

Evaluation d'un analyseur d'oxydes d'azote NO, NO₂, NO_x par chimiluminescence

Appareil COSMA Topaze 3020 S

Laboratoire Central de Surveillance de la Qualité de l'Air

Danièle GUILLARD – Yves GODET

Unité « Qualité de l'Air » Direction des Risques Chroniques

Avril 2001

Evaluation d'un analyseur d'oxydes d'azote NO, NO2, NOx par chimiluminescence

Appareil COSMA Topaze 3020 S

Laboratoire Central de Surveillance de la Qualité de l'Air

Loi sur l'Air – Convention 18/99

D. GUILLARD - Y. GODET

Ce document comporte 70 pages (hors couverture et annexes).

	Rédaction	Vérification	Approbation
NOM	Danièle GUILLARD	Rémi PERRET	Michel NOMINE
	Yves GODET		Martine RAMEL
Qualité	Qualité de l'Air Direction des Risques Chroniques	Qualité de l'Air Direction des Risques Chroniques	Direction des Risques Chroniques
Visa			

TABLE DES MATIERES

1.	RÉSUMÉ4				
2.	INTRODUCTION				
3.	PRI	NCIPE DE LA MESURE	7		
	3.1	Rappel	7		
	3.2	Application de la mesure des oxydes d'azote avec l'appareil topaze 3020	S7		
4.	DES	SCRIPTION SOMMAIRE DE L'ANALYSEUR	8		
	4.1	Cycles d'analyse	8		
	4.2	Fonctionnement de l'appareil	10		
	4.3	Caractéristiques techniques du Topaze 3020 S	10		
	4.4	Présentation de l'appareil	13		
	4.5	Eléments constitutifs internes à l'appareil	15		
5.	DES	SCRIPTION DE LA CHAINE DE MESURE	19		
	5.1	Banc d'essai	19		
	5.2	Banc pour titration en phase gazeuse	19		
	5.3	Fluides utilisés	19		
	5.4	Chaîne d'acquisition de données	22		
	5.5	Validation de la chaîne d'acquisition de données	23		
	5.6	Test du banc de dilution des gaz	23		
	5.7	Conclusion sur les points de validation	23		
	5.8	Titration en phase gazeuse sur l'analyseur de comparaison et l'analyseur à tester.	ι 23		
6.	ESS	AIS METROLOGIQUES	24		
	6.1	Temps de réponse, temps mort, temps de montée et de descente	24		
	6.2	Limite de décision, limite de détection, limite de quantification	37		
	6.3	Linéarité	41		
	6.4	Dérive	57		
7.	ETU	JDE DE L'INFLUENCE DE PARAMETRES PHYSIQUES	61		
	7.1	Influence de la pression atmosphérique	61		
	7.2	Influence de la température	63		
	7.3	Influence de l'humidité	65		

	7.4	Influence de la tension d'alimentation électrique sur le fonctionnement de l'analyseur	66
8.	INF	LUENCE DES INTERFERENTS GAZEUX	68
	8.1	Définition	68
9.	REN	MARQUES SUR L'APPAREIL TOPAZE 3020 S	68
	9.1	Mise en service	68
	9.2	Fonctionnement de l'appareil	68

1. RESUME

L'analyseur d'oxydes d'azote par chimiluminescence COSMA type Topaze 3020 S a été évalué selon la norme X 20 300. La gamme de mesure était de 0 à 1 000 ppb.

Les valeurs des caractéristiques métrologiques qui ont été déterminées, sont indiquées dans les tableaux récapitulatifs ci-après, et comparées au projet de spécifications étudié dans le cadre du groupe de travail AFNOR (commission X 43 B et D).

Cette comparaison montre que l'appareil a dans l'ensemble des performances correctes par rapport aux spécifications.

On notera toutefois un dépassement des spécifications pour l'essai de dérive ainsi que pour les essais d'influence sur NO_2 de la pression atmosphérique et de la température.

Le paramètre d'influence le plus important est l'humidité de l'air (comme sur tous les appareils à chimiluminescence); l'étude de l'influence de la température a donné des résultats difficiles à interpréter et mériterait d'être complété.

Par ailleurs, lors de variations rapides de concentrations (fluctuations à l'échelle de la minute), l'appareil surestime les concentrations en NO_2 .

Tableau récapitulatif

(Page 1/2)

TABLEAU RECAPITULATIF DE L'EVALU	JATION D'UN ANALYSEU	IR DE NO-NOx PAR C	HIMILUMINESCENCE : TOPAZE 3020S - COSMA	Projet de SPECIFICATIONS
	SELON	LA NORME NFX 20-3	00	du 4 Avril 2001
TEMPS DE REPONSE SUR 1 CYCLE	Topaze 302	0S nº 136	OBSERVATIONS	
	cycle croissant	cycle décroissant		
NO/N2 NO dans NO-NO2 / N2	37.7 secondes	18 secondes		220 secondes
NO2 dans NO-NO2 / N2	47 secondes	18secondes		
TEMPS DE REPONSE SUR 10 CYCLES	Topaze 302	0S nº 136		
	cycle croissant	cycle décroissant	Les essais montrent que les valeurs de NO2 (NOx - NO)	
NO/N2	23 secondes	22.7 secondes	peuvent être surestimées lors de variations rapides des	220 secondes
NO dans NO-NO2 / N2 NO2 dans NO-NO2 / N2	29.2 secondes 49.5 secondes	29.7 secondes	concentrations (< au temps de réponse)	
	10.0 00001000	04.0 00001000		
	Topaze 302	20Sn° 136	•	
LINEAUTE	100020 002		Le mode de calcul du test 't' tel que l'indique la norme	
NO dans NO-NO2 / N2	test "t" respecté	2,10%	révèle une linéarité complète sur la gamme 20 - 600ppb	5% de la valeur
	1	4.000/	pour le NO	entre 20 et 1000ppb
NO2 dans NO-NO2 / N2	test "t" respecte	1,30%	Le mode de calcul du test t tel que l'indique la norme révèle, une linéarité complète sur la gamme 10-300 ppb	5% de la valeur
			pour le NO2	
REPETABILITE	Topaze 302	0S n° 136		
NO dans NO-NO2 / N2	0.31%<écart type relatif r	moyen%<0.64%	pour les essais allant de 5% à 60% de la gamme étudiée	5 ppb
	1.8 ppb)	(1.9% EcTyRe à 2 % de la gamme étudiée)	
NO2 dans NO-NO2 / N2	0.56%<écart type relatif r	moyen%<2.4%	pour les essais allant de 2.5% à 40% de la gamme étudiée	5 ppb
	1.7 000			0 000
CALCUL	S DES LIMITES			
LIMITE DE DECISION	Topaze 302	0S nº 136	4	
NO dans NO-NO2 / N2	0.66ppb			
NO2 dans NO-NO2 / N2	1.82 ppb			
LIMITE DE DETECTION	Topaze 302	0S nº 136		
NO dans NO-NO2 / N2	0.62 ppb			
NO2 dans NO-NO2 / N2	1.66 ppb			
LIMITE DE QUANTIFICATION	Topaze 302	0S n° 136		
NO dans NO-NO2 / N2	1.23 ppb			5 ppb
	2 22 pph			5 ppb
	3.33 PPD			5 660
	T 202	00 - 8 400		
AVEC UNE FORTE VARIATION DE LA PRESSION	Topaze 302	05 h ⁻ 136		
NO dans NO-NO2 / N2	- 0.80 % / j ± 0.29 %		Voir remarque sur l'influence de la pression atrmosphérique	pas de spécifications
NO2 dans NO-NO2 / N2				
	- 1.26 % / j ± 0.31			
DERIVE SUR 7JOURS	- 1.26 % / J ± 0.31 Topaze 302	0S nº 136		pas de spécifications
DERIVE SUR 7JOURS AVEC ELIMINATION DE LA FORTE VARIATION	- 1.26 % / j ± 0.31 Topaze 302	0S nº 136		pas de spécifications
DERIVE SUR 7JOURS AVEC ELIMINATION DE LA FORTE VARIATION DE LA PRESSION	- 1.26 % / j ± 0.31	0S nº 136		pas de spécifications
DERIVE SUR 7JOURS AVEC ELIMINATION DE LA FORTE VARIATION DE LA PRESSION NO dans NO-NO2 / N2	- 1.26 % / j ± 0.31 Topaze 302 + 1.53 % / j ± 0.31	0S nº 136	Voir remarque sur l'influence de la pression atrmosphérique	pas de spécifications 1%/jour

