de gaz de zéro sur les analyseurs branchés en parallèle.
- Génération d'un mélange de NO à 800 ppb \rightarrow lecture en NO NO₂ NO_x.
- Génération de NO + ≅ 200 ppb de O₃ après un temps de stabilisation lecture de NO, NO₂, NO_x (phase d'oxydation du NO avec l'ozone).

Rendement de four de conversion $NO_2 \rightarrow NO$:

moyenne de 3TPG : • Analyseur de comparaison : 99 %

• Analyseur AC 32 M : 99,60 %.

6. ESSAIS METROLOGIQUES

Les essais ont été réalisés conformément à la norme AFNOR NF X 20-300. Les conditions ont été fixées de la façon suivante :

- température de l'enceinte climatique pour tous les essais autres que l'étude de l'influence de la température : 22° C,
- échantillon sec sauf pour l'essai d'hygrométrie,
- température du laboratoire : 22° C, (systèmes de génération de gaz, acquisition de données...),
- pression atmosphérique contrôlée et enregistrée durant tous les essais,
- contrôle de la pression de la ligne fluidique par un capteur différentiel,
- contrôle de la température du banc d'essai des analyseurs par une sonde de température,
- calibrations réalisées avec du NO/ N₂.

6.1 TEMPS DE REPONSE, TEMPS MORT, TEMPS DE MONTEE ET DE DESCENTE

La norme NF X 20-300 donne les directives pour la détermination des temps de réponse. Celles-ci sont données en **Annexe 1**.

6.1.1 Application à l'analyseur Environnement S.A. AC 32M.

L'analyse a été configurée en temps d'intégration automatique à 30 secondes.

Chaque épreuve a consisté à soumettre l'instrument à un cycle qui comportait un palier au niveau zéro de gaz de concentration pendant 1 200 secondes et un palier à un niveau de concentration de NO ou d'un mélange de NO-NO₂ pendant 1 200 secondes ; le cycle total était donc 2 400 secondes ou 40 minutes.

L'opération a été réalisée 10 fois, sur un seul niveau de concentration :

NO seul ; NO / N_2 = 520,5 ppb pour 1 cycle, NO seul : NO / N_2 = 871,7 ppb pour 10 cycles NO + NO₂ / N_2 en mélange = 500,4 ppb NO 256 ppb NO₂ pour 1 cycle ou 10 cycles.

- Les résultats sont rassemblés dans les tableaux ci-après ainsi que les représentations graphiques correspondantes, à saut croissant et à saut décroissant de concentration.

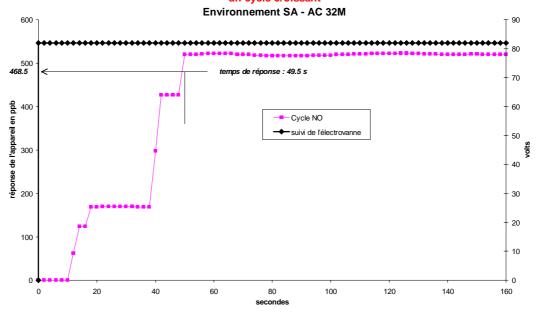
Les valeurs présentées sont les valeurs réelles, l'offset de l'appareil étant de zéro.

Tableau 1 : Etude du temps de réponse du NO dans un mélange de NO/N2 ANALYSEUR Environnement SA - AC32M

Moyenne des valeurs obtenues sur 1 cycle croissant et 1 cycle décroissant

Concentration d'essai = 520.5 ppb de NO Concentration stabilisée: $C_{x=}$ 520.9 Concentration stabilisée: $C_{0=}$ 0.4 ppb Réglage appareil:30 secondes

Température de l'essai : 22.0 Pression atmosphérique :1010.3hPa temps total du cycle:2400secondes gamme étudiée: 0-1000ppb


	Variation croissante	Variation décroissante
temps mort (s)	11,7	10
tempsde réponse (s)	49,5	47
temps de montée (s)	37,8	
temps de descente (s)		37

	Cycle	Cycle
temps	croissant	décroissant
secondes	ppb	ppb
0	0,4	520,9
2	0,4	520,9
4	0,4	520,9
6	0,4	521,4
8	0,4	521,4
10	0,4	461
12	61,5	461
14	123,7	397,5
16	123,7	397,5
18	169	397,5
20	169	397,5
22	169,5	397,5
24	169,5	351
26	169,5	351
28	169,2	351
30	169,2	351,5
32	169,2	351,5
34	169	352
36	169	352
38	169	223,9
40	297,1	223,9
42	426,2	223,9
44	426,2	223,9
46	426,2	95,1
48	426,2	0,9
50	520,2	0,9
52	520,2	0,4
54	520,2	0,4
56	521,2	0,4
58	521,7	0,4
60	521,7	0,4
62	521,7	0,4
64	521,7	0,4
66	521,7	0,4
68	519,7	0,4
70	519,7	0,4
72	519,7	0,4

	Cyclo	Cycle
temps	Cycle croissant	décroissant
secondes	ppb	ppb
74	518,0	0,4
76	517,9	0,4
78	516,7	0,4
80	516,7	0,4
82	516,7	0,4
84	516,7	0,4
86	516,7	0,4
88	516,9	0,4
90	516,9	0,4
92	516,9	0,4
94	517,4	0,4
96	517,5	0,4
98	517,4	0,4
100	518,2	0,4
102	519,7	0,4
104	519,7	0,4
106	519,7	0,4
108	521,0	0,4
110 112	521,0 521,0	0,4 0,4
114	521,0 521,5	0,4
116	521,3 521,4	0,4
118	522,2	0,4
120	522,2	0,4
122	522,2	0,4
124	522,7	0,4
126	522,7	0,4
128	522,0	0,4
130	522,0	0,4
132	520,9	0,4
134	521,0	0,4
136	521,0	0,4
138	520,2	0,4
140	520,2	0,4
142	520,0	0,4
144	519,9	0,4
146	520,0	0,4
148	520,4	0,4
150	520,4	0,4
152	520,2	0,4
154	520,2	0,4
156	520,2	0,4
158	520,2	0,4
160	520,2	0,4

Figure 10

Etude du temps de réponse du NO dans un mélange de NO/N2 :520.5ppb un cycle croissant

Figure 11

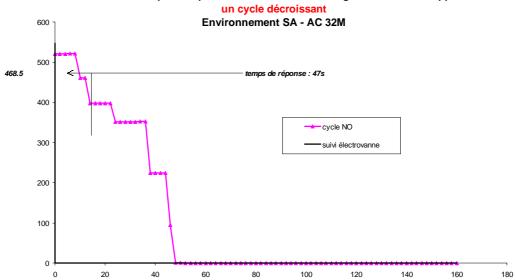


Tableau 2 : Etude du temps de réponse du NO dans un mélange de NO/N2

ANALYSEUR Environnement SA - AC32M

Moyenne des valeurs obtenues sur 10 cycles croissants et 9 cycles décroissants

Concentration d'essai =871.7 ppb de NO Concentration stabilisée: $C_{x=}$ 848.8ppb Concentration stabilisée: $C_{0=}$ 0.4 ppb Réglage appareil:30 secondes

Température de l'essai : 22.0 Pression atmosphérique :1010.3hPa temps total du cycle:2400secondes gamme étudiée: 0-1000ppb

<u> </u>		
	Variation croissante	Variation décroissante
temps mort (s)	23,3	23,3
tempsde réponse (s)	37	38
temps de montée (s)	13,7	
temps de descente (s)		14,7

	Cycle	Cycle
temps	croissant	décroissant
secondes	ppb	ppb
0	0,4	848,8
5	0,4	848,6
10	0,4	847,7
15	0,4	848,2
20	0,4	848,6
25	185,6	713,9
30	434,1	474,1
35	702,4	180,7
40	846,8	27,6
45	848,7	0,5
50	848,9	0,4
55	849,6	0,4
60	849,7	0,4
65 70	849,4	0,4
70 75	849,5	0,4
75 00	849,4	0,4
80 95	849,9	0,4
85	849,7	0,4
90 95	848,4	0,4
100	847,8 847,9	0,4 0,4
105	848,1	0,4
110	848,4	0,4
115	848,8	0,4
120	849,0	0,4
125	849,0	0,4
130	849,5	0,4
135	849,5	0,4
140	849,8	0,4
145	849,7	0,4
150	849,2	0,4
155	848,4	0,4
160	848,2	0,4
165	848,1	0,4
170	848,6	0,4
175	848,8	0,4
180	848,8	0,4
185	849,2	0,4
190	849,4	0,4
195	849,8	0,4
200	850,4	0,4
205	850,6	0,4
210	850,0	0,4
215	849,3	0,4

	Cycle	Cycle
temps	croissant	décroissant
secondes	ppb	ppb
220	848.8	0.4
225	848,6	0,4
230	848,8	0,4
235	848,9	0,4
240	848,6	0,4
245	848.2	0,4
250	848,5	0,4
255	848,7	0,4
260	849,1	0,4
265	849,1	0,4
270	848.7	0,4
270 275	,	0,4
_	848,5	0,4
280	848,6	,
285	848,7	0,4
290	849,1	0,4
295	849,3	0,4
300	848,9	0,4
305	848,7	0,4
310	848,6	0,4
315	848,6	0,4
320	849,2	0,4
325	849,2	0,4
330	848,8	0,4
335	848,5	0,4
340	848,7	0,4
345	848,9	0,4
350	849,1	0,4
355	849,0	0,4
360	848,7	0,4
365	848,3	0,4
370	848,5	0,4
375	848,6	0,4
380	848,7	0,4
385	849,0	0,4
390	848,8	0,4
395	848,4	0,4
400	848,3	0,4

Figure 12

Etude du temps de réponse du NO/N2 : 871.7ppb sur 10 cycles croissants Environnement SA - AC32M

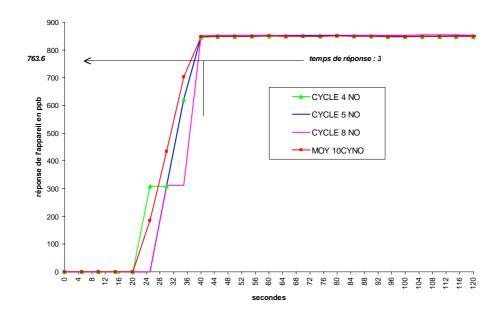


Figure 13

Etude du tempsde réponse du NO dans un mélange de NO/N2 : 871.7ppb sur 9 cycles décroissants Environnement SA - AC32M

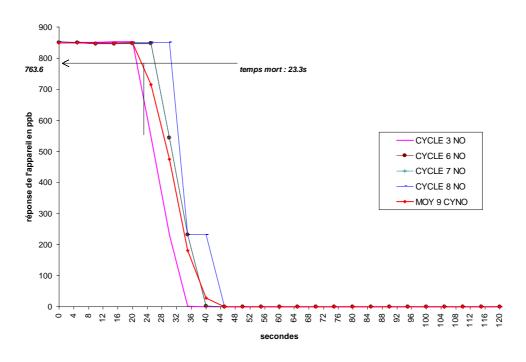
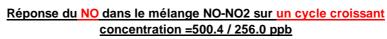


Tableau 3 : Etude du temps de réponse du NO dans un mélange de NO-NO2/N2 (500 et 256 ppb)

ANALYSEUR Environnement SA - AC32M

Moyenne des valeurs obtenues sur 1 cycle croissant et 1 cycle décroissant


Concentration d'essai =500.4 ppb de NO Concentration stabilisée: Cx= 496.5ppb Concentration stabilisée: C0= 0.4 ppb Réglage appareil:30 secondes Température de l'essai : 25.6°C Pression atmosphérique :1009.1 hPa temps total du cycle:2400secondes gamme étudiée: 0-1000ppb

	Variation croissante	Variation décroissante
temps mort (s)	12,5	14,8
tempsde réponse (s)	24,6	23,1
temps de montée (s)	12,1	
temps de descente (s)		8,3

	Cycle	Cycle
temps	croissant	décroissant
secondes	ppb	ppb
0	0,4	495,9
2	0,4	496,0
4	0,4	495,9
6	0,4	496,2
8	0,4	496,2
10	0,4	496,5
12 14	0,4 180,4	496,5 496,5
16	180,4	490,5 317,2
18	180,4	317,2
20	363,4	317,1
22	363,4	135,0
24	363,4	1,7
26	496,9	1,7
28	498,5	1,7
30	498,5	0,4
32	498,5	0,4
34	498,0	0,4
36	498,0	0,7
38	498,0	0,7
40	497,7	0,9
42	497,7	0,9
44	496,4	0,9
46	496,4	0,9
48	496,5	0,9
50	495,7	0,4
52	495,7	0,4
54 56	495,7 405.7	0,4
58	495,7 495,7	0,4 0,4
60	495,7 495,7	0,4
62	495,7	0,4
64	496,2	0,4
66	496,2	0,4
68	496,2	0,4
70	496,5	0,4
72	496,5	0,4
74	496,5	0,4
76	496,5	0,4
78	496,5	0,4
80	496,7	0,4
82	496,7	0,4
84	497,2	0,6
86	497,2	0,6

	Cycle	Cycle
temps	croissant	décroissant
secondes	ppb	ppb
88	497,2	0,6
90	497,2	0,6
92	497,2	0,7
94	497,2	0,7
96	497,4	0,6
98	497,5	0,6
100	497,4	0,4
102	497,5	0,4
104	496,5	0,4
106	496,5	0,4
108	496,5	0,4
110	495,4	0,4
112	495,4	0,4
114	495,4	0,4
116	495,4	0,4
118	495,4	0,4
120	495,5	0,4
122	495,5	0,4
124	495,4	0,4
126	495,4	0,4
128	495,4	0,4
130	495,4	0,4
132	495,4	0,4
134	495,4	0,4
136	495,4	0,4
138	495,4	0,4
140	496,0	0,4
142	495,9	0,4
144	496,5	0,4
146	496,5	0,4
148	496,5	0,4
150	496,7	0,4
152	496,7	0,4
154	497,0	0,4
156	497,0	0,4
158	496,9	0,4
160	497,0	0,4