Tableau récapitulatif

(Page 2/2)

TABLEAU RECAPITULATIF DE L'EVALUATION D'UN ANALYSEUR DE NO-NOX PAR CHIMILUMINESCENCE : TOPAZE 3020S - COSMA				
	SELON LA NORME NFX 20		du 4 Avril 2001	
INFLUENCE DES P	ARAMETRES PHYSIQUES	OBSERVATIONS		
PRESSION ATMOSPHERIQUE	Topaze 3020S nº 136			
NO dans NO-NO2 / N2	18.7ppb / 1kPa à 381.5 ppb de movenne	Voir remarque "essais de dérive" soit 4%/Kpa	1%/Kpa	
NO2 dans NO-NO2 / N2	9.9 ppb / 1kPa à 164.9 ppb de moyenne	soit 6%/kPA	1%/Kpa	
TEMPERATURE	Topaze 3020S nº 136			
NO dans NO-NO2 / N2	Entre 15 et 20°C entre 20 et 35 °C -0.67% / °C -0.44% / °C		0.3%/°C	
NO2 dans NO-NO2 / N2	-2.20% / °C +0.21% / °C		0.3%/°C	
HYGROMETRIE	Topaze 3020S nº 136			
NO dans NO-NO2 / N2	-0.14% / % HR ou -6.79% / 50% HR	les résultats sont calculés en tenant compte de la présen- ce de 12.7q d'eau/Kq /air sec à 20°C	pas de spécifications	
NO2 dans NO-NO2 / N2	-0.13% / % HR ou -6.42 % / 50% HR		pas de spécifications	
ALIMENTATION ELECTRIQUE	Topaze 3020S nº 136			
NO dans NO-NO2 / N2	U+10% U-10% -2.44% +6.95%		pas de spécifications	
NO2 dans NO-NO2 / N2	-1.35% +7.05%		pas de spécifications	
INFLUENCE D'ESPECES CHIMIQUES	Topaze 3020S nº 136			
(à 95% de la limite de confiance) NO dans NO-NO2 / N2	SO2 0	200ppb d'interférent	pas de spécifications	
NO2 dans NO-NO2 / N2	0		pas de spécifications	
NO dans NO-NO2 / N2	NH3 0	200ppb d'interférent	pas de spécifications	
NO2 dans NO-NO2 / N2	0		pas de spécifications	
RENDEMENT DU FOUR NO dans mélange NO / N2	Avant évaluation Après évaluation 98.0% 94.7%	Résultats calculés sur la moyenne de 2 TPG	pas de spécifications	

2. INTRODUCTION

Ce rapport a pour objet de rendre compte des essais d'évaluation de l'analyseur COSMA 3020 S pour la détermination de la teneur en NO et NO_2 dans l'air par chimiluminescence. Les essais ont été effectués sur l'appareil n° 136 réglé sur la gamme d'utilisation 0-1 000 ppb.

Le programme d'essais a été établi avec le Ministère de l'Aménagement du Territoire et de l'Environnement, le constructeur Société COSMA et l'INERIS sur la base de la norme NF X 20-300.

L'évaluation a été effectuée entre le 21 octobre 2000 et le début du mois de mars 2001 dans les laboratoires de l'INERIS.

3. PRINCIPE DE LA MESURE

3.1 RAPPEL

La chimiluminescence est basée sur la réaction du monoxyde d'azote avec l'ozone en excès, selon la réaction :

 $NO+O_3 \quad \ \ \rightarrow \quad \ NO_2^*+O_2 \quad \ \ puis \quad NO_2^* \ \ \rightarrow \quad \ NO_2+h\nu$

* à l'état excité

La radiation de chimiluminescence, qui est proportionnelle à la quantité de monoxyde d'azote dans l'air prélevé est sélectionnée par un filtre optique et convertie en signal électrique par un photomultiplicateur.

Pour la mesure du NO_2 , l'air échantillonné est introduit dans un convertisseur où le dioxyde d'azote est réduit en monoxyde d'azote mole pour mole et le mélange est analysé comme précédemment décrit. Le signal électrique est alors proportionnel à la somme des concentrations en monoxyde d'azote et en dioxyde d'azote appelées NO_x . La quantité de dioxyde d'azote est calculée à l'aide de la différence entre cette concentration et celle obtenue pour le monoxyde d'azote uniquement (lorsque l'air échantillonné n'a pas traversé le convertisseur).

3.2 Application de la mesure des oxydes d'azote avec l'appareil topaze **3020** S

Dans le cas présent, il s'agit d'un analyseur simple ou monochambre. L'air ne traverse le four convertisseur que pendant une fraction du temps. Ce type d'analyseur d'oxydes d'azote est dit « cyclique ». Pendant une certaine période de temps, il analyse la quantité de monoxyde d'azote et, pendant la période de temps suivante, la somme de dioxyde d'azote et de monoxyde d'azote.

La mesure du NO_2 sera le résultat de la différence entre deux résultats de mesures consécutives (NO_x et NO).

4. DESCRIPTION SOMMAIRE DE L'ANALYSEUR

(Données partielles du manuel du constructeur)

4.1 CYCLES D'ANALYSE

La *figure 1* donnée ci-après dans le manuel du constructeur montre le circuit pneumatique mono chambre du Topaze 3020 S, avec le système de commutation en mode NO ou NOx.

Figure 1

Circuit pneumatique monochambre TOPAZE 3020 S

4.2 FONCTIONNEMENT DE L'APPAREIL

(Données partielles du manuel du constructeur).

4.2.1 Mode de fonctionnement

- Le Topaze 3020 S est un analyseur mono chambre qui peut fonctionner de deux façons :
- Soit en mode manuel :

Led NO / NOx éteinte : on mesure NOx

Led NO/NOx allumée : on mesure NO.

• Soit en mode automatique :

il suffit de presser la Led NO/NOx pour afficher « auto » et cliquer sur + ou - pour valider le choix.

- La sortie analogique située sur la face arrière de l'appareil a été raccordée à la centrale d'acquisition « AOIP ».

4.2.2 Matériel associé

• Pompe pour prélèvement, externe à l'instrument.

4.3 CARACTERISTIQUES TECHNIQUES DU TOPAZE 3020 S

Elles sont données par le constructeur dans la notice d'utilisation de l'appareil (voir page suivante).

La notice contient également le relevé de tous les paramètres de réglages pour le bon fonctionnement de l'appareil. Ces réglages sont fixés par le constructeur.

On notera, dans le tableau « configuration » les cases « 6 » et « 27 » qui correspondent respectivement, au temps de réponse de l'analyseur, et à la mise en mémoire des temps de réponse.

La case « 23 » permet certaines corrections lors de difficulté de calibration. L'INERIS l'a utilisée sur conseil du constructeur.

<u>Caractéristiques techniques</u> d'après le manuel du constructeur

Constituants mesurés :	NO - NOx - NO		
Gammes de mesure :	Environnement :		
	0-100 ppb, 0-1000 ppb, 0-10 vpm, 0-100 vpm		
	Emission :		
	0-10 vpm, 0-100 vpm, 0-1000 vpm, 0-10000 vpm		
Signal de sortie analogique :	tension : 10 V, 1V, 100 mV		
	courant : 0-20mA ou 4-20mA en option		
	sortie isolée en option		
Précision :	\pm 1 % de l'étendue de mesure		
Sensibilité :	1 % de la pleine échelle		
Dérive de sensibilité :	1 % par 24 heures		
Dérive du zéro :	< 1 % par semaine		
Temps de réponse :	< 5 secondes (émission)		
	< 60 secondes (environnement 0-100 ppb)		
	<100 secondes (T3020S)		
Température ambiante :	0 à 35° C		
Temps de mise en température :	environ 1 heure		
Débit de gaz :	60 à 80 litres / heure		
Alimentation :	220 V 50Hz \pm 15 % par cordon secteur 2 + T		
Consommation :	450 V		
Type de boîtier :	Rack 19" 3 U		
	Poids : environ 15 kg sans la pompe à vide		
Raccord d'entrée :	du type Gyrolock Ø 4 x 6		
Echantillonnage :	Filtre à cartouche téflon		
	Pompe de circulation de gaz 75 VA		
	Pompe à vide sèche		

Relevé de paramètres

d'après la notice du constructeur

١

- AL MA		RELEVE DE PARAMETRES						ERO	PAGE 1/1
COHMA		TOPAZ	E	IND.	: A	DAQ			
DENTIFICATION							N.		
	TOPAZE	S N°	D'APPA	REIL 130	6	TECHNI	CIEN	Æ.	
	1ER	IS Nº	D'ORDF	RE 🤁]	D		ОСТОВ	RE 2000
	GAMME 1	GA	MME 2	GAI	MME 3		GAN	1ME 4	
10	0.01	m .10.	00vþ	m 1000		ь	100.	0 pp=	>
			1						
ETAT DES REG	LAGES ET	CONTROLES:							•
DEPRESSI	ON	065hb	व	PR	ESSIO	N ANAL	YSE	158	hþa
DEBIT		791/h		PR	ESSIO	N 02			-
Tre FOUR 1		345°C HT NOx 1058 V							
Tre FOUR 2				Tre	BLOC	1		4	8.6
Tre BLOC 2									
			etaina T		12.	v	ERSION	2.	F
PROGRAM	ME :	NOM							
PROGRAM	ME :	NOM							
PROGRAM	ME :	NOM	col	NFIGURATION					
PROGRAM	ME :	NOM	CO	NFIGURATION	31				
PROGRAM	ME :	NOM	CO		31 32				
PROGRAM	ME :	NOM 22900 -20 22900	CO		31 32 33 34				
PROGRAM	ME :	NOM 22900 -20 22900 -20 -20 -20	CO		31 32 33 34 35				
PROGRAM	ME :	NOM 22900 -20 22900 -20 10 20	CO	NFIGURATION 8 2404 7 2405 6 2406	31 32 33 34 35 36				
PROGRAM	ME :	NOM 22900 -20 22900 -20 10 20 30	CO 16 17 18 19 20 21 21 22	8 2104 7 2105 6 2106 6	31 32 33 34 35 36 37				
PROGRAM	ME :	NOM 22 900 -20 22900 -20 10 20 30 40	CO 16 17 18 19 20 21 22 23	8 2104 7 2105 6 2106 6 1024	31 32 33 34 35 36 37 38				
PROGRAM	ME :	NOM 22900 -20 22900 -20 10 20 30 40 200	CO 16 17 18 19 20 21 22 23 24 24	NFIGURATION 8 2104 7 2105 6 2106 6 1024 2 2024	31 32 33 34 35 36 37 38 39 40				
PROGRAM	ME :	NOM 22900 -20 22900 -20 10 20 30 40 200 80 200	CO 16 17 18 19 20 21 22 23 24 25 26		31 32 33 34 35 36 37 38 39 40 41				
PROGRAM	ME :	NOM 22900 -20 22900 -20 10 20 30 40 200 80 2101 -40	CO 16 17 18 19 20 21 22 23 24 25 26 27	NFIGURATION 8 2404 7 2405 6 2406 6 4024 2 2887 00 45/20	31 32 33 34 35 36 37 38 39 40 41 42				
PROGRAM	ME :	NOM 22900 -20 22900 -20 10 20 30 40 200 80 2101 -10 2402	CO 16 17 18 19 20 21 22 23 24 25 26 27 28	NFIGURATION 8 2104 7 2105 -6 2106 -6 1024 2 2887 00 15/20 1	31 32 33 34 35 36 37 38 39 40 41 42 43				
PROGRAM	ME : 1 2 3 4 5 6 7 8 9 10 11 12 13 14	NOM 22900 -20 22900 -20 10 20 30 40 200 80 2101 -10 2102 -9	CO 16 17 18 19 20 21 22 23 24 25 26 27 28 29	NFIGURATION 8 2104 7 2105 6 2106 6 1024 2887 00 15/20 15/20 1024	31 32 33 34 35 36 37 38 39 40 41 42 43 44				

4.4 PRESENTATION DE L'APPAREIL

4.4.1 Encombrement et masse

L'appareil se présente sous la forme d'un rack normalisé de « 19 pouces » de largeur et 3 unités de hauteur :

- longueur : 515 mm
- largeur : 443 mm
- hauteur : 133 mm
- masse : 15 kg environ.

4.4.2 Face avant (figure 2)

- Un afficheur alphanumérique de 20 caractères,
- 1 clavier de commandes et signalisation comportant 15 touches lumineuses,
- deux indicateurs lumineux de sensibilité,
- la notice donne la fonction des touches.