Figure 14

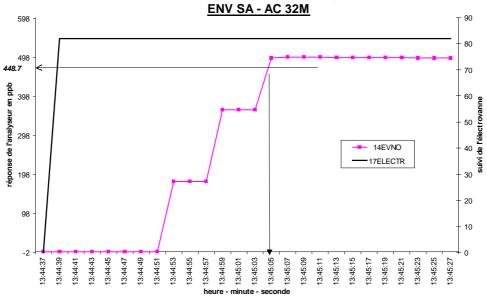


Figure 15

Réponse du NO dans le mélange NO-NO2 sur un cycle décroissant concentration =500.4 / 256.0 ppb

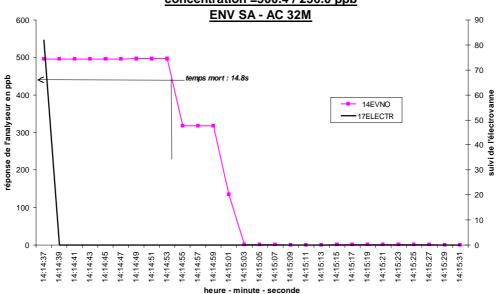


Tableau 4 : Etude du temps de réponse du NO dans un mélange de NO-NO2/N2 (500 et 256 ppb)

ANALYSEUR Environnement SA - AC32M

Moyenne des valeurs obtenues sur 10 cycles croissants et 10 cycles décroissants

Concentration d'essai =500.4 ppb de NO Concentration stabilisée: $C_{x=}$ 487.4ppb Concentration stabilisée: $C_{0=}$ 0.3 ppb Réglage appareil:30 secondes

Température de l'essai : 25.6°C Pression atmosphérique :1009.1 hPa temps total du cycle:2400secondes gamme étudiée: 0-1000ppb

	Variation croissante	Variation décroissante
temps mort (s)	16,8	17,3
tempsde réponse (s)	28,8	29,8
temps de montée (s)	12	
temps de descente (s)		12,5

	Cycle	Cycle
temps	croissant	décroissant
secondes	ppb	ppb
0	0,4	487,0
5	0,4	487,0
10	0,4	487,1
15	0,4	487,0
20	141,5	328,0
25	284,3	167,3
30	447,2	27,4
35	487,3	0,6
40	487,9	0,4
45	487,8	0,4
50	487,7	0,4
55	487,7	0,4
60	488,0	0,4
65	488,0	0,4
70 75	488,2	0,4
75 00	488,0	0,4
80	487,6	0,4
85 00	487,9	0,4
90 95	487,4 487,4	0,4 0,4
100	487,4 487,6	0,4
105	487,6 487,6	0,4
110		
115	487,4 487,3	0,4 0,4
120	487,3 487,4	0,4
125	487,4	0,4
130	487,4	0,4
135	487,4	0,4
140	487,2	0,4
145	487,3	0,4
150	487,4	0,4
155	487,5	0,4
160	487,5	0,4
165	487,5	0,4
170	487,2	0,4
175	487,0	0,4
180	486,8	0,4
185	486,7	0,4
190	486,8	0,4
195	486,7	0,4
200	486,6	0,4
205	486,7	0,4
210	486,9	0,4
215	486,9	0,4

temps secondes 220 225 230 235	croissant ppb 487,0 487,1 486,9 486,9 486,9 486,9	0,4 0,4 0,4 0,4 0,4
220 225 230	487,0 487,1 486,9 486,9 486,9	0,4 0,4 0,4 0,4
225 230	487,1 486,9 486,9 486,9	0,4 0,4 0,4
230	486,9 486,9 486,9	0,4 0,4
	486,9 486,9	0,4
235	486,9	
	,	
240	486.9	0,4
245	.00,0	0,4
250	487,0	0,4
255	487,1	0,4
260	486,9	0,4
265	486,8	0,4
270	486,9	0,4
275	486,8	0,4
280	487,0	0,4
285	487,0	0,4
290	486,8	0,4
295	486,9	0,4
300	486,8	0,4
305	486,9	0,4
310	487,0	0,4
315	487,1	0,4
320	486,9	0,4
325	486,9	0,4
330	486,9	0,4
335	487,0	0,4
340	487,1	0,4
345	487,1	0,4
350	487,0	0,4
355	486,9	0,4
360	487,0	0,4
365	487,0	0,4
370	487,1	0,4
375	487,1	0,4
380	486,9	0,4
385	486,9	0,4
390	487,0	0,4
395	487,1	0,4
400	487,2	0,4

Figure 16

Etude du temps de réponse sur le NO dans un mélange NO-NO2/N2 : (500.4ppb - 256.0 ppb) 10 cycles croissants

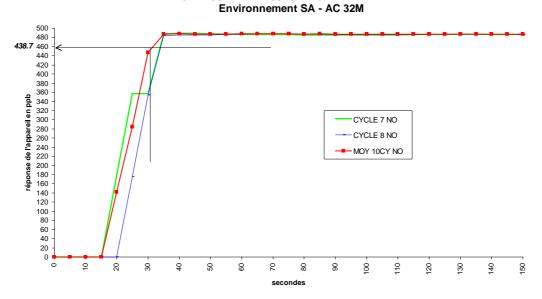


Figure 17

Etude du temps de réponse sur le NO dans un mélange de NO-NO2/N2 : (500.4ppb - 256.0ppb) 10 cycles décroissants

Environnement SA - AC32M

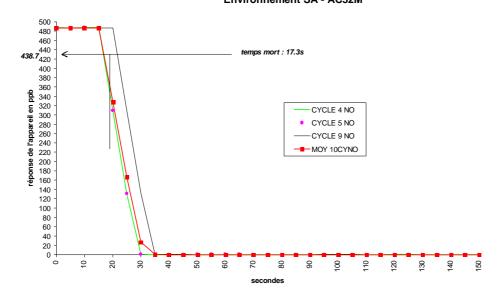
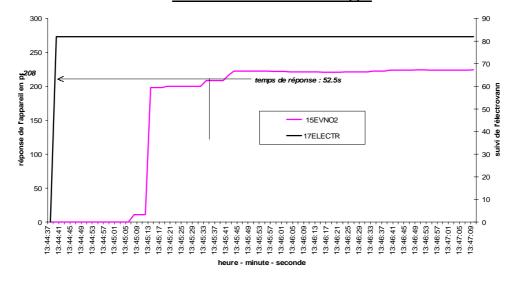


Tableau 5 : Etude du temps de réponse du NO2 dans un mélange de NO-NO2/N2 (500 et 256 ppb)

ANALYSEUR Environnement SA - AC32M

Moyenne des valeurs obtenues sur 1 cycle croissant et 1 cycle décroissant

Concentration d'essai =256.0 ppb de NO2 Concentration stabilisée: Cx= 233ppb Concentration stabilisée: C0= 0.4 ppb Réglage appareil:30 secondes Température de l'essai : 25.6°C Pression atmosphérique :1009.1 hPa temps total du cycle:2400secondes gamme étudiée: 0-1000ppb


	Variation croissante	Variation décroissante
temps mort (s)	32	30
tempsde réponse (s)	52,5	36
temps de montée (s)	20,5	
temps de descente (s)		6

	Cycle	Cycle
temps	croissant	décroissant
secondes 0	9pb 0,3	ppb 233,2
2	0,3	233,2
4	0,3	233,4
6	0,3	233,4
8	0,3	233,4
10	0,3	233,4
12	0,3	233,4
14	0,3	410,7
16	0,3	410,7
18	0,3	410,7
20	0,3	591,1
22 24	0,3 0,3	591,1 591,1
26	0,3	466,9
28	11,0	466,9
30	11,0	206,9
32	11,0	206,9
34	198,1	207,0
36	198,1	15,8
38	198,1	15,7
40	199,8	14,0
42	199,8	14,0
44	200,1	14,0
46	200,1	14,3
48	200,1	14,2
50 52	200,1 200,1	14,8 14,8
52 54	208,5	14,8
56	208,5	12,7
58	208,5	12,7
60	208,5	9,9
62	216,6	9,9
64	222,5	9,9
66	222,5	7,9
68	222,5	7,9
70	222,5	7,9
72	222,5	7,6
74	222,5	7,4
76 79	222,5	7,4
78 80	222,0 221.7	7,4 7,4
80 82	221,7 221,7	7,4 7,4
84	221,7	6,6
86	221,4	6,6

	Cycle	Cycle
temps	croissant	décroissant
secondes	ppb	ppb
88	221,4	6,6
90	221,2	5,9
92	221,2	5,9
94	221,2	5,3
96	220,9	5,4
98	220,9	5,3
100	220,9	5,1
102	220,9	5,1
104	221,2	5,1
106	221,2	5,1
108	221,5	5,1
110	221,4	5,1
112	221,4	5,1
114	222,7	4,8
116	222,7	4,8
118	222,7	4,8
120	223,5	4,6
122	223,5	4,6
124	224,0	4,3
126	224,0	4,3
128	224,0	4,3
130	224,2	4,3
132	224,2	4,3
134	223,7	4,1
136	223,8	4,1
138	223,7	4,1
140	223,5	4,1
142	223,5	4,1
144	223,5	4,1
146	223,5	4,3
148	223,5	4,3
150	224,2	4,3
152	224,3	4,1
154	224,7	4,1
156	224,8	4,1
158	224,8	4,1
160	225,0	4,1
		-

<u>Figure 18</u>

Réponse du NO2 dans le mélange NO-NO2 sur un cycle ascendant concentration = 500.4 / 256.0 ppb

<u>Figure 19</u>

Réponse du NO2 dans le mélange NO-NO2 sur un cycle descendant concentration = 500.4 / 256.0 ppb

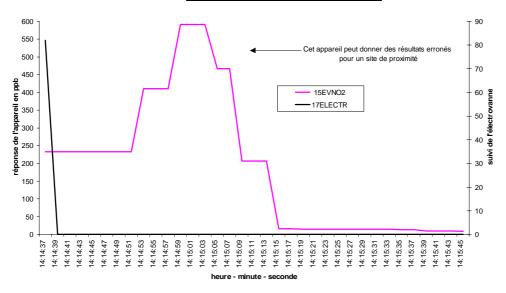


Tableau 6 : Etude du temps de réponse du NO2 dans un mélange de NO-NO2/N2 (500 et 256 ppb)

ANALYSEUR Environnement SA - AC32M

Moyenne des valeurs obtenues sur 10 cycles croissants et 10 cycles décroissants

Concentration d'essai =256.0 ppb de NO2 Concentration stabilisée: $C_{\text{X=}}$ 239.6ppb Concentration stabilisée: $C_{\text{0=}}$ 0.6ppb Réglage appareil:30secondes

Température de l'essai : 25.6°C Pression atmosphérique :1009.1 hPa temps total du cycle:2400secondes gamme étudiée: 0-1000ppb

	Variation croissante	Variation décroissante
temps mort (s)	33,8	36
tempsde réponse (s)	43,3	45,7
temps de montée (s)	9,5	
temps de descente (s)		9,7

	Cycle	Cycle
temps	croissant	décroissant
secondes	ppb	ppb
0	0,3	239,5
5	0,3	239,5
10	0,3	239,5
15	0,3	239,5
20	0,3	382,0
25	0,3	523,3
30	0,3	489,4
35	31,6	225,2
40	175,7	62,9
45 50	235,5	2,7
50	235,7	2,6
55 60	235,8 236,2	2,7
65	,	2,5
70	236,6 237,3	2,1 1,7
75	237,3	1,7
80	237,4	1,6
85	237,3	1,7
90	237,5	1,7
95	237,6	1,6
100	237,5	1,4
105	237,5	1,4
110	237,6	1,3
115	237,5	1,2
120	238,1	1,2
125	239,0	1,1
130	239,7	1,2
135	240,1	1,1
140	240,1	1,0
145	240,1	1,0
150	240,0	0,9
155	239,4	0,9
160	238,6	0,9
165	238,2	0,9
170	238,0	0,8
175	238,1	0,9
180	238,5	0,9
185	239,0	0,9
190	239,4	0,8
195	239,8	0,8
200	239,8	0,8
205	239,8	0,8
210	239,8	0,8
215	239,6	0,8

	Cycle	Cycle
temps	croissant	décroissant
secondes	ppb	ppb
220	239,6	0,81
225	239,3	0,82
230	239,2	0,81
235	239,1	0,81
240	239,1	0,8
245	239,2	0,81
250	239,4	0,81
255	239,4	0,81
260	239,4	0,8
265	239,5	0,81
270	239,6	0,82
275	239,5	0,8
280	239,5	0,81
285	239,5	0,82
290	239,3	0,81
295	239,4	0,81
300	239,3	0,81
305	239,3	0,8
310	239,4	0,78
315	239,4	0,79
320	239,3	0,78
325	239,3	0,78
330	239,4	0,75
335	239,3	0,73
340	239,4	0,74
345	239,4	0,69
350	239,3	0,69
355	239,3	0,68
360	239,3	0,69
365	239,3	0,68
370	239,4	0,68
375	239,4	0,69
380	239,5	0,69
385	239,5	0,68
390	239,5	0,69
395	239,6	0,7
400	239,6	0,69

Figure 20

Etude du temps de réponse sur le NO2 dans un mélange de NO-NO2/N2 : (500.4ppb -256.0ppb) 10 cycles croissants

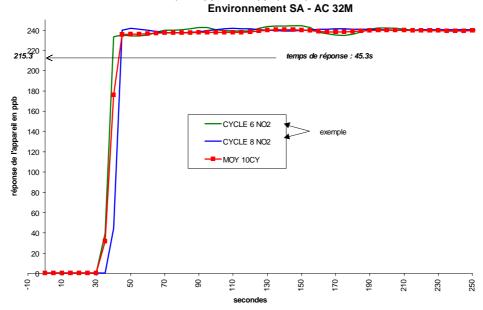
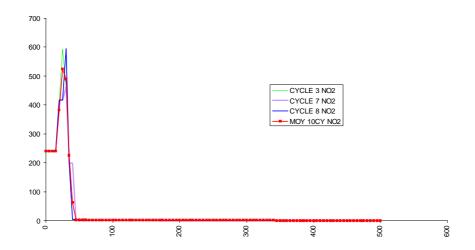



Figure 21

Etude du temps de réponse sur NO2 dans un mélange de NO-NO2/N2 : (500.4ppb - 256.0ppb) 10 cycles décroissants Environnement SA - AC32M

Conclusion sur les temps de réponse de l'appareil.