4.4.3 Face arrière (figure 3)

4.4.3.1 Entrées / sorties gaz

- A l'arrière de ce boîtier et directement accessibles, se trouvent :
- a) le bloc multifonctions avec :
 - les capillaires d'échantillon,
 - le capillaire by-pass,
 - le filtre d'échantillonnage.
- b) le bloc électrovanne avec raccordements pneumatiques pour :
 - l'entrée d'oxygène ou d'air sec, diamètre 4 x 6 PTFE
 - l'entrée gaz titrés, diamètre 4 x 6 inox
 - l'entrée gaz de zéro, diamètre 4 x 6 inox
 - l'entrée « option » analyse gaz froid, diamètre 4 x 6 inox
 - la sortie vers la pompe à vide, diamètre 6 x 8 PTFE.

Ces raccords de sortie peuvent, dans certaines applications, être de diamètres différents.

4.4.3.2 Raccordements électriques

- Prise secteur 220 V 50 HZ 600 VA
- Sortie enregistreur Prise DIN 680 5 pôles
- Sortie télécommande Sub D 15 points
- Sortie signalisation Sub D 15 points
- Prise pompe à vide Socapex 3 broches.

Les raccordements pneumatiques des gaz de fonction sont situés à l'arrière du coffret dans la partie centrale : ils peuvent être adaptés en fonction de l'application.

FACE ARRIERE DE L'APPAREIL

4.5 ELEMENTS CONSTITUTIFS INTERNES A L'APPAREIL

4.5.1 Parties physiques

Le manuel du constructeur donne une description interne de l'appareil.

On trouvera ci-après les *figures 4 et 4 bis* extraites de la notice et la photo de l'appareil prise par le laboratoire de l'INERIS ci-dessous.

Figure 4 : tiroir pneumatique (ensemble)

Figure 4 bis : tiroir pneumatique (détails)

4.5.2 Partie électronique

Le rack électronique, détaillé dans le manuel, comprend :

- Carte C.P.U. Unité centrale de calcul
 - « Ordonnancement des tâches ».
- Carte C.I.A. Interface analogique / numérique
- Carte C.I.G. « Interface Graphite / Topaze »
- Carte « sortie enregistreur comportant 3 options :
 - 1 à 3 sorties 0, 1 1 10 V par canal,
 - 1 à 3 sorties en courant ou tension isolées,
- Carte d'alimentation H.T. ajustables de 800 à 1 500 V.
- Carte d'alimentation pour les électrovannes et l'effet PELTIER,
- Carte de régulation de température,
- Carte de ventilation.


```
Tiroir électronique
```


Emplacement des cartes dans le rack électronique

5. DESCRIPTION DE LA CHAINE DE MESURE

5.1 BANC D'ESSAI

L'évaluation des instruments est effectuée sur un banc d'essai installé à l'Institut National de l'Environnement Industriel et des Risques (INERIS) à Verneuil en Halatte (Oise).

Le banc d'essai schématisé par la *figure 6* ci-dessous est constitué :

- d'une enceinte climatique dans laquelle sont disposés tous les appareils à tester.
- d'un générateur d'air de zéro à catalyse pour les dilutions.
- de mélangeurs de gaz SONIMIX permettant la génération des mélanges d'essai,
- d'une chaîne d'acquisition de données AOIP
- de capteurs de pression de température et d'hygrométrie contrôlés par l'INERIS ou par un organisme extérieur certifié.

On remarquera que compte tenu de la difficulté d'obtenir des circuits non pollués avec le NO_2 un système de vannes ¹/₄ de tour a permis de travailler en circuit fermé pour éviter toute pollution extérieure du circuit, notamment avec l'humidité au démarrage.

5.2 BANC POUR TITRATION EN PHASE GAZEUSE

Un banc de titration en phase gazeuse (TPG) est utilisé pour contrôler le rendement de conversion $NO_2 \rightarrow NO$.

Son principe est présenté en (Figure 7), il comprend :

- Un générateur d'air de zéro,
- Un dilueur 10 points avec générateur d'ozone.

5.3 FLUIDES UTILISES

- Azote « N50 »,
- Mélange de NO/ NO₂ à \cong 70/35 ppm , dans N₂,
- Un mélange NO/ N_2 à \cong 90 ppm
- 1 bouteille de référence raccordée COFRAC 800 ppb de NO dans N₂, et raccordé à la chaîne nationale par le LNE.

5.4 CHAINE D'ACQUISITION DE DONNEES

Elle comprend (*Figure 8*) :

Figure 8

5.5 VALIDATION DE LA CHAINE D'ACQUISITION DE DONNEES

Avant de commencer l'évaluation des analyseurs, les voies de mesure ont été validées de la façon suivante :

- émission de tension de référence de 0 à 1 volt par pas de 100 mV (0-50 mV puis 100..) sur les sorties analogiques correspondant au branchement des capteurs et des sorties analogiques des analyseurs à tester ou de comparaison,
- vérification sur écran ordinateur de la réponse à $\pm 0,1$ mV.

5.6 TEST DU BANC DE DILUTION DES GAZ

- Calibrage de l'analyseur de comparaison avec un étalon de « transfert » NO à 800 ppb (prêté par AIRPARIF), après vérification de la valeur zéro et réglage des temps de réponse (le rendement du four de conversion étant de l'ordre de 99 %).
- Emission d'une valeur proche de 800 ppb en NO à partir de: NO / N₂ à \cong 90 ppm dilué par le banc de génération des gaz et vérification de la réponse sur l'analyseur de comparaison.
- Emission d'une valeur proche de 800 ppb en NOx à partir d'un mélange de gaz NO- NO_2/N_2 et vérification de la réponse sur l'analyseur de comparaison.

5.7 CONCLUSION SUR LES POINTS DE VALIDATION

1/ Les tensions de référence générées sont correctement enregistrées par le système d'acquisition à ± 0,1 mV.

2/ Les mesures de concentrations des mélanges de NO/ N₂ et NO- NO₂ / N₂, après dilutions, indiquées par l'analyseur de comparaison correspondent bien aux valeurs données par les certificats d'analyse à l'incertitude près.

5.8 TITRATION EN PHASE GAZEUSE SUR L'ANALYSEUR DE COMPARAISON ET L'ANALYSEUR A TESTER.

Le banc d'essai utilisé est celui décrit au § 5.2.

- Génération de gaz de zéro sur les analyseurs branchés en parallèle.
- Génération d'un mélange de NO à 800 ppb \rightarrow lecture en NO NO₂ NO_x.
- Génération de NO + \cong 200 ppb de O₃ après un temps de stabilisation lecture de NO, NO₂, NO_x (phase d'oxydation du NO avec l'ozone).

Rendement de four de conversion $NO_2 \rightarrow NO$:

moyenne de 3TPG : • Analyseur de comparaison : 99 %

• Analyseur TOPAZE 3020 S : 98 %.

6. ESSAIS METROLOGIQUES

Les essais ont été réalisés conformément à la norme AFNOR NF X 20-300. Les conditions ont été fixées de la façon suivante :

- utilisation du Topaze 3020 S en cycle automatique,
- température de l'enceinte climatique pour tous les essais autres que l'étude de l'influence de la température : 22° C
- échantillon sec sauf pour l'essai d'hygrométrie,
- température du laboratoire : 22° C (système de génération de gaz, acquisition de données...)
- pression atmosphérique contrôlée et enregistrée durant tous les essais,
- contrôle de la pression de la ligne fluidique par un capteur différentiel,
- contrôle de la température du banc d'essai, de l'enceinte climatique et du banc de génération de gaz des analyseurs par une sonde de température,
- calibrations réalisées avec du NO/ N2.

6.1 TEMPS DE REPONSE, TEMPS MORT, TEMPS DE MONTEE ET DE DESCENTE

La norme NF X 20-300 donne les directives pour la détermination des temps de réponse. Celles-ci sont données en **Annexe 1**.

6.1.1 Application à l'analyseur COSMA Topaze 3020 S.

Le temps d'intégration a été fixé par le constructeur (voir paramètres de réglage : § 4-3).

Chaque épreuve a consisté à soumettre l'instrument à un cycle qui comportait un palier de gaz de zéro pendant 1 200 secondes et un palier à un niveau de concentration de NO ou d'un mélange de NO-NO₂ pendant 1 200 secondes ; le cycle total étant donc 2 400 secondes ou 40 minutes.

L'opération a été réalisée 10 fois, sur un seul niveau de concentration :

		pour 1 cvcle o	ou 10 cvcles.
		256 ppb	NO_2
$NO + NO_2 / N_2$ en mélange	=	500,4 ppb	NO
NO seul : NO / N_2	=	871,7 ppb por	ur 10 cycles
NO seul ; NO / N_2	=	520,5 ppb por	ur 1 cycle,

- Les résultats sont rassemblés dans les tableaux ci-après ainsi que les représentations graphiques correspondantes à sauts croissants et à sauts décroissants de concentrations.
- Les valeurs présentées sont des valeurs réelles, l'offset de l'appareil étant de zéro.

<u>Tableau 1</u>

ETUDE DU TEMPS DE REPONSE DU **NO** DANS UN MELANGE DE NO/N2 (520.5ppb)

ANALYSEUR COSMA -Topaze 3020S

Moyenne des valeurs obtenues sur 1 cycle croissant et 1 cycle décroissant

Concentration d'essai =520.5 ppb de NO Concentration stabilisée: C $_{x=}$ 500.3 ppb Concentration stabilisée: C $_{0=}$ 0.4 ppb Réglage appareil:"case 20 = -6" Température de l'essai : 22.0°C Pression atmosphérique :1010.3 hPa temps total du cycle:2400secondes gamme étudiée: 0-1000ppb

	Variation croissante	Variation décroissante
temps mort (s)	34secondes	14,4
tempsde réponse (s)	37.7 secondes	18
temps de montée (s)	3.7 secondes	
temps de descente (s)		3,6

	Cycle	Cycle
temps	croissant	décroissant
secondes	ppb	ppb
0	0,4	500,5
2	0,4	500,6
4	0,5	500,5
6	0,4	500,4
8	0,4	500,4
10	0,5	500,5
12	0,4	500,3
14	0,4	500,3
16	-2,1	292,7
18	-3,6	35,9
20	-3,8	12,5
22	-3,9	ð,/
∠4 26	-3,9	0,U 7 0
20	-3,9	7,9
20	-3,9	7,5
30	-3,9	8,0
34	-3,9	8.0
36	316.5	10.0
38	463.9	11.6
40	494 4	12.1
42	500.1	12,1
44	500.5	12.1
46	500.6	12.1
48	500.7	12.1
50	500,6	12,1
52	500,6	12,0
54	500,6	12,1
56	500,6	12,1
58	500,6	10,8
60	500,6	6,3
62	500,5	4,8
64	500,5	4,0
66	500,5	3,5
68	500,5	3,4
70	500,5	3,3
72	500,5	3,3
74	500,6	3,2
76	500,6	3,1
78	500,6	3,1
80	500,5	3,0
82	500,6	2,9
84	500,5	2,8
38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84	463,9 494,4 500,1 500,5 500,6 500,6 500,6 500,6 500,6 500,6 500,5 500,5 500,5 500,5 500,6 500,6 500,6 500,6 500,6 500,6 500,5 500,6 500,6 500,6 500,5 5	11,6 12,1 12,1 12,1 12,1 12,1 12,1 12,1

	Cyclo	Cyclo
temps	croissant	décroissant
secondes	nnh	nnh
88	500.5	2.7
90	500.5	2.6
92	500,6	2,6
94	500,5	2,6
96	500,5	2,5
98	500,5	2,4
100	500,5	2,4
102	500,5	2,4
104	500,5	2,3
106	500,5	2,2
108	500,5	2,1
110	500,6	2,2
112	500,5	2,1
114	500,6	2,0
116	500,6	2,0
118	500,5	1,9
120	500,8	1,9
122	501,3	1,9
124	501,8	1,8
126	502,3	1,8
128	502,6	1,7
130	502,8	1,6
132	503	1,7
134	503,1	1,6
136	503,1	1,5
138	503,2	1,5
140	503,3	1,5
142	503,4	1,5
144	503,5	1,5
146	503,7	1,3
148	503,9	1,4
150	504	1,3
152	504	1,3
104	504,1	1,3
150	504,1	1.2
160	504,2 504 3	1,3

Figure 10

Etude du temps de réponse du NO dans un mélange de NO/N2 :520.5ppb un cycle décroissant

Tableau 2

ETUDE DU TEMPS DE REPONSE DU NO DANS UN MELANGE DE NO/N2

ANALYSEUR COSMA - Topaze 3020S

Moyenne des valeurs obtenues sur 10 cycles croissants et 9 cycles décroissants

Concentration d'essai =871.7 ppb de NO Concentration stabilisée: $C_{x=}$ 767.6ppb Concentration stabilisée: $C_{0=}$ 0.6 ppb Réglage appareil:"case20 = -6" Température de l'essai : 22.0 Pression atmosphérique :1010.3hPa temps total du cycle:2400secondes gamme étudiée: 0-1000ppb

	Variation croissante	Variation décroissante
temps mort (s)	13	15,2
tempsde réponse (s)	23	22,7
temps de montée (s)		
temps de descente (s)	10	7,5