Pour un mélange de NO- NO₂ le temps de réponse est de l'ordre de la minute.

Sur site de proximité, il convient d'être prudent pour interpréter la mesure (voir figures 19 et 21) car la différence NO_x NO_z peut être erronée si les variations de concentrations sont rapides (< au temps de réponse). (voir figures 20 et 21). Le phénomène est visible à cycle décroissant quels que soient les cycles. La mesure du NO_z est surestimée d'un facteur 2,5, pendant le régime transitoire.

6.2 LIMITE DE DECISION, LIMITE DE DETECTION, LIMITE DE QUANTIFICATION

La norme NF X 20-300 donne les directives pour la détermination des limites. Celles-ci sont présentées en **Annexe 2.**

6.2.1 Application à l'analyseur Environnement S.A. AC 32 M.

Les essais ont été menés par génération de cycles successifs de gaz de zéro et de gaz de concentration dans les conditions décrites au paragraphe 6 avec un mélange de NO_{NO_2}/N_{2} .

Pour ce qui concerne le NO₂, les écarts-types obtenus à la concentration la plus basse (10 ppb) sont plus importants que ceux obtenus à zéro et à 24 ppb. Aussi, conformément aux préconisations de la norme NFX 20-300, nous avons préféré retenir une valeur d'écart-type estimée à 0,4.

Ainsi, aux concentrations les plus basses :

- pour le NO, l'écart-type estimé S est de 0,20
- pour le NO₂, l'écart-type estimé est de 0,40.

6.2.1.1 Limite de décision

L'essai a porté sur 11 mesures.

- A 10 degrés de liberté, le coefficient de Student t = 1,812 et pour un intervalle de confiance à 95 %, la limite de décision est :
- $X_D = 0.37$ ppb pour le NO
- $X_D = 0.72$ ppb pour le NO_2 .

6.2.1.2 Limite de détection

La droite de calibrage est définie par :

- Le point **bas** de coordonnées

$C_a = 19,5 \text{ ppb pour le NO}$) valeurs générées par le dilueur
-------------------------------------	-----------------------------------

 $C_a = 10.0 \text{ ppb pour le NO}_2$) SONIMIX

 $\bar{x}_a = 20.9 \text{ ppb pour le NO}$) valeurs moyennes lues sur les points

 $\overline{x}_a = 11.5 \text{ ppb pour le NO}_2$) les plus bas.

- Le point **haut** de coordonnées

C_b = 500,40 ppb pour le NO) valeurs générées par le dilueur

 $C_b = 256,0 \text{ ppb pour le NO}_2$) SONIMIX

 $\overline{x}_h = 523.0$ ppb pour le NO) valeurs moyennes lues sur les points

 $\overline{x}_{b} = 236.8 \text{ ppb pour le NO}_{2}$ les plus hauts.

L'équation de la droite de calibrage x = AC + B est déterminée à partir des coordonnées des points a et b.

L'annexe 2 donne les équations de calculs du coefficient A et B.

Pour l'analyseur AC 32 M

A = 1.044 pour le NO $A = 0.915 pour le NO_2$ B = 0.529 pour le NO $B = 2.350 pour le NO_2$

Les limites de détection calculées sont :

 C_D \cong 0,35 ppb pour le NO C_D \cong 0,79 ppb pour le NO₂

6.2.1.3 Limite de quantification

En appliquant les directives de la norme NF X 20-300 (voir annexe 2) les limites de quantification calculées pour l'analyseur AC 32 M sont :

 $C_Q = 0.70 \text{ ppb pour le NO}$

 C_Q = 1,38 ppb pour le NO_2

Tableau 7

Analyseur AC32M NO dans un mélange de NO-NO2/N2

Pente = 1,044 Ordonnée à l'origine en ppb= 0,53

Concentration	Sc	Nbre de	xi mesuré	si	xi estimé	ei	si2/ni= s2xi	(ei / C)*100
NO en ppb	absolu	répétitions n	ppb	Ecart-type		Ecart moyer	1	
19,50	0,1170	11	20,89	0,20	20,89	0,00	0,00	0,00
47,20	0,2832	14	49,71	0,15	49,81	-0,10	0,00	-0,22
92,40	0,5544	7	96,34	0,25	97,01	-0,67	0,01	-0,72
184,10	1,1046	14	191,81	0,27	192,76	-0,95	0,01	-0,52
275,70	1,6542	10	287,88	0,31	288,41	-0,53	0,01	-0,19
362,10	2,1726	14	379,71	0,65	378,62	1,09	0,03	0,30
500,40	3,0024	8	523,03	0,91	523,03	0,00	0,10	0,00
592,20	3,5532	8	621,64	0,85	618,88	2,76	0,09	0,47

Sc est l'incertitude absolue des mélanges de gaz pour étalonnage et calibrage. Ces valeurs sont obtenues à partir des bouteilles ou/et des systèmes de génération de mélanges de gaz pour étalonnage

Variances li	iées aux incer	titudes sur	s2xi	s2ei =	sei	t = ei / sei	(si / C)*100
Ca et Cb (1)	xa et xb (2)	C (3)	(1)+(2)+(3)	s²xi+s²xi			
0,01	0,04	0,01	0,00	0,07	0,27	0,00	1,04
0,05	0,04	0,09	0,00	0,17	0,42	0,25	0,32
0,24	0,05	0,34	0,01	0,63	0,79	0,84	0,27
1,16	0,11	1,33	0,01	2,61	1,61	0,59	0,14
2,79	0,24	2,98	0,01	6,03	2,46	0,21	0,11
4,99	0,42	5,15	0,03	10,59	3,25	0,33	0,18
9,83	0,82	9,83	0,10	20,58	4,54	0,00	0,18
13,94	1,17	13,77	0,09	28,96	5,38	0,51	0,14

Concentration	ei	Nbre degrés	Coeff. de	t = ei / sei	sei	t0.975*sei	ei + tsei	ei - tsei
NO en ppb	Ecart move	de liberté	Student t					
19,50	0,00	10	1,812	0,00	0,27	0,49	0,49	-0,49
47,20	-0,10	13	1,771	0,25	0,42	0,74	0,64	-0,84
92,40	-0,67	6	1,913	0,84	0,79	1,52	0,85	-2,19
184,10	-0,95	13	1,771	0,59	1,61	2,86	1,91	-3,81
275,70	-0,53	9	1,833	0,21	2,46	4,50	3,97	-5,03
362,10	1,09	13	1,771	0,33	3,25	5,76	6,85	-4,67
500,40	0,00	7	1,895	0,00	4,54	8,60	8,60	-8,60
592,20	2,76	7	1,895	0,51	5,38	10,20	12,95	-7,44

Concentration	% rel.	% rel.
NO en ppb	ei + tsei	ei - tsei
19,50	2,54	-2,54
47,20	1,35	-1,78
92,40	0,92	-2,37
184,10	1,04	-2,07
275,70	1,44	-1,82
362,10	1,89	-1,29
500,40	1,72	-1,72
592,20	2,19	-1,26

A la concentration la plus basse C = 20 ppb n = 13 Proba. = 95%si en ppb = 0,20 xD = limite de décision xD = si*ten ppb = 0,37 A = pente =1,04 B = ordonnée à l'origine en ppb = 0,53 **CD** = limite de détection CD = xD/A en ppb =0,35 CQ = limite de quantification CQ = 2CD = 2*xD/A en ppb= 0,70

Tableau 8

Analyseur AC32M NO2 dans un mélange de NO2-NO2/N2

 $\begin{array}{c} \text{Pente} = \ 0.916 \\ \text{Ordonn\'ee \`a l'origine en ppb} = \ 2.35 \end{array}$

Sc	Nbre de	xi mesuré	si	xi estimé	ei	si2/ni= s2xi	(ei / C)*100
absolu	répétitions n	ppb	Ecart-type		Ecart moyen		
0,0600	11	11,51	0,82	11,51	0,00	0,06	0,00
0,1446	14	23,62	0,21	24,42	-0,80	0,00	-3,33
0,2838	7	44,54	0,39	45,67	-1,13	0,02	-2,39
0,5652	14	87,46	0,20	88,62	-1,16	0,00	-1,24
0,8460	10	130,50	0,53	131,49	-0,99	0,03	-0,70
1,1118	14	171,81	0,54	172,06	-0,25	0,02	-0,13
1,5360	8	236,81	0,49	236,81	0,00	0,03	0,00
1,8174	8	281,19	1,50	279,76	1,43	0,28	0,47
	absolu 0,0600 0,1446 0,2838 0,5652 0,8460 1,1118 1,5360	absolu répétitions n 0,0600 11 0,1446 14 0,2838 7 0,5652 14 0,8460 10 1,1118 14 1,5360 8	absolu répétitions n ppb 0,0600 11 11,51 0,1446 14 23,62 0,2838 7 44,54 0,5652 14 87,46 0,8460 10 130,50 1,1118 14 171,81 1,5360 8 236,81	absolu répétitions n ppb Ecart-type 0,0600 11 11,51 0,82 0,1446 14 23,62 0,21 0,2838 7 44,54 0,39 0,5652 14 87,46 0,20 0,8460 10 130,50 0,53 1,1118 14 171,81 0,54 1,5360 8 236,81 0,49	absolu répétitions n ppb Ecart-type 0,0600 11 11,51 0,82 11,51 0,1446 14 23,62 0,21 24,42 0,2838 7 44,54 0,39 45,67 0,5652 14 87,46 0,20 88,62 0,8460 10 130,50 0,53 131,49 1,1118 14 171,81 0,54 172,06 1,5360 8 236,81 0,49 236,81	absolu répétitions n ppb Ecart-type Ecart moyen 0,0600 11 11,51 0,82 11,51 0,00 0,1446 14 23,62 0,21 24,42 -0,80 0,2838 7 44,54 0,39 45,67 -1,13 0,5652 14 87,46 0,20 88,62 -1,16 0,8460 10 130,50 0,53 131,49 -0,99 1,1118 14 171,81 0,54 172,06 -0,25 1,5360 8 236,81 0,49 236,81 0,00	absolu répétitions n ppb Ecart-type Ecart moven 0,0600 11 11,51 0,82 11,51 0,00 0,06 0,1446 14 23,62 0,21 24,42 -0,80 0,00 0,2838 7 44,54 0,39 45,67 -1,13 0,02 0,5652 14 87,46 0,20 88,62 -1,16 0,00 0,8460 10 130,50 0,53 131,49 -0,99 0,03 1,1118 14 171,81 0,54 172,06 -0,25 0,02 1,5360 8 236,81 0,49 236,81 0,00 0,03

Sc est l'incertitude absolue des mélanges de gaz pour étalonnage et calibrage. Ces valeurs sont obtenues à partir des bouteilles ou/et des systèmes de génération de mélanges de gaz pour étalonnage

Variances l	iées aux incert	titudes sur	s2xi	s2ei =	sei	t = ei / sei	(si / C)*100
Ca et Cb (1)	xa et xb (2)	C (3)	(1)+(2)+(3)	s2xi+s2xi			
0,01	0,67	0,01	0,06	0,75	0,86	0,00	8,20
0,02	0,60	0,04	0,00	0,65	0,81	0,99	0,87
0,10	0,49	0,13	0,02	0,74	0,86	1,31	0,82
0,47	0,32	0,54	0,00	1,32	1,15	1,01	0,21
1,12	0,22	1,20	0,03	2,56	1,60	0,62	0,38
2,01	0,18	2,07	0,02	4,28	2,07	0,12	0,29
3,95	0,24	3,95	0,03	8,18	2,86	0,00	0,19
5,60	0,36	5,53	0,28	11,78	3,43	0,42	0,50

Concentration	-	Nbre degrés	Coeff. de	t = ei / sei	sei	t0.975*sei	ei + tsei	ei - tsei
NO2 en ppb	Ecart moyen	de liberté	Student t					
10,00	0,00	10	1,812	0,00	0,86	1,56	1,56	-1,56
24,10	-0,80	13	1,771	0,99	0,81	1,43	0,63	-2,24
47,30	-1,13	6	1,913	1,31	0,86	1,65	0,52	-2,78
94,20	-1,16	13	1,771	1,01	1,15	2,04	0,87	-3,20
141,00	-0,99	9	1,833	0,62	1,60	2,94	1,95	-3,92
185,30	-0,25	13	1,771	0,12	2,07	3,66	3,41	-3,91
256,00	0,00	7	1,895	0,00	2,86	5,42	5,42	-5,42
302,90	1,43	7	1,895	0,42	3,43	6,51	7,93	-5,08

si estimé en ppb =	S				
			% rel.	% rel.	Concentration
		xD = limite de décision	ei - tsei	ei + tsei	NO2 en ppb
en ppb =	xD = si*t		-15,65	15,65	10,00
			-9,28	2,61	24,10
A = pente =			-5,87	1,09	47,30
origine en ppb =	B = ordonnée à l'o		-3,40	0,93	94,20
		CD = limite de détection	-2,78	1,38	141,00
= xD/A en ppb =	CD =		-2,11	1,84	185,30
			-2,12	2,12	256,00
	ion	CQ = limite de quantificati	-1,68	2,62	302,90
2*xD/A en ppb=	CQ = 2CD = 2				

6.3 LINEARITE

Les directives relatives à la détermination de la linéarité sont reportées en annexe 3.