	Cycle	Cycle
temps	croissant	décroissant
secondes	ppb	ppb
0	0,6	767,6
5	0,3	768,0
10	0,4	768,0
15	128,6	701,4
20	577,1	188,1
25	752,2	2,1
30	753,4	1,1
35	752,9	1,7
40	751,2	5,7
45	750,3	7,0
50	750,3	7,0
55	751,2	6,9
60	754,1	6,0 5.2
70	750,7	5,5
70	759,9	4,7
75 80	760,3	4,4
85	760,0	4,2
00	761,0	3.0
90	761.6	3,9
100	761.8	3,0
100	767.2	3.6
100	762,2	3,0
115	763.0	33
120	763.2	3.2
125	763.7	3.1
130	764 1	3.0
135	764.3	29
140	764.4	2.8
145	764.5	2,7
150	764.6	2.6
155	764.8	2,5
160	764.8	2.4
165	764.9	2.3
170	765.0	2.2
175	765,0	2,2
180	765,1	2,1
185	765,1	2,1
190	765,2	2,0
195	765,3	2,0
200	765,3	1,9
205	765,4	1,8
210	765,4	1,8
215	765,5	1,8

	Cycle	Cycle
temps	croissant	décroissant
secondes	daa	daa
220	765.6	1.7
225	765.8	1.7
230	765.8	1.6
235	765,8	1,6
240	765,9	1,6
245	766,0	1,5
250	766,0	1,5
255	766,0	1,4
260	766,0	1,4
265	766,0	1,4
270	766,1	1,4
275	766,1	1,3
280	766,2	1,4
285	766,2	1,3
290	766,1	1,3
295	766,1	1,3
300	766,1	1,3
305	766,2	1,2
310	766,2	1,2
315	766,2	1,2
320	766,3	1,2
325	766,3	1,2
330	766,4	1,2
335	766,5	1,2
340	766,5	1,1
345	766,6	1,1
350	766,6	1,1
355	766,6	1,1
360	766,7	1,1
365	766,7	1,1
370	766,8	1,1
375	766,8	1,1
380	766,8	1,1
385	766,9	1,1
390	766,8	1,1
395	766,8	1,1
400	766,7	1,1

Figure 11

Etude du temps de réponse du NO/N2 : 871.7ppb 10 cycles croisssants - Cosma - Topaze 3020S

Figure 12

Etude du temps de réponse du NO dans un mélange de NO/N2 : 871.7ppb 9 cycles décroissants - Cosma - Topaze 3020S

<u>Tableau 3</u>

ETUDE DU TEMPS DE REPONSE DU NO DANS UN MELANGE DE NO-NO2/N2 (500.4ppb/256.0ppb)

ANALYSEUR COSMA -Topaze 3020S

Moyenne des valeurs obtenues sur 1 cycle croissant et 1 cycle décroissant

Concentration d'essai =500.4 ppb de NO Concentration stabilisée: Cx= 470.0ppb Concentration stabilisée: C0= 1.3 ppb Réglage appareil:"6" Température de l'essai : 25.6°C Pression atmosphérique :1009.1 hPa temps total du cycle:2400secondes gamme étudiée: 0-1000ppb

	Variation croissante	Variation décroissante
temps mort (s)	36.8secondes	36.3secondes
tempsde réponse (s)	38.0secondes	38.2secondes
temps de montée (s)		
temps de descente (s)	1.2secondes	1.9secondes

	Cycle	Cycle
temps	croissant	décroissant
secondes	ppb	ppb
0	0,5	475,1
2	0,5	475,0
4	0,4	474,9
6	0,5	474,7
8	0,5	474,6
10	0,4	474,6
12	0,5	474,4
14	0,5	474,4
16	-0,2	474,3
18	-2,1	475,2
20	-4,6	475,5
22	-4,9	475,6
24	-4,9	475,6
26	-4,9	475,6
28	-4,9	475,6
30	-4,9	475,7
32	-5,0	475,7
34	-5,0	475,7
30	-5,0	475,6
38	308,0	103,0
40	451,5	20,3
42	407,0	4,0
44	409,0	1,0
40	470,0	1,5
40 50	470,1	1,4
52	470,1	1,4
54	470,1	1,4
56	470,1	1,4
58	470,1	1,4
60	470,1	1.4
62	470.0	1.5
64	469.9	1.4
66	470.0	1.4
68	469.9	1.5
70	470.0	1.5
72	469.9	1.5
74	469.9	1.5
76	470.0	1.4
78	469.9	1.5
80	469.9	1.5
82	469.9	1.5
84	470,1	1,5
86	470,3	1,5

	Cycle	Cycle
temps	croissant	décroissant
secondes	ppb	ppb
88	470,4	1,5
90	470,4	1,5
92	470,6	1,5
94	470,7	1,5
96	470,9	1,5
98	470,9	1,5
100	471	1,5
102	471	1,5
104	471,1	1,5
106	471,1	1,5
108	471,1	1,4
110	471,2	1,5
112	471,3	1,5
114	471,2	1,5
116	471,3	1,5
118	471,3	1,5
120	471,4	1,4
122	471,4	1,4
124	471,5	1,4
126	471,4	1,5
128	471,5	1,5
130	471,6	1,5
132	471,6	1,4
134	471,6	1,4
136	471,6	1,4
138	471,7	1,3
140	471,7	1,3
142	471,7	1,3
144	471,7	1,4
146	471,7	1,3
148	471,7	1,3
150	471,7	1,4
152	471,8	1,3
154	471,8	1,3
156	471,8	1,3
158	471,8	1,3
160	/71 0	1 2

Figure 13

Figure 14

Réponse du NO dans le mélange NO-NO2 (500.4/256.0ppb) sur un cycle décroissant COSMA - topaze 3020S 600 90 80 **téponse de l'analyseur en ppb** 300 100 100 0000000 70 temps mort : 36.3 secondes 60 50 40 ---- 11CONO - 17ELECTR 30 20

14:15:47

14:15:39

14:16:03 14:16:11 14:16:19

14:15:55

0

14:14:11

14:14:19 14:14:27 14:14:43

14:14:35

14:14:59 14:15:07

14:14:51

14:15:15

14:15:23

14:15:31

heure - minute - seconde

suivi de l'électrovanne

10 0

14:16:43

14:16:35

14:16:27

14:16:51

Tableau 4

ETUDE DU TEMPS DE REPONSE DU NO DANS UN MELANGE DE NO-NO2/N2 (500.4ppb/256.0ppb)

ANALYSEUR COSMA -Topaze 3020S

Moyenne des valeurs obtenues sur 10 cycles croissants et 10 cycles décroissants

Concentration d'essai =500.4 ppb de NO Concentration stabilisée: $C_{x=}$ 445.8ppb Concentration stabilisée: $C_{0=}$ 0.8 ppb Réglage appareil:"case 20 = -6" Température de l'essai : 25.6°C Pression atmosphérique :1009.1 hPa temps total du cycle:2400secondes gamme étudiée: 0-1000ppb

	Variation croissante	Variation décroissante
temps mort (s)	18,5	19,8
tempsde réponse (s)	29,2	29,7
temps de montée (s)		
temps de descente (s)	10,7	9,9