On a défini dans le domaine de concentration 8 valeurs réparties sur la gamme 0-1 000 ppb.

L'ordre des concentrations n'étant pas déterminé, on remarquera que parmi ces concentrations figurent celles qui ont servi à établir la droite de calibrage. Pour chaque concentration, il a été effectué au moins 8 cycles afin d'obtenir au moins 8 mesures. Il est à noter que les cycles sont composés d'une phase gaz de concentration et d'une phase de gaz de zéro.

Chaque mesurage ainsi effectué est affranchi du phénomène d'hystérésis.

6.3.1 Pertinence des résultats

Le test de Grubb (Annexe 3) permet d'éliminer les valeurs aberrantes d'une série d'essais.

Pour l'analyseur AC 32 M, les résultats des **tableaux 9-10-11** pour le NO et des **tableaux 12 et 13** pour le NO₂ montrent qu'une seule valeur a été rejetée pour le NO.

Le **tableau 14** et la *figure 23* pour le NO, le **tableau 15** et la *figure 24* pour le NO₂ illustrent la réponse de l'appareil en fonction de la concentration générée.

Tableaux 9 -10 -11

NO noentration (Conce	ntration me	surée en p	ph de NO c	h de NO dans le mélange NO-NO2/N2			Y)	30	70	36	X	X)	Xi	inbrie de XI	Moyenne	Ecent-type
nères en pai		Xi	Xi	Xi	30	39	- /4			20.9	21	21.2			10.75	tt-	20.60	0.202
C8 C7	19.5	21.2 49.6	20.7 46.6	20.T 40.0	20.7 49.6	20.7 49.6 98.4	20.7 49.6 96.3	21 49.0 96.0	21 49.6 96.3	49.9	49.0	49.6	49.6	43.5	49.9 192.1	54 6 14	49.71 95.34 191.81	0.149 0.250 0.266
C6 C5	194.1	96.3 192.1	96.1 161.9 267.7	90.3 101.9 200.5	99.1 192.1 297.4	192.Z 288	191.6	191.7	101,A 207.9	191.A 288.2	191.5	191.9	191.6	191.9	380.9	10	287.88 379.71	0.312 0.646
C4 C3 C2	276.7 362.1 800.4	267.7 379.2 522.9	979.2 521.6	378.5 522.8	279 522.4	379.2 522.9	379.7 523.1	579.5 523.9	579.7 524.6 617.2	380.5	350.2	2807	000.0		13770		621.09	1.750

EST DE G	3	Conce	stration me	surée en p	pb de NO d	tans le mél	ange NO-N	02/N2	- 1	- V	Vi.	X0	30	36	20	rere de XI	Mayente	Ecarl-type	GRUBS	GRUE
ricentration relate en pp		39	X	Xi	Xi	XI	70		X	XI.		21.2			1	-11	20.89	0.200	0.944	5.52
01 02 03 04 06 06 07	19.5 47.2 92.4 184.1 276.7 902.1 800.4 502.2	20.7 49.6 96.1 161.4 267.4 370.5 621.6 617.2	20.7 49.5 90.1 191.4 287.7 879 522.4 600.7	20.7 49.5 66.3 191.6 267.7 876.2 522.8 620.7	20.7 49.6 56.3 191.6 267.7 370.2 522.9 621	20.7 49.0 96.3 191.6 287.7 379.2 822.9 621.7	20.9 40.6 96.3 161.7 287.9 379.5 823.1 632.2	21 49.6 90.4 101.9 200 979.7 523.0 622.5	21 49.5 96.9 191.6 288 879.7 524.6 622.7	21 49.5 191.0 288.2 380	212 28.9 181.9 288.5 360.2	49.9 192.1 200.2	49.9 160.1 390.3	49.9 102.1 380.5	49.9 192.2 360.7	14 5 54 10 14 8 8	49.71 96.34 191.81 297.88 372.71 523.03 621.09	0.140 0.250 0.260 0.312 0.640 0.907 1.758	0.718 0.949 1.560 1.530 1.891 1.572 2.212	1.26 2.29 1.45 1.90 1.60 1.70 0.80

N			Concentration meaurée en ppb de NO dans le mélange NO-NOS/NS								Vi I	Xi	80	30	30	ribre de 30	Moyeme	Fca1-type	SRUBO	GRURG
ncertration rente en po		XI	X	Xi	X)	70	X6:	70	- 20	Α.	~	te although	100		14	11	20.89	0.202	0.944	1.52
100000000000000000000000000000000000000	19.5 47.2 92.4 164.1 275.7 902.1 500.4 500.2	20.7 49.6 90.1 191.4 207.4 378.5 521.6 800.7	20.7 49.5 96.1 191.4 287.7 376 522.4 600.7	00.7 49.6 56.5 191.5 267.7 570.2 622.0 621	20.7 48.6 96.3 191.6 267.7 379.2 622.9 621.7	20.7 45.6 96.3 191.6 207.7 979.2 522.8 632.2	20.9 49.6 90.3 101.7 207.9 379.5 523.1 632.5	21 49,0 99,4 191,9 289 379,7 533,9 622,7	21 49.6 96.9 191.9 288 379.7 534.6	21 48.6 191.9 268.2 360	212 49.5 181.9 268.5 360.2	21.2 49.9 182.1 880.3	49.9 152.1 980.3	49.9 192.1 390.5	49.9 192.2 390.7	14 0 14 50 14 8 7	49.71 96.34 101.81 207.88 379.71 523.03 621.64	0.149 0.250 0.266 0.352 0.849 0.907 6.869	0,718 0,848 1,580 1,639 1,881 1,572 1,100	1.2 2.2 1.4 1.9 1.5 1.7

Conduction: le test de CRUSS a rejeté une valeur

Tableaux 12-13

NO		Concentration mesures en ppb de NO2 dans le mélange NO-NO2/N2									X)	X) none de XI	Moyenne	Ecen-boo				
oncentration odnés en pp	A 10.	X	X	Xi	Xi	30	×9	X	XI	_^	~					- 44	11.51	0.820
C8	10.0	10.5	10.5	10.5	28.9	11.4 23.7	11.6 23.6	11.7 23.6	12 23.6	12.2 23.4	12.5 23.6	12.8 28.4	29.4	22.4	23.4	14	23.62 44.54	0.389
C7 C6 C5	24.1 47.2 94.2	64.2 57.4	44.2 07.7	44.2 87.4	64.7 97.4	87.4	45 87.7	44.4 87.2	45.2 87.7	87.4 129.9	07.2 181.4	87.4	67.7	87.7	67.2	14	87.46 130.50	0.198
G4 G2	141	130.7 171.6 236	130.4 170.8 236.5	130.1 171.6 287.9	130.7 171.9 236.5	129.6 171.3 236.7	190 W 171.1 297	132.4 172.4 287	130.9 171.9 237.6	171.0	171.9	171.0	172.7	172.1	172.6	14 0	171.61 236.61 261.19	0.540 0.485 1,495

PRES TES			tration me	surée en pi	b de NO2	dans le mé	lange NO-h	O2/N2		W 1	W. I	Y)	36	Xi	30	ntere de XI	Voyerte	Scart-type	GRURR	CHUBS
oncentration (inérée en pot		XI	χį	30	X	Xi	Xi	30	20	NI .	~	~		A 1.500		-12	11.61	0.820	1230	1.574
08 07 08 05 04 00 00 00 00 00 00 00 00 00 00 00 00	10.0 24.1 47.0 94.2 141 185.0 298	10.6 23.4 44.2 67.2 129.6 170.8 236 979	10.5 29.4 44.2 87.2 129.9 171.1 296.5 276.6	10.5 29.4 44.2 97.2 130.1 171.3 236.5 260.7	11 23.4 44.4 87.4 130.4 171.6 238.7 201.5	11.4 22.4 44.4 87.4 130.4 171.6 237 281.5	11.5 23.6 44.7 97.4 180.7 171.6 237 281.5	11.7 23.6 45 87.4 130.7 171.9 207.3 252	12 23.6 45.2 87.4 130.9 171.9 237.6 983.6	12.2 23.0 87.4 130.9 171.9	12.5 29.7 87.7 191.4 171.9	12.8 23.9 87.7 172.1	23.9 87.7 172.4	23.9 87.7 172.0	29.9 87.7 172.7	14 0 14 10 14 8	25.62 44.54 87.48 130.50 171.81 236.81 281.19	0.208 0.388 0.158 0.600 0.640 0.405 1.495	1,069 0,868 1,332 1,888 1,577 1,674 1,465	1,574 1,338 1,703 1,188 1,588 1,630 1,417 1,747

Conclusion, aucurse valeur n'est rejetée par le test de GRUSS

Semangue: But los 11 cycles, levelour NC2 augmente

Tableau 14 et figure 23

NO	Χ	Υ	Modèle	écarts	Х	Υ	modèle	droite	de calibrage
	19,50	20,89	20,89	0,00				en deu	x points
	47,20	49,71	49,81	-0,11	19,50	20,89	20,89	A=	1,0442
	92,40	96,34	97,01	-0,67	500,40	523,03	523,03	B= 5,	29E-01
	184,10	191,81	192,76	-0,95					
	275,70	287,88	288,41	-0,53					
	362,10	379,71	378,62	1,09		ANALYSEUR	Environnemer	nt SA	
	500,40	523,03	523,03	0,00		AC :	32M		
	592,20	621,64	618,88	2,76					

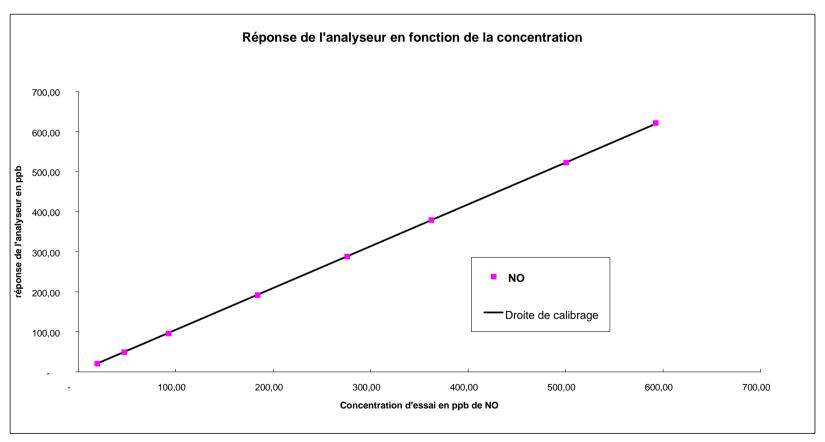
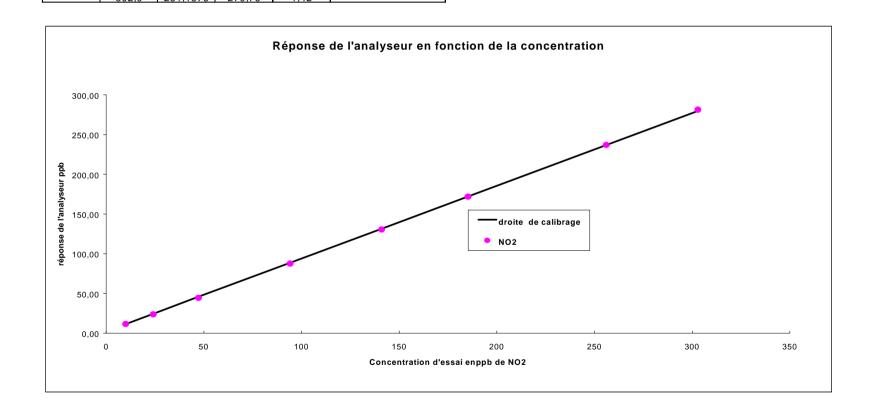



Tableau 15 et figure 24

NO2	X	Υ	Modèle	écarts	X	Υ	modèle	droite de calibrage	
	10,0	11,51	11,51	0,00				en deux points	
	24,1	23,62	24,42	-0,80	10,00	11,51	11,51	A= 0,9159	
	47,3	44,54	45,88	-1,34	256,00	236,81	236,81	B= 2,35E+00	
	94,2	87,46	88,62	-1,16					
	141,0	130,50	131,49	-0,99					
	185,3	171,81	172,06	-0,24		ANALYSEUR	Environnemer	nt SA	
	256,0	236,81	236,81	0,00		AC	32M		
	302,9	281,1875	279,76	1,42					

6.3.2 Etude de la variance

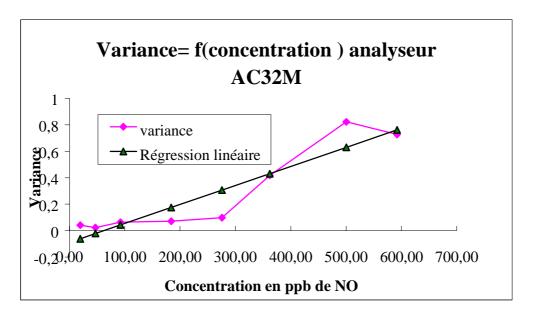
L'étude de la variance permet de mettre en évidence les valeurs aberrantes qui pourraient apparaître tout au long de l'exploration de la plage de concentrations.

Cette étude complète le test de Grubb.

Le **tableau 16** et la *figure 25* pour la variance de NO et le **tableau 17** et la *figure 26* pour la variance de NO₂ donnés ci-après, regroupent les valeurs de la variance $S_i^2 = f(C)$ ainsi que la régression linéaire.

On n'observe pas de valeur réellement élevée de la variance tant pour le NO que le NO₂.

Pour NO = au voisinage de zéro
$$\sqrt{S_i}$$
 régression linéaire = $\sqrt{[0,0625]}$ = 0,25 ppb


Pour NO_2 = au voisinage de zéro $\sqrt{S_i}$ régression linéaire = $\sqrt{[0,0107]}$ = 0,10 ppb 0,25 ppb pour le NO et 0,10 ppb pour NO_2 sont des valeurs basses.

Γ :	1			,		
ı	I =	va	leur	a	bsol	lue
L.		,	···	•	000	

Tableau 16 et figure 25

pente A= 0,001439 ordonnée à l'orig.B= -0,09057

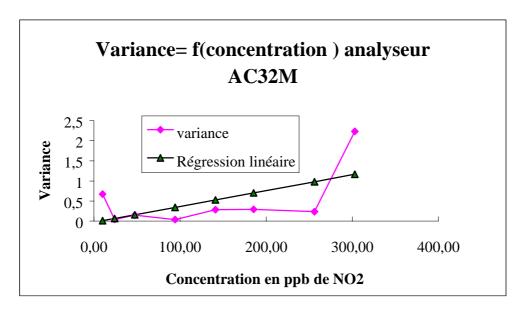

Ċ	oncentration (Si carré	Reg liné.	E cart-type
	ppb	Si^2		si
	19,50	0,0409	-0,0625	0,2023
	47,20	0,0223	-0,0227	0,1492
	92,40	0,0627	0,0424	0,2504
	184,10	0,0705	0,1743	0,2656
	275,70	0,0973	0,3061	0,3120
	362,10	0,4167	0,4304	0,6455
	500,40	0,8221	0,6294	0,9067
	592,20	0,7262	0,7614	0,8522

Tableau 17 et figure 26

pente A= 0,003945 ordonnée à l'orig.B= -0,02873

Concentration (Si carré	Reg liné.	E cart-type
ppb	Si^2		si
10,00	0,6729	0,0107	0,8203
24,10	0,0434	0,0663	0,2082
47,30	0,1513	0,1578	0,3889
94,20	0,0394	0,3428	0,1985
141,00	0,2844	0,5274	0,5333
185,30	0,2921	0,7022	0,5405
256,00	0,2355	0,9811	0,4853
302,90	2,2355	1,1661	1,4952

Variance = f(concentration) analyseur AC 32 M (NO2)

6.3.3 Comparaison au modèle linéaire

Voir les directives de la norme en annexe 4.

Pour l'analyseur AC 32 M, les coefficients A et B calculés à partir de la droite de calibrage sont :

$$A = 1.0442$$
 $B = 0,5299$ ppb pour le NO
 $A = 0,9159$ $B = 2,3503$ ppb pour le NO₂.

Ces coefficients ont été calculés après élimination de valeurs aberrantes (voir résultats donnés aux **tableaux 11** pour le NO et **13** pour le NO₂).

Les différents résultats extraits des **tableaux 7 et 8** sont regroupés ci-après dans les **tableaux 18** pour le NO et **19** pour le NO_2 .

Tableaux 18-19

Analyseur AC 32M

$\begin{array}{c} NO~dans~le~m\'elange~NO-NO2/N2\\ _{X=A*C+B}~(A=pente;B=ordo.~\grave{a} \end{array}$

1,0442 Pente = Ordonnée à l'orig. en ppb = 0,5299

Concentration		· · · Nbre de · ·		Ecart-type				
· · · ppb · · · ·	Sc absolu	répétitions	. X.i	si · · ·	Xi	ei écart	si2/ni=	ei/c*100
1								
19,50	1,1700	11	20,89	0,2023	20,89	0,00	0,0037190	0,00
47,20	2,8320	14	49,71	0,1492	49,81	-0,11	0,0015895	-0,23
92,40	5,5440	8	96,34	0,2504	97,01	-0,67	0,0078348	-0,73
184,10	11,0460	14	191,81	0,2656	192,76	-0,94	0,0050392	-0,51
275,70	16,5420	10	287,88	0,3120	288,40	-0,52	0,0097333	-0,19
362,10	21,7260	14	379,71	0,6455	378,62	1,10	0,0297645	0,30
500,40	30,0240	8	523,03	0,9067	523,03	0,00	0,1027679	0,00
592,2	35,5320	7	621,64	0,8522	618,88	2,76	0,1037415	0,47

Analyseur AC 32M

NO2 dans le mélange NO-NO2/N2 $_{X=A*C+B}$ (A=pente;B=ordo. à

Pente = 0,9159

Ordonnée à l'orig. en ppb = 2,3503

Concentration		Nbre de		Ecart-type				
···bbp···	· · Sc absolu ·	· répétitions · ·	· · · X · I · · · · · · ·	····si···	X1	ei écart	· si2/ni=· · · ·	· ei/c*100· ·
10,00	0,0850	11	11,51	0,8203	11,51	0,00	0,0611736	0,00
24,10	0,2049	14	23,62	0,2082	24,42	-0,80	0,0030965	-3,33
47,30	0,4021	8	44,54	0,3889	45,67	-1,13	0,0189063	-2,40
94,20	0,8007	14	87,46	0,1985	88,63	-1,16	0,0028140	-1,23
141,00	1,1985	10	130,50	0,5333	131,49	-0,99	0,0284444	-0,70
185,30	1,5751	14	171,81	0,5405	172,06	-0,25	0,0208634	-0,13
256,00	2,1760	8	236,81	0,4853	236,81	0,00	0,0294420	0,00
302,9	2,5747	8	281,19	1,4952	279,77	1,42	0,2794420	0,47

6.3.4 Calcul des variances

- Principe de calcul permettant de déterminer $S\hat{x}_{i}^{2}$ (voir annexe 4).
- a) Calcul de la variance associée aux concentrations Ca et Cb.

Soit σ $\overset{^2}{c_a}$ et $\sigma \overset{^2}{c_b}$: les variances associées aux concentrations C_a et C_b

b) Calcul de la variance associée aux résultats de mesurage $\overline{\chi}_{\rm a}$ et $\overline{\chi}_{\rm b}$

soit $\sigma = \frac{2}{\chi_a}$ et $\sigma = \frac{2}{\chi_b}$: variances associées aux résultats de mesurage χ_a et χ_b

c) Calcul de la variance associée à une concentration vraie C

soit σ^2 la variance associée à une concentration vraie C

- La somme des variances $S \hat{x}_i^2 = (a) + (b) + (c)$
- Application numérique pour NO et NO₂
- Pour NO:

$$C_a$$
 = 19,50 ppb C_b = 500,4 ppb \overline{x}_a = 20,89 ppb \overline{x}_b = 523,03 ppb

$$\sigma_{\bar{x}_a}^2 = 0.041$$
 $\sigma_{\bar{x}_b}^2 = 0.822$

• Pour NO_2 :

$$C_a = 10,0 \text{ ppb}$$
 $C_b = 256,0 \text{ ppb}$ $\overline{x}_a = 11,51 \text{ ppb}$ $\overline{x}_b = 236,81 \text{ ppb}$ $\sigma_{\overline{x}_a}^2 = 0,673$ $\sigma_{\overline{x}_b}^2 = 0,235$

Les valeurs sont calculées dans les **tableaux 7 et 8** dont sont extraits **les tableaux** ci-après.

• Détermination de l'incertitude sur les concentrations C, C_a et C_b.

Les mesures de NO et NO₂ s'appuient sur un prédilueur-dilueur SONIMIX dont la précision relative est donnée par le constructeur LNI. Cette précision est de 0,3 à 0,5 % selon les débits, cf certificats d'étalonnage en **annexe 6**.

Dans le cadre de l'étude elle-même, il est à noter :

- a) la bouteille de gaz de test est la même pour tous les tests,
- b) les bouteilles de gaz de travail NO NO₂ / N₂ et NO / N₂ ont été comparées à une bouteille de « transfert » prêtée par AIRPARIF. Cette bouteille de transfert raccordée à la référence nationale par le LNE a également permis d'effectuer des mesures d'intercomparaisons européennes.

Se reporter au paragraphe 5-6 pour la validation de la ligne fluidique.

• En appliquant les formules (1), (2), (3) du calcul des variances données dans **l'annexe 4** pages 2/3, on détermine la variance liée à l'incertitude sur les valeurs vraies C_a et C_b, la variance liée à l'incertitude sur les valeurs de mesurage x_a et x_b et la variance liée à l'incertitude sur la concentration vraie C.

Les résultats de calcul extraits des **tableaux 7 et 8** sont présentés ci-après.

Analyseur AC32M NO dans un mélange de NO-NO2/N2

Variances lié	es aux incertit	udes sur	s2xi	s2ei =	sei	t = ei / sei	(si / C)*100
Ca et Cb (1)	xa et xb (2)	C (3)	(1)+(2)+(3)	s²xi+s²xi			
0,01	0,04	0,01	0,00	0,07	0,27	0,00	1,04
0,05	0,04	0,09	0,00	0,17	0,42	0,25	0,32
0,24	0,05	0,34	0,01	0,63	0,79	0,84	0,27
1,16	0,11	1,33	0,01	2,61	1,61	0,59	0,14
2,79	0,24	2,98	0,01	6,03	2,46	0,21	0,11
4,99	0,42	5,15	0,03	10,59	3,25	0,33	0,18
9,83	0,82	9,83	0,10	20,58	4,54	0,00	0,18
13,94	1,17	13,77	0,09	28,96	5,38	0,51	0,14

Analyseur AC32M NO2 dans un mélange de NO2-NO2/N2

Variances lié	es aux incertit	udes sur	s2xi	s2ei =	sei	t = ei / sei	(si / C)*100
Ca et Cb (1)	xa et xb (2)	C (3)	(1)+(2)+(3)	s²xi+s²xi			
0,01	0,67	0,01	0,06	0,75	0,86	0,00	8,20
0,02	0,60	0,04	0,00	0,65	0,81	0,99	0,87
0,10	0,49	0,13	0,02	0,74	0,86	1,31	0,82
0,47	0,32	0,54	0,00	1,32	1,15	1,01	0,21
1,12	0,22	1,20	0,03	2,56	1,60	0,62	0,38
2,01	0,18	2,07	0,02	4,28	2,07	0,12	0,29
3,95	0,24	3,95	0,03	8,18	2,86	0,00	0,19
5,60	0,36	5,53	0,28	11,78	3,43	0,42	0,50

6.3.5 Etude de la fonction discriminante

La somme des variances liées nous donne $S\hat{x}_i^2$

Les valeurs de $S_{\hat{x}_i}^2$ et de $S_{\hat{x}_i}^2$ sont données dans les **tableaux 7 et 8**.

Application de l'annexe 4 page 3 :

- Examinons les valeurs t = ei/sei en fonction de la concentration donnée dans les tableaux ci-dessous et comparons-les au coefficient $\mathbf{t}_{(1-\alpha/2)}^{(n-1)}$: on constate que l'appareil est parfaitement linéaire. Le coefficient de Student est toujours supérieur à t = ei/sei.

L'AC 32 M suit donc une loi linéaire avec un intervalle de confiance de 95 % pour la plage étudiée de 20 à 600 ppb pour le NO et 10 à 300 ppb pour le NO_2

Extraits des tableaux 7 et 8

Analyseur AC32M NO dans un mélange de NO-NO2/N2

Concentration	ei	Nbre degrés	Coeff. de	t = ei / sei	sei	t0.975*sei	ei + tsei	ei - tsei
NO en ppb	Ecart moyen	de liberté	Student t					
19,50	0,00	10	1,812	0,00	0,27	0,49	0,49	-0,49
47,20	-0,10	13	1,771	0,25	0,42	0,74	0,64	-0,84
92,40	-0,67	6	1,913	0,84	0,79	1,52	0,85	-2,19
184,10	-0,95	13	1,771	0,59	1,61	2,86	1,91	-3,81
275,70	-0,53	9	1,833	0,21	2,46	4,50	3,97	-5,03
362,10	1,09	13	1,771	0,33	3,25	5,76	6,85	-4,67
500,40	0,00	7	1,895	0,00	4,54	8,60	8,60	-8,60
592,20	2,76	7	1,895	0,51	5,38	10,20	12,95	-7,44

Analyseur AC32M NO2 dans un mélange de NO2-NO2/N2

Concentration	ei	Nbre degrés	Coeff. de	t = ei / sei	sei	t0.975*sei	ei + tsei	ei - tsei
NO2 en ppb	Ecart moven	de liberté	Student t					
10,00	0,00	10	1,812	0,00	0,86	1,56	1,56	-1,56
24,10	-0,80	13	1,771	0,99	0,81	1,43	0,63	-2,24
47,30	-1,13	6	1,913	1,31	0,86	1,65	0,52	-2,78
94,20	-1,16	13	1,771	1,01	1,15	2,04	0,87	-3,20
141,00	-0,99	9	1,833	0,62	1,60	2,94	1,95	-3,92
185,30	-0,25	13	1,771	0,12	2,07	3,66	3,41	-3,91
256,00	0,00	7	1,895	0,00	2,86	5,42	5,42	-5,42
302,90	1,43	7	1,895	0,42	3,43	6,51	7,93	-5,08

Après observation de la linéarité, on vérifie que les écarts mesurés se trouvent dans un intervalle de $\pm \delta$ autour de la valeur vraie avec un niveau de confiance de $(1-\alpha)$ % pour toute valeur de Ci, i variant de 1 à Ni soit :

$$-\delta_i < \overline{e}_i < +\delta_i$$
 (annexe 4 page 3)

 $\delta_{i}\,n'est$ pas connu actuellement, néanmoins on détermine :

 $(\overline{e}_i + t.S_{\overline{e}i})$ et $(\overline{e}_i - t.S_{\overline{e}i})$ que nous avons exprimé en % relatif par rapport à la concentration C théorique : tableaux ci-dessous.