	Cycle	Cycle
temps	croissant	décroissant
secondes	ppb	ppb
0	0,4	442,9
5	-0,3	443,7
10	-2,8	445,7
15	-2,8	445,7
20	56,6	396,2
25	207,6	280,3
30	439,0	1,8
35	441,9	-0,1
40	441,8	0,5
45	441,0	1,0
50	440,0	2,0
55	440,0	2,0
60	440,0	2,0
65	440,1	2,0
70	440,4	2,0
75	440,7	2,0
80	440,9	1,9
85	441,1	1,9
90	441,3	1,9
95	441,7	1,8
100	441,9	1,8
105	441,9	1,8
110	442,1	1,7
115	442,2	1,7
120	442,3	1,6
125	442,4	1,6
130	442,5	1,5
135	442,6	1,5
140	442,7	1,5
145	442,8	1,4
150	443,0	1,4
155	443,2	1,3
160	443,4	1,3
170	443,5	1,3
175	443,0	1,∠ 1.2
180	443,0	1,∠ 1.2
185	443,9	1.2
100	444,0	1,2 11
190	444,1	1,1
200	444,2 111 1	1,1
200	444,4 1115	1,1
205	444,5	1,1
215	444.7	1.0

	Cycle	Cycle
temps	croissant	décroissant
secondes	ppb	ppb
220	444,73	1,0
225	444,82	1,0
230	444,85	1,0
235	444,88	1,0
240	444,85	1,0
245	444,87	1,0
250	444,86	0,9
255	444,83	0,9
260	444,76	0,9
265	444,79	0,9
270	444,82	0,9
275	444,84	0,9
280	444,88	0,8
285	444,95	0,8
290	445,04	0,8
295	445,07	0,8
300	445,13	0,8
305	445,21	0,9
310	445,23	0,8
315	445,3	0,8
320	445,33	0,8
325	445,34	0,8
330	445,35	0,8
335	445,39	0,8
340	445,38	0,8
345	445,37	0,8
350	445,36	0,8
355	445,39	0,8
360	445,44	0,8
365	445,47	0,8
370	445,54	0,8
375	445,59	0,8
380	445,63	0,8
385	445,67	0,8
390	445,7	0,8
395	445,74	0,8
400	445 77	0.8

Figure 15

Etude du temps de réponse sur le NO dans un mélange NO-NO2/N2: 10 cycles croissants - (500.4ppb-256.0ppb) Cosma - Topaze 3020S

Figure 16

Etude de la réponse sur le NO dans un mélande de NO-NO2/N2 : 10 cycles décroissants - (500.4ppb 256.0ppb) Cosma - Topaze 3020S

<u>Tableau 5</u>

ETUDE DU TEMPS DE REPONSE DU NO2 DANS UN MELANGE DE NO-NO2/N2 (500.4ppb/256.0ppb)

ANALYSEUR COSMA -Topaze 3020S

Moyenne des valeurs obtenues sur 1 cycle croissant et 1 cycle décroissant

Concentration d'essai =256.0 ppb de NO Concentration stabilisée: Cx=227.0 ppb Concentration stabilisée: C0=0.1 ppb Réglage appareil:"case 20 =-6" Température de l'essai : 25.6°C Pression atmosphérique :1009.1 hPa temps total du cycle:2400secondes gamme étudiée: 0-1000ppb

	Variation croissante	Variation décroissante
temps mort (s)	16 secondes	16 secondes
tempsde réponse (s)	47 secondes	18 secondes
temps de montée (s)	31 secondes **	
temps de descente (s)		2 secondes

	Cycle	Cycle
temps	croissant	décroissant
secondes	ppb	ppb
0	0	232,3
2	0	232,3
4	0	232,3
6	0	232,2
8	-0,1	232,3
10	-0,1	232,2
12	0	232,2
14	-0,1	233,3
16	98	233,3
18	349,4	-2,5
20	666,8	-2,1
22	696,8	-2,0
24	697,9	-2,0
26	698,8	-1,9
28	698,9	-1,9
30	698,9	-1,9
32	698,8	-1,9
34	6090,0 609 9	-1,9
20	090,0	-1,9
30	232.5	-0,5
40	232,5	-0,1
42	217	13.3
44	213,9	13.3
48	213,9	13.2
50	213.9	13.3
52	213.9	13.2
54	213.9	13.2
56	213.8	13.3
58	213,9	13,3
60	222,1	11,3
62	225,2	8,2
64	226,1	7,1
66	227,2	6,1
68	227,2	5,1
70	227,2	5,1
72	227,2	5,2
74	227,2	5,1
76	227,2	5,1
78	227,2	5,2
80	227,2	5,2
82	228,2	5,2
84	228,3	5,2
86	228,2	5,2

	Cycle	Cycle
temps	croissant	décroissant
secondes	nnh	nnh
88	228.2	5.1
90	228.2	5.1
92	227.1	4.1
94	227.2	4.1
96	227,2	4,1
98	227,2	4
100	227,2	4,1
102	227,2	4,1
104	227,2	4,1
106	227,2	4,1
108	227,2	4,1
110	227,2	4,1
112	227,2	4,1
114	227,2	4,1
116	227,2	4,1
118	227,2	4,1
120	227,3	4,1
122	228,2	4,1
124	228,3	4,1
126	228,2	4,1
128	228,2	4,2
130	227,2	4,1
132	227,2	4,1
134	227,3	3,1
136	227,2	3,1
138	227,2	3,1
140	227,2	3,1
142	227,2	3
144	227,2	3,1
146	227,2	3,1
148	227,2	3,1
150	227,2	3,1
152	227,2	3,1
154	227,2	3,1
156	227,2	3,1
158	227,2	3,1
160	227,2	3,1

** voir graphe

Figure 18

34

Cycle lécroissant ppb 2,7 2,8 2,8 2,8 2,7 2,8 2,8 2,7 2,7 2,5 2,5 2,5 2,5 2,5 2,4 2,5 2,5 2,5 2,5 2,5 2,3 2,3 2,4 2,3 2,3 2,3 2,3 2,3 2,2 2,2 2,3 2,2 2,2 2,2 2,3 2,3 2.3

<u>Tableau 6</u>

ETUDE DU TEMPS DE REPONSE DU NO2 DANS UN MELANGE DE NO-NO2/N2 (500.4ppb/256.0ppb)

ANALYSEUR COSMA - Topaze 3020S

Moyenne des valeurs obtenues sur 10 cycles croissants et 10 cycles décroissants

Concentration d'essai =256.0 ppb de NO2 Concentration stabilisée: $C_{x=}$ 233.3ppb Concentration stabilisée : 2.1ppb Réglage appareil:"-6" (case 20) Température de l'essai : 25.6°C Pression atmosphérique :1009.1 hPa temps total du cycle:2400secondes gamme étudiée: 0-1000ppb

	Variation croissante	Variation décroissante
temps mort (s)	0,5	6
tempsde réponse (s)	49,5	54,3
temps de montée (s)	49	
temps de descente (s)		48,3