AC32M - NO dans un mélange de NO-NO2/N2

AC32M - NO2 dans un mélange de NO-NO2/N2

Concentration	% rel.	% rel.
NO en ppb	ei + tsei	ei - tsei
19,50	2,54	-2,54
47,20	1,35	-1,78
92,40	0,92	-2,37
184,10	1,04	-2,07
275,70	1,44	-1,82
362,10	1,89	-1,29
500,40	1,72	-1,72
592,20	2,19	-1,26

Concentration	% rel.	% rel.
NO2 en ppb	ei + tsei	ei - tsei
10,00	15,65	-15,65
24,10	2,61	-9,28
47,30	1,09	-5,87
94,20	0,93	-3,40
141,00	1,38	-2,78
185,30	1,84	-2,11
256,00	2,12	-2,12
302,90	2,62	-1,68

6.3.6 Répétabilité

Les écarts-types relatifs sur les plages de concentration étudiées ont été calculés à partir des écarts-types.

Les résultats regroupés ci-dessous sont extraits des tableaux 7 et 8.

On remarque que la répétabilité pour le NO et NO₂ est bonne, exception faite de la première valeur très basse : 2 % de la gamme pour le NO et 1 % de la gamme pour le NO₂.

Extraits des tableaux 7 et 8

REPETABILITE: mesure du No	dans le mélang	ae NO-NO2/N2 - AC32M
----------------------------	----------------	----------------------

VEL EIVOIEIII	E. IIIOOaro aa	ITO dallo lo ili	olango No N	JE/INE / NOULIN
Concentration NO		réponse	écart type	écart type
n°	ppb généré	moyenne ppb		relatif %
C1	19,50	20,89	0,202	1,04
C2	47,20	49,71	0,149	0,32
C3	92,40	96,34	0,250	0,27
C4	184,10	191,81	0,266	0,14
C5	275,70	287,88	0,312	0,11
C6	362,10	379,71	0,646	0,18
C7	500,40	523,03	0,907	0,18
C8	592,20	621,64	0,852	0,14

REPETABILITE: mesure du NO2 dans le mélange NO-NO2/N2 - AC32M

Concentration	NO2	réponse	écart type	écart type
n°	ppb généré	moyenne ppb		relatif %
C1	10,00	11,51	0,820	8,20
C2	24,10	23,62	0,208	0,86
C3	47,30	44,54	0,389	0,82
C4	94,20	87,46	0,198	0,21
C5	141,00	130,50	0,533	0,38
C6	185,30	171,81	0,540	0,29
C7	256,00	236,81	0,485	0,19
C8	302,90	281,19	1,495	0,49

6.4 DERIVE

6.4.1 Principe de la méthode

Elle est donnée en annexe 5.

6.4.2 Application à l'analyseur AC 32 M.

L'instrument a fonctionné successivement avec des cycles comprenant une phase de gaz de zéro et une phase de gaz de concentration avec le mélange NO et NO_2 / N_2 .

L'ensemble des résultats a été traité de deux façons :

- un calcul sur 13 jours comprenant une forte variation de pression atmosphérique,
- un calcul sur 7 jours correspondant à une période de pression assez stable.

Le suivi de l'évolution de la pression atmosphérique lors de l'essai de dérive a permis de tracer la courbe de réponse des analyseurs et de la pression atmosphérique en fonction du temps.

Les résultats sont reportés dans les différents tableaux et les figures qui leur correspondent :

Gaz	Tableau	Figures	Tableau	Figures
	Essai 7 jours	Essai 7 jours	Essai 13 jours	Essai 13 jours
NO	20	26	21	27
NO ₂	22	28	23	29

La conclusion de ces tests montre que l'analyseur AC 32 M ne dérive pas dans l'intervalle de confiance considéré.

Tableaux 20-21-22-23

RECAPITULATION DES RESULTATS DE L'ESSAI DE DERIVE

ENVIRONNEMENT SA 32M

Essai 7 jours

	NO (NO+NO2/N2)
DERIVE DU SIGNAL	NO
Concentration d'essai ppb	405,4
Dérive sur 7 jours % / jour	0,02
intervalle de confiance % /jo	0,02
Nombre de mesures	66
Moyennes des réponses p	418,80
Ecart type sur la pente ppl	0,750
Température °C	21,2
Pression hPa	993,4

Tableau n° 20

ENVIRONNEMENT SA AC 32M

Essai 13 jours

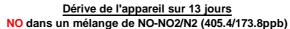
	NO (NO+NO2/N2)
DERIVE DU SIGNAL	NO
Concentration d'essai ppb	405,4
Dérive sur 7 jours % / jour	0,02
intervalle de confiance % /jour	0,02
Nombre de mesures	107
Moyennes des réponses ppb	418,71
Ecart type sur la pente ppb	0,754
Température °C	20,9
Pression hPa	1000,4

Tableau n° 21

ENVIRONNEMENT SA AC 32M

Essai 7 jours

	NO 2 (NO + NO 2/N 2)
DERIVE DU SIGNAL	NO2
Concentration d'essai ppb	173,8
Dérive sur 7 jours % / jour	-0,012
intervalle de confiance % /jo	0,05
Nombre de mesures	66
Moyennes des réponses p	183,93
Ecart type sur la pente ppl	0,713
Température °C	21,2
Pression hPa	993,4


ENVIRONNEMENT SA AC 32M

Essai 13 jours

	NO 2 (NO + NO 2/N 2)
DERIVE DU SIGNAL	NO2
Concentration d'essai ppb	173,8
Dérive sur 7 jours % / jour	-0,014
intervalle de confiance % /jour	0,02
Nombre de mesures	107
Moyennes des réponses ppb	183,94
Ecart type sur la pente ppb	0,730
Température °C	20,9
Pression hPa	1000,4

Tableau n° 22 Tableau n° 23

Figure 27

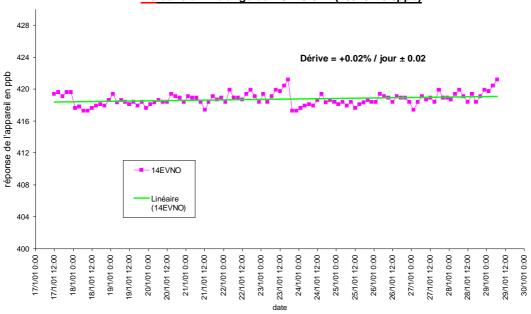


Figure 28

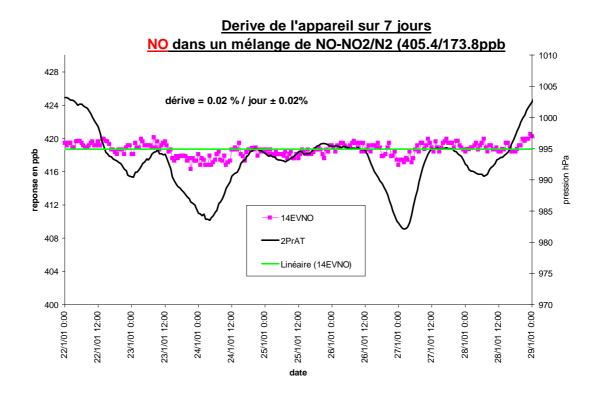
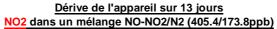



Figure 29

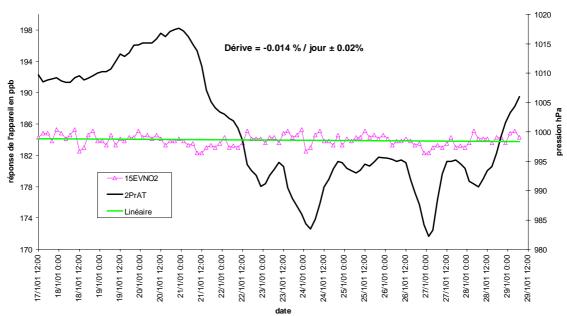
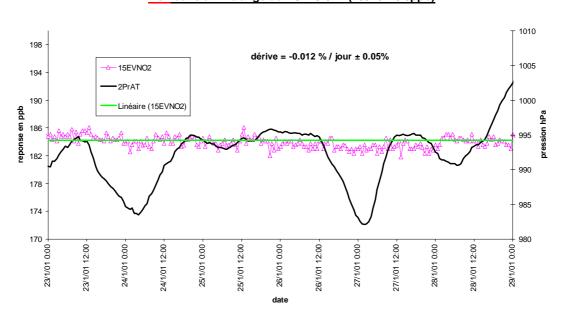
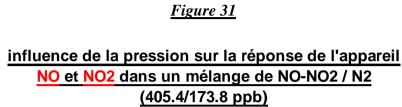
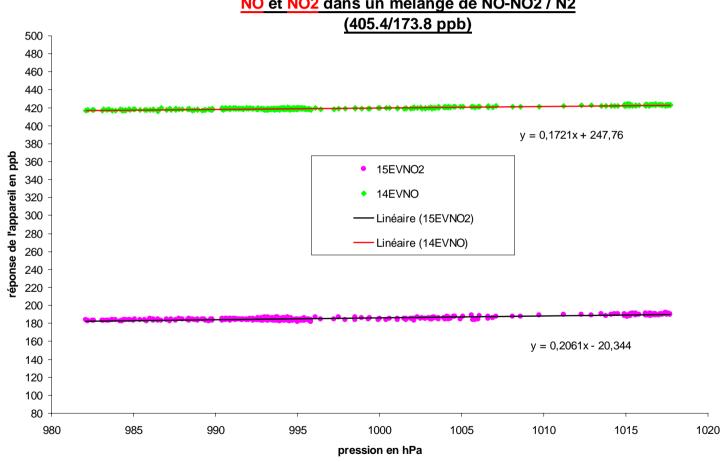



Figure 30

<u>Dérive de l'appareil sur 7 jours</u> NO2 dans un mélange de NO-NO2/N2 (405.4/173.8ppb)

7. ETUDE DE L'INTERFERENCE DE PARAMETRES PHYSIQUES


7.1 INFLUENCE DE LA PRESSION ATMOSPHERIQUE


Au paragraphe 6, nous avons noté que lors de l'essai de dérive, la pression atmosphérique a varié (voir graphes du § 6).

L'AC 32 M ne dérive pas, mais si on se reporte, par exemple, à la *figure 28*, on voit que la fluctuation de la réponse semble suivre celle de la pression atmosphérique.

On a donc tracé une courbe réponse de l'appareil en fonction de la pression atmosphérique en prenant le plus grand nombre de points sur chaque cycle. La *figure 31* montre une influence de la pression qui se chiffre, dans les conditions d'essais à :

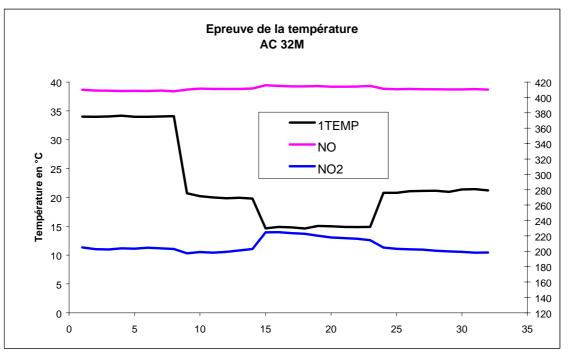
NO: 1,7 ppb / 10 hP à 420 ppb de moyenne, NO₂: 2,1 ppb / 10 hP à 187 ppb de moyenne.

7.2 INFLUENCE DE LA TEMPERATURE

2 essais ont été effectués : montée en température et descente en température.

Les essais sont regroupés dans les **tableaux 24 et 25**, la *figure 32* donne les courbes pour le NO et le NO₂.

On peut noter la forte perturbation de la réponse de l'appareil durant le palier de changement de température pour le NO_2 .


Cet essai mériterait d'être approfondi du fait de la particularité de fonctionnement des analyseurs de NO / NO_x : il serait intéressant notamment d'examiner non seulement la réponse de l'appareil mis dans une enceinte à température variable mais aussi de voir si la température de l'échantillon perturbe l'analyseur. Cet essai sera effectué et fera l'objet d'un rapport complémentaire.

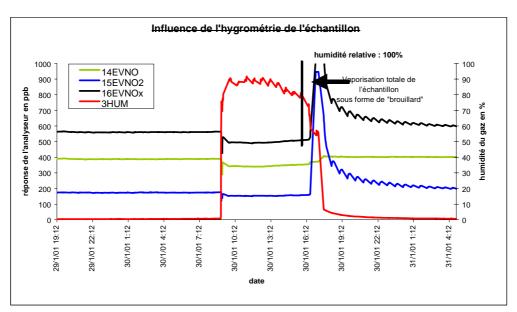
Tableaux 24-25 et *figure 32*EPREUVE DE LA TEMPERATURE : résultats NO et NO2 dans le mélange NO+NO2/N2

Analyseur	eneur générée	entration moy	Température	Ecart relatif	Ecart relatif	Ecart relatif
	ppb -NO	nesurée en pp	en °C	en % / °C	en % / 19.2°C	en % / °C
ENV SA	405,4	408,7	34,0	-0,040		
AC		411	20,1		+0.435	+0.071
32M		414,6	14,8	0,165		

Analyseur	eneur générée	entration moy	Température	Ecart relatif	Ecart relatif	Ecart relatif
	ppb -NO2	nesurée en pp	en °C	en % / °C	en % /19.2 C	en % / °C
ENV SA		203,6	34,0	+0.144		
AC	173,2	199,6	21,1		-8.32	-0.41
32M		220,2	14,8	-1.948		

Le palier de température 20/15°C étant de courte durée on note une pertubation dans la réponse de L'appareil.

7.3 INFLUENCE DE L'HUMIDITE


Cet essai a été mené avec le même mélange gazeux que les précédents tests : $NO - NO_2 / N_2$ à des concentrations respectives de 405,4 et 173,8 ppb.

Les résultats sont regroupés dans les **tableaux 26-27** et la *figure 33*, ci-après :

NO dans le mélange NO-NO2/N2 concentration Réponse humidité écart relatif Ecart relatif Ecart relatif Type ppb NO ppb % HR en %/écart de HR en % / 50% HR en % / %HR appareil ENV SA 405,4 389,14 0,7 AC 32M 336.88 89.2 -13.4 -7.59 -0.15

NO2 dans le mélange NO-NO2/N2							
Type	concentration	Réponse	humidité	écart relatif	Ecart relatif	Ecart relatif	
appareil	ppb NO2	ppb	% HR	en %/écart de HR	en % / 50%HR	en % / %HR	
ENV SA	173,8	174,15	0,7				
AC 32M		151,30	89,2	-13,1	-7,4	-0,15	

Les résultats sur les taux de dilution sont calculés et corrigés en tenant compte de la présence de 12.7g d'eau / Kg d'air sec à 20°c pour 90% d'humidité relative.

Au delà de 90-95% d'humidité relative , l'appareil ne donnne plus de mesure; l'écran de l'analyseur affiche alors "dépassement d'échelle"

Lorsque le taux d'humidité relative redescend à 90% environ, la mesure "NO-NO2-NOx" s'affiche à nouveau mais les résultats sont pertubés. Cet effet de mémoire dure une dizaine d'heure environ.

<u>Nota</u>: Le dispositif expérimental a conduit à une sursaturation de l'effluent en humidité. Les résultats issus de cette situation anormale n'ont pas été exploités.

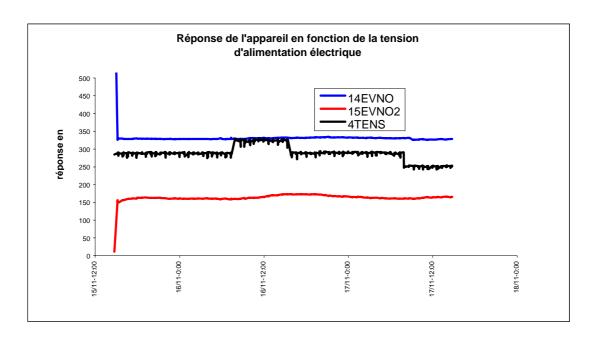
7.4 INFLUENCE DE LA TENSION D'ALIMENTATION ELECTRIQUE SUR LE FONCTIONNEMENT **DE L'ANALYSEUR**

L'essai a été mené avec le même type de mélange : $NO - NO_2 / N_2$.

Les résultats, regroupés dans les tableauxci-après, montrent une influence plus grande sur la réponse de l'appareil, lors d'une baisse de tension que lors d'une augmentation, que ce soit pour le NO ou pour le NO_{2.}

Analyseur ENVIRONNEMENT SA - AC 32M									
	Concentration d'essai: 322.3ppb de NO dans un mélange NO-NO2 / N2								
	concentration	Réponse	tension	tension	écart relatif				
appareil	ppb	ppb	volt		en %				
	322,3	330,50	230,8	référence=U					
AC		330,7	246,2	U+10%U	0,06				
32M		332,0	231,3	référence=U					

215,4


U-10%U

1,23

327,90

Tableaux 28 et 29 et figure 34

Analyseur ENVIRONNEMENT SA - AC 32M							
Concentration d'essai: 164.8 ppb de NO2 dans un mélange NO-NO2 / N2							
Type	concentration	Réponse	tension	tension	écart relatif		
appareil	ppb	ppb	volt		en %		
	164,8	163,80	230,8	référence=U			
AC		163,70	246,2	U+10%U	-0,06		
32M		166,90	231,3	référence=U			
		163,30	215,4	U-10%U	2,16		

8. INFLUENCE DES INTERFERENTS GAZEUX

8.1 DEFINITION

On appelle substance interférente, toute substance autre que le constituant dosé qui, de par sa présence dans l'échantillon, entraîne des variations de réponse de l'instrument.

Le coefficient d'interférence positif ou négatif est exprimé de la façon suivante :

$$I_{\text{en}\%} = \frac{X_{i} - X_{0}}{C_{i}} \times 100$$

Où X_i = réponse de l'instrument avec l'interférent

X_o = réponse de l'instrument sans interférent

C_i = concentration de l'interférent.

Les interférents identifiés dans le cas présent sont SO₂ et NH₃.

L'essai a été mené avec les concentrations en SO₂ et NH₃ suivantes:

NH_3	$NO - NO_2/N_2$	Effet d'interférent	
		pour 100 ppb	
189,6 ppb	329,4 – 141,2 ppb	0.0	

SO ₂	$NO - NO_2/N_2$	Effet d'interférent	
		pour 100 ppb	
192 ppb	355,5 – 155,5 ppb	0.0	

9. REMARQUES SUR L'APPAREIL AC 32 M

9.1 MISE EN SERVICE

18 octobre 2000 : Mise en service de l'analyseur 32 M.

9.2 FONCTIONNEMENT DE L'APPAREIL

- Aucune panne pendant 5 mois de fonctionnement.
- L'appareil a été utilisé uniquement sur la voie échantillon en mode cycle automatique.
- Le « zéro adjust » avait été réglé préalablement par le constructeur.

- L'appareil n'a pas été recalibré systématiquement du fait de sa bonne stabilité, en particulier un arrêt de l'appareil de plusieurs heures dû à une panne technique de l'INERIS a permis de constater que la valeur de calibration était stable à la remise en service de l'appareil.
- A la fin des tests, on a procédé à 3 TPG pour voir si le four de conversion avait gardé ses performances : la réponse moyenne a été de 98,80 % pour une valeur initiale calculée à l'INERIS avant le début des tests de 99,6 %. Compte tenu de l'incertitude liée au saut de chiffre de l'afficheur numérique, on peut dire que le four n'a pas évolué pendant toute la durée des tests.

ANNEXES 1 à 6

DEFINITION ET PRINCIPES D'ESSAIS DES CARACTERISTIQUES DES ANALYSEURS SELON LA NORME NFX 20-300

Annexe 1 :	Temps de réponse, mort, de montée et de descente	(2 pages)
Annexe 2 :	Limites de décision, de détection et de quantification	(2 pages)
Annexe 3:	Linéarité	(1 page)
Annexe 4 :	Comparaison au modèle linéaire	(3 pages)
Annexe 5 :	Dérive	(1 page)
Annexe 6 :	Certificat d'étalonnage du constructeur LN Industrie en ce qui concerne le raccordement de la débitmétrie selon la marque d'étalonnage OFMET	
	(Office Fédéral de la Métrologie)	(2 pages)

1/2

ANNEXE 1

(2 pages)

TEMPS DE REPONSE, TEMPS MORT, TEMPS DE MONTEE ET DE DESCENTE

Définition

Le **temps de réponse** est l'intervalle qui sépare le moment où une variation instantanée de concentration est produite à l'entrée de l'analyseur et l'instant où la réponse de l'analyseur atteint un niveau correspondant à 90 % de la valeur finale de la lecture.

Le **temps mort** est égal à l'intervalle de temps qui sépare le moment où une variation instantanée de concentration est produite à l'entrée de l'analyseur et l'instant où la réponse atteint un niveau correspondant à 10 % de la valeur finale de lecture.

Le **temps de montée** (et **de descente**) est la différence entre le temps de réponse et le temps mort.

Principe de la méthode d'essais

On adresse à l'analyseur la concentration C_0 nulle ou proche de zéro, sa réponse est x_0 .

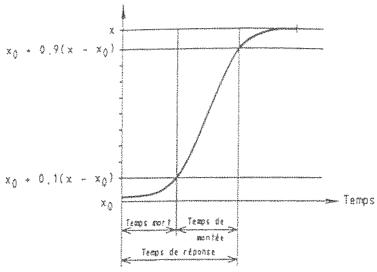
Puis à l'entrée de l'analyseur, on fait varier instantanément la concentration de C_o à C: la réponse de l'analyseur varie alors de x_o à x.

On renouvelle l'opération.

Pour une variation croissante de concentration :

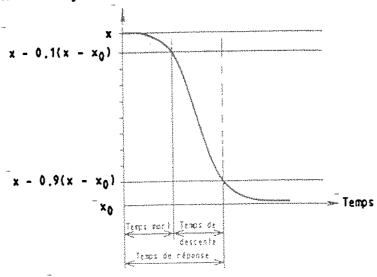
- le temps de réponse est l'intervalle de temps qui sépare le moment où a été produite la variation $C_o \to C$ de l'instant où la réponse a atteint le niveau x + 0.9 (x-x_o).
- le temps mort est l'intervalle de temps qui sépare le moment où a été produite la variation de $C_o \rightarrow C$ de l'instant où la réponse a atteint le niveau x + 0,1 $(x-x_o)$.

Pour une variation décroissante de concentration :


- le temps de réponse est l'intervalle de temps qui sépare le moment où a été produite la variation $C \to C_0$ de l'instant où la réponse a atteint le niveau x_0 0,9 $(x-x_0)$.
- le temps mort est l'intervalle de temps qui sépare le moment où a été produite la variation de $C \rightarrow C_o$ de l'instant où la réponse a atteint le niveau x_o 0,1 (x-x_o).

D'après la norme, l'opérateur doit déterminer les valeurs de ces quatre paramètres (temps de réponse, temps mort, temps de montée, temps de descente) pour un saut de concentration faible et un saut de concentration aussi important que possible dans la gamme de concentration mesurable.

ANNEXE 1 (suite)


La *figure ci-dessous* présente les schémas illustrant le temps de réponse, le temps mort de montée et le temps de descente.

indicateur de l'analyseur-

a) Variations croissantes de concentration

indicateur de l'analyseur

b) Variations décroissantes de concentration

ANNEXE 2

(2 pages)

LIMITES DE DECISION, DE DETECTION ET DE QUANTIFICATION

Définition

La limite de décision x_D [à un niveau de confiance $(1-\alpha)$, soit 95 %] est la valeur de mesurage en dessous de laquelle on ne peut pas affirmer avec une probabilité au moins égale à $(1-\alpha)$ que la concentration vraie conduisant à cette mesure ne soit pas égale à la concentration nulle.

La limite de détection C_D [à un niveau de confiance (1- α), soit 95 %] est la concentration vraie déduite de la limite de décision par application de la droite de calibrage.

La limite de quantification C_Q [à un niveau de confiance (1- α), soit 95 %] est la concentration vraie qui a la probabilité au moins égale à (1 - β) d'être supérieure à la limite de détection C_D .

Par convention, les valeurs retenues pour α et β sont de 5 %.

Principe de la méthode d'essais - Détermination des limites

Le principe de détermination de ces limites est celui décrit dans la norme X 20-300 « Evaluation des caractéristiques des analyseurs de gaz sur banc d'essai ».

On réalise de préférence de l'ordre de 10 mesures indépendantes, c'est-à-dire avec injection d'un gaz de concentration nulle entre chaque mesurage, afin de limiter les phénomènes d'hystérésis.

L'intervalle de confiance est évalué à partir de l'écart-type estimé S, à une concentration C faible qui commodément pourra être la concentration C_a , la plus faible des deux concentrations utilisées pour la détermination de la droite de calibrage.

De plus, on peut comparer la valeur S au niveau C_a à celle obtenue au niveau zéro pour s'assurer qu'il n'y a pas de dispersion importante dans la plage des faibles concentrations, zéro compris.

En ayant choisi un risque de première espèce α , on calcule la limite de décision x_D qui est de la forme :

 $\mathbf{X}_D = \mathbf{t}_{(1-\alpha)}^{(n-1)} \cdot \mathbf{S}$ avec t coefficient de Student.

2/2

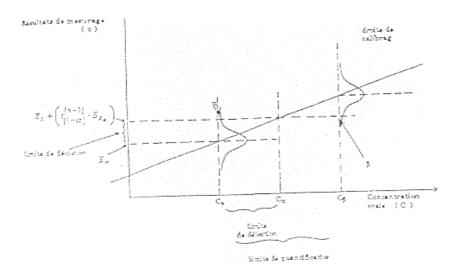
ANNEXE 2 (suite)

En utilisant la droite de calibrage, on détermine : $C_{\bar{x}}$ abscisse qui correspond à la valeur du mesurage et C_{σ} abscisse qui correspond à la valeur :

 $t_{(1-\alpha)}^{(1-\alpha)}$

On en déduit la limite de détection CD qui est de la forme

$$C_{\sigma} - C_{\bar{x}}$$
 soit $\frac{xD}{A}$


En ayant choisi un risque de deuxième espèce β , et en faisant l'hypothèse que l'écart-type estimé est constant dans cet intervalle de concentration, on détermine, à partir de la droite de calibrage C_{β} abscisse qui correspond à la valeur

$$\left(\widetilde{\mathbf{x}} + \left[\mathbf{t}_{(1-\alpha)}^{(n-1)} + \mathbf{t}_{(1-\beta)}^{(n-1)}\right], \widetilde{\mathbf{S}}\right)$$

on en déduit la limite de quantification CQ, qui est de la forme

$$C_Q = C_B - C_{\overline{a}}$$
 soit $\frac{2x_b}{A}$

La figure ci-dessous résume la procédure de détermination des limites :

ANNEXE 3

(1 page)

LINEARITE

On définit dans le domaine de concentration spécifié au moins 6 concentrations intermédiaires et de préférence de l'ordre de 10 (ou plus). On notera k le nombre de concentrations considérées. Parmi les concentrations d'essais figurent les deux concentrations ayant servi à l'établissement de la droite de calibrage. Pour chaque concentration ainsi définie, on réalise au moins dix mesures avec retour au zéro entre chaque mesurage afin d'éviter les phénomènes d'hystérésis et de travailler sur des réponses indépendantes.

Test de GRUBB

L'estimation de l'écart-type S_i à C_i a la forme :

$$\mathbf{S}_{i} = \sqrt{\frac{\sum j x_{ij}^{2} - \left[\frac{\left(\sum j x_{ij}\right)^{2}}{n_{i}}\right]}{n_{i-1}}}$$

avec
$$\overline{x_i} = \sum_i jx_{ij} / n_i$$

A C_i, on prend la valeur de mesure x_i extr. qui est la plus éloignée en valeur absolue de la moyenne et on déduit la valeur du test :

$$TC = \left| \mathbf{X}_{i,extr} - \mathbf{X}_{i} \right| / \mathbf{S}_{i}$$

et on compare avec les valeurs du test de Grubb qui est pris comme valeur critique. Si TC est plus grand que la valeur critique, il faut recommencer 2_{ni} mesurages à la concentration C_i et effectuer une nouvelle comparaison de TC avec le test de Grubb. Si TC est à nouveau plus grand que la valeur critique, les valeurs extrêmes ne doivent pas être rejetées et les calculs suivants seront effectuées sur les $3n_i$ mesurages réalisés à C_i . Par contre, si le nouveau TC est inférieur à la valeur critique, on pourra rejeter la valeur extrême et continuer le traitement sur les (3ni-1) mesurages réalisés à C_i .

Il est recommandé de ne pas éliminer plus de 5 % des valeurs expérimentales.

ANNEXE 4

(3 pages)

COMPARAISON AU MODELE LINEAIRE

Soient x_{ij} les réponses de l'appareil pour une concentration vraie $C_{i,j}$ variant de 1 à n_i . La moyenne des résultats est :

$$\overline{X}_{i} = \frac{\sum_{j=1}^{n_{i}} X_{ij}}{n_{i}}$$

soit x_i la réponse <u>estimée</u> de l'appareil pour une concentration C_i déduite de la droite de calibrage.

l'écart entre la valeur estimée et un résultat de mesurage s'écrit :

$$\mathbf{e}_{ij} = \mathbf{x}_{ij} - \hat{\mathbf{x}}_{i}$$

l'écart moyen:

$$\overline{e_i} = \overline{x_i} - \hat{x}_i$$

 \bar{e}_i , \bar{x}_i et \hat{x}_i sont déterminés à partir des résultats de mesures sans les valeurs aberrantes.

La loi de composition des variances nous permet d'écrire la variance de l'écart moyen, soit :

$$S_{\bar{e}_{i}}^{2} = S_{\bar{x}_{i}}^{2} + S_{\hat{x}_{i}}^{2}$$

avec

$$S_{\overline{x}_i}^2 = \frac{S_i^2}{n}$$

S_i est donné après application du test de Grubb.

 $S_{\hat{x}_i}^2$ correspond à la somme des variances liées à l'incertitude sur C_a et C_b , \overline{x}_a et \overline{x}_b et C .

Principe de calcul permettant de déterminer $S_{\hat{x}_i}^2$

La droite de calibrage étant de la forme x=A.C+B

avec

$$A = \frac{\overline{x}_b - \overline{x}_a}{C_b - C_a}$$

$$B = \frac{\overline{x}_a C_b - \overline{x}_b C_a}{C_b - C_a}$$

après simplification, on peut écrire :

$$\hat{\mathbf{x}} = \overline{\mathbf{x}}_{\mathbf{a}} + \frac{\overline{\mathbf{x}}_{\mathbf{b}} - \overline{\mathbf{x}}_{\mathbf{a}}}{\mathbf{C}_{\mathbf{b}} - \mathbf{C}_{\mathbf{a}}} (\mathbf{C} - \mathbf{C}_{\mathbf{a}})$$

Soit $\sigma_{C_a}^2$ et $\sigma_{C_b}^2$ les variances associées aux concentrations C_a et C_b

Soit $\sigma_{\overline{x}_a}^{\frac{2}{x_a}}$ et $\sigma_{\overline{x}_b}^{\frac{2}{x_b}}$ les variances associées aux résultats de mesurage \overline{X}_a et \overline{x}_b

Soit σ_c^2 la variance associée à une concentration vraie C.

La variance liée à l'incertitude sur les valeurs de mesurage C_a et C_b est :

$$\left(\frac{\overline{x}_{b} - \overline{x}_{a}}{C_{b} - C_{a}}\right)^{2} \cdot \frac{1}{\left(C_{b} - C_{a}\right)^{2}} \left\{ \left(C - C_{a}\right)^{2} \sigma_{C_{b}}^{2} + \left(C - C_{b}\right)^{2} \sigma_{C_{a}}^{2} \right\}$$
(1)

La variance liée à l'incertitude sur les valeurs de mesurage x_a et x_b est :

$$\frac{1}{(C_{b} - C_{a})^{2}} \left\{ (C - C_{a})^{2} \sigma_{\bar{x}_{b}}^{2} + (C_{b} - C)^{2} \sigma_{\bar{x}_{a}}^{2} \right\}$$
 (2)

La variance liée à l'incertitude sur la concentration vraie C est :

$$\left(\frac{\overline{x}_b - \overline{x}_a}{C_b - C_a}\right)^2 \cdot \sigma_C^2 \tag{3}$$

La variance liée à $x\left(\sigma_{\hat{x}}^2\right)$ est égale à la somme des variances calculées ci-dessus soit :

$$S_{\hat{x}_i}^2 = (1) + (2) + (3).$$

3/3

Détermination de l'incertitude sur les concentrations C_a et C_b

La somme de ces variances liées nous donne $S^2_{\hat{x}_i}$

Il en est déduit :

$$S_{\bar{e}_i}^2 = S_{\bar{x}_i}^2 + S_{\hat{x}_i}^2$$

Il faut maintenant comparer e_i à zéro, ceci revient à comparer la moyenne \overline{x}_i à la valeur estimée \hat{x}_i

Pour ce faire, on calcule la fonction discriminante : t $= \frac{\overline{e}_i}{S_{\overline{e}_i}}$

Le risque de première espèce ayant été préalablement choisi (α), on compare |t| au coefficient de Student $t_{(1-\alpha/2)}^{(n-1)}$

L'hypothèse $\stackrel{-}{e_i}=0$ (il n'y a pas d'écart) n'est pas rejetée si : $\left|t\right|< t_{(1-\alpha/2)}^{(n-1)}$

Si pour toutes les concentrations C_i , i varie de 1 à k, le même résultat est obtenu, l'hypothèse de linéarité sera acceptée sachant que le risque global est différent de α .

On observe la non-linéarité. On vérifie aussi si les écarts mesurés se trouvent dans un intervalle de \pm δ autour de la valeur vraie avec un niveau de confiance de (1- α) % pour toute valeur de $C_{i,i}$ variant de 1 à n_i , soit :

$$-\delta_{i} < e_{i} < +\delta_{i}$$

Pour toutes les valeurs de C_i, on déduit les deux inégalités suivantes :

$$-\delta_{i} < \overline{e}_{i} - t_{(1-\alpha/2)} \cdot S_{\overline{e}_{i}}$$

$$\overline{e}_{i} + t_{(1-a/2)} \cdot \alpha_{\overline{e}_{i}} < + \delta_{i}$$

Si ces deux inégalités sont respectées pour toutes les valeurs de C_i, la spécification de linéarité est respectée.

La valeur de δi n'est actuellement pas déterminée.

ANNEXE 5

(1 page)

DERIVE

Définition

La dérive est la variation systématique des indications d'un analyseur pour des niveaux de concentrations compris entre C_Q et C_{max} pendant une période de temps définie, les conditions d'environnement restant constantes.

Il y a lieu de distinguer la dérive de zéro, ou au voisinage de zéro qui concerne le fonctionnement de l'instrument opérant sur des échantillons de concentration faible, et la dérive de sensibilité, considérée à un ou plusieurs niveaux de concentration.

Principe de la méthode d'essai

On dispose d'un ou plusieurs mélanges de gaz de concentrations constantes ou reproductibles et d'un gaz de concentration nulle ou faible. Une succession de concentrations est assurée sur l'alimentation de l'analyseur à l'aide de ces mélanges de gaz. La séquence est reproduite périodiquement. Des ajustements linéaires, en fonction du temps, sont effectués respectivement pour les indications correspondant à chaque niveau de concentration. Les pentes des ajustements fournissent une estimation de la dérive à chaque niveau.

La droite de régression est donnée par l'équation suivante :

$$x = A + Bt$$

où x est le résultat du mesurage obtenu au temps t,

$$B = \frac{n\Sigma tx - (\Sigma t)(\Sigma x)}{n\Sigma t^2 - (\Sigma t)^2} \qquad A = \frac{\Sigma x - B\Sigma t}{n}$$

et n est le nombre des mesures.

ANNEXE 6 (page ½)

Eidgenössisches Amt für Messwesen Office fédéral de métrologie Ufficio federale di metrologia Swiss Federal Office of Metrology

N° 223-0027

Certificat d'étalonnage

Objet 1 Référence de débit

Fabricant : LN INDUSTRIES SA, Châtelaine

N° de série : 900

Requérant LN INDUSTRIES SA, 1219 Châtelaine

Portée de l'étalonnage

Le débit est généré par huit buses soniques. Chacune est successivement reliée à l'étalon pour étalonnage. Le résultat du mesurage est exprimé sous forme d'une valeur moyenne (\overline{q}_{ν}) et d'un écart-type expérimental (s) calculés sur min. quatre mesurages. Les indications de la pression de régulation et de la température des buses ont été relevées. La pression après le régulateur de pression a également été relevée à l'aide d'un système externe étalonné (WIKA 0-10 bar, certificat d'étalonnage 12.3-0607 du 2.2.1994).

Méthode de mesurage

Le dispositif a été enclenché au moins 12 h avant son utilisation pour assurer sa stabilisation. Le débit est généré dans le dispositif installé horizontalement et il est mesuré par le système d'étalonnage volumétrique primaire pour petits débits de gaz de l'Office fédéral de métrologie (OFMET). Celui-ci est rattaché aux étalons nationaux de longueur, de temps, de température et de pression de l'OFMET. Les valeurs de débit ont été automatiquement ramenées aux conditions de référence. Toutes les valeurs des paramètres ont été enregistrées.

Conditions de mesurage

Pendant le mesurage, la température du gaz se situait entre 20,79 °C et 21,15 °C. La pression du gaz dans le cylindre de mesure de l'étalon de l'OFMET se situait entre 958,84 hPa et 961,96 hPa et la pression ambiante entre 953,95 hPa et 956,82 hPa. De l'azote (qualité 99,995 % vol, Carbagas) avec une surpression de (5000 ± 100) hPa a été utilisée comme gaz de mesurage. Les conditions de référence sont de 20 °C et 1013,25 hPa.

ANNEXE 6 (suite)

Eidgenössisches Amt für Messwesen Office fédéral de métrologie Ufficio federale di metrologia Swiss Federal Office of Metrology

Certificat d'étalonnage (suite)

N° 223-0027

2/2

Résultats de mesurage

Les débits indiqués se réfèrent aux conditions de référence (20 °C et 1013,25 hPa)

		Pression après réglage interne [hPa]			
	Val. nom [ml/min]	Mesure externe pression rel.	Affichage de l'instrument pression abs.	Indication de la température buse [°C]	Etalon OFMET q
1	1	2950	3902 - 3903	36,71 - 36,83	0,9748 ± 0,0034
2	25	2950	3901 - 3902	37,41 - 37,49	$4,4659 \pm 0,0046$
3	10	2950	3902 - 3903	37,94 - 38,08	$9,6896 \pm 0,0023$
4	50	2950	3902 - 3903	38,32 - 38,54	$47,266 \pm 0,012$
5	100	2950	3902 - 3904	38,43 - 38,68	98,137 ± 0,011
6	500	2950	3903 - 3904	38,42 - 38,69	478,42 ± 0,02
7	1000	2950	3903 - 3904	38,57 - 38,83	981,61 ± 0,09
8	5000	2950	3903 - 3904	37,72 - 37,96	$4780,7 \pm 0,2$

Incertitude de mesure

pour $q_v \ge 20 \text{ ml/min}$:

 $U_{95} = 0.003 \times q_v$

20 ml/min > $q_v \ge 4$ ml/min $q_v < 4 \text{ ml/min}$:

 $U_{95} = 0.005 \times q_v$ $U_{05} = 0.01 \times q_v$

La valeur mesurée et l'incertitude qui lui correspond définissent le domaine dans lequel se situe la valeur de la grandeur mesurée avec une probabilité de 95 %. L'incertitude estimée contient les contributions de l'étalon utilisé, de la procédure d'étalonnage, des conditions d'environnement et de l'objet étalonné. Il n'a pas été tenu compte du comportement à long terme de l'objet étalonné.

Date de l'étalonnage

Les mesurages ont été effectués du 26 au 27 novembre 1998. Le dispositif a été muni de la marque d'étalonnage OFMET 11.98.

Pour le mesurage

Office fédéral de métrologie Division électricité et métrologie

pour l'environnement

Wabern, le 30 novembre 1998

Ulrich Feller, vice directeur