	Cycle	Cycle		Cycle
temps	croissant	décroissant	temps	croissant
secondes	ppb	ppb	secondes	ppb
0	15.92*	233,3	220	232,4
5	91,1	216,5	225	232,7
10	402,9	142,5	230	232,5
15	406.9	4.5	235	232.6
20	362.7	4.5	240	232.7
25	268.1	54.6	245	232.7
30	29.4	111.1	250	232.8
35	27.1	262.8	255	232.8
40	28.1	265.8	260	233.0
45	111.7	204.6	265	233.1
50	231.3	124.1	270	233.1
55	232.7	4.0	275	233.2
60	232.7	3.0	280	233.2
65	232.5	3.0	285	233.2
70	232.3	3.0	290	233.2
75	231.9	3.0	295	233.1
80	231.8	3.0	300	233.2
85	231,0	3.0	305	233.2
00	231,0	3.1	310	233,2
90	231,4	3.1	315	233,3
100	231,9	3.1	320	233,2
105	232,1	3.1	325	233,1
105	232,4	3,1	320	233,3
110	232,5	3,1	330	233,3
120	232,4	3,2	333	233,4
120	232,3	3,3	340	233,5
125	232,4	3,3	345	233,5
130	232,0	3,2	350	233,9
135	232,7	3,1	355	233,7
140	233,0	3,2	360	233,7
145	232,8	3,2	305	233,7
150	232,8	3,1	370	233,5
155	232,5	3,0	375	233,4
160	232,6	3,1	380	233,2
165	232,5	3,0	385	233,4
170	232,6	3,0	390	233,2
175	232,6	3,1	395	233,3
180	232,8	3,0	400	233,3
185	232,8	3,0		
190	232,9	3,0		
195	232,9	3,0		
200	232,6	3,0		
205	232,5	2,9		
210	232,5	2,9		
215	232,4	2,8		

* la valeur de zéro est affectée par 2cycles qui affichent 50 et 100 ppb au temps zéro.

Cela vient du fait que la scrutation des cycles est volontairement décalée par rapport a la génération de gaz de concentration-gaz de zéro
Figure 19

Etude du temps de réponse sur le NO2 dans un mélange NO-NO2/N2 : 10 cycles croissants - (500.4ppb - 256.0ppb) Cosma - Topaze 3020S

Figure 20

Conclusion sur les essais effectués pour les temps de réponse de l'appareil.

Pour un mélange de NO- NO₂ le temps de réponse est de l'ordre de la minute.

Sur site de proximité, il convient d'être prudent pour interpréter la mesure (*voir figures 17-19 et 20*) car la différence $NO_x - NO = NO_2$ peut être erronée si les variations de concentrations sont rapides (< au temps de réponse). Le phénomène est visible à cycle décroissant quels que soient les cycles. La mesure de NO_2 est surestimée d'un facteur 2,5 pendant le régime transitoire.

6.2 LIMITE DE DECISION, LIMITE DE DETECTION, LIMITE DE QUANTIFICATION

La procédure de calcul de la NFX 20-300 est rappelée en Annexe 2.

6.2.1 Application à l'analyseur COSMA Topaze 3020 S.

Les essais ont été menés par génération de cycles successifs de gaz de zéro et de gaz de concentration dans les conditions décrites au paragraphe 6 avec un mélange de NO- $NO_2/$ N_2

6.2.1.1 Limite de décision

A la concentration la plus basse

 $C_a = 19,5$ ppb, l'écart-type estimé S est 0,366 pour le NO.

 $C_a = 10,0$ ppb, l'écart-type estimé S est 1,01 pour le NO₂

L'essai a porté sur 11 mesures.

- A 10 degrés de liberté, le coefficient de Student t = 1,812 et pour un intervalle de confiance à 95 %, la limite de décision est :
- $X_D = 0,664$ ppb pour le NO
- $X_D = 1,822$ ppb pour le NO₂

6.2.1.2 Limite de détection

La droite de calibrage est définie par :

- Le point **bas** de coordonnées
 - $C_a = 19,50$ ppb pour le NO) valeurs générées par le dilueur
 - $C_a = 10,0 \text{ ppb pour le NO}_2$) SONIMIX

 $\overline{\mathbf{x}}_{a} = 23,27 \text{ ppb pour le NO}$)

 $\overline{\mathbf{x}}_{a} = 15,98 \text{ ppb pour le NO}_{2}$)

) les plus bas.

valeurs moyennes lues sur les points

Les limites de détection calculées sont :

 $C_{D} \cong 0,616 \text{ ppb pour le NO}$ $C_{D} \cong 1,665 \text{ ppb pour le NO}_{2}$

6.2.1.3 Limite de quantification

En appliquant les directives de la norme NF X 20-300 (voir **annexe 2**) les limites de quantification calculées pour l'analyseur Topaze 3020 S sont :

$$C_Q$$
 = 1,232 ppb pour le NO
 C_Q = 3,33 ppb pour le NO₂

<u>Remarque</u> : dans une version antérieure de la présente norme NF X 20-300, la limite de quantification était calculée sur la base de 4 fois l'écart-type correspondant à la valeur C_a soit : $4 \times S = 4 \times 0.366 = 1.464$ ppb pour NO

$$4 \times S = 4 \times 1,01 = 4,04$$
 ppb pour le NO₂.

Le détail des résultats et des différents calculs de limites est regroupé dans les **tableaux 7** et 8 ci-après.

Tableau 7

Analyseur Topaze 3020S NO dans le mélange NO-NO2/N2

Pente = 1,078

Ordonnée à l'origine en ppb= 2,25

Concentration	Sc	Nbre de	xi mesuré	si	xi estimé	ei	si2/ni= s2xi	(ei / C)*100
NO en ppb	absolu	répétitions n	ppb	Ecart-type		Ecart moyen		
19,50	0,1170	- 11	23,27	0,37	23,27	0,00	0,01	0,00
47,20	0,2832	14	54,00	0,30	53,13	0,87	0,01	1,85
92,40	0,5544	7	103,00	0,36	101,85	1,15	0,02	1,24
184,10	1,1046	14	204,63	0,98	200,70	3,93	0,07	2,14
275,70	1,6542	10	301,83	1,35	299,44	2,39	0,18	0,87
362,10	2,1726	14	399,21	0,86	392,57	6,64	0,05	1,83
500,40	3,0024	8	541,65	1,76	541,65	0,00	0,39	0,00
592,20	3,5532	8	644,99	1,83	640,60	4,39	0,42	0,74

Sc est l'incertitude absolue des mélanges de gaz pour étalonnage et calibrage. Ces valeurs sont obtenues à partir des bouteilles ou/et des bouteilles ou/et des systèmes de génération de mélanges de gaz pour étalonnage

Variances	liées aux ince	rtitudes sur	s2xi	s2ei =	sei	t = ei / sei	(si / C)*100
Ca et Cb (1)	xa et xb (2)	C (3)	(1)+(2)+(3)	s²xi+s²xi			
0,02	0,13	0,02	0,01	0,18	0,42	0,00	1,88
0,05	0,13	0,09	0,01	0,28	0,53	1,65	0,64
0,25	0,17	0,36	0,02	0,80	0,89	1,29	0,39
1,23	0,42	1,42	0,07	3,14	1,77	2,22	0,53
2,98	0,91	3,18	0,18	7,25	2,69	0,89	0,49
5,32	1,59	5,48	0,05	12,44	3,53	1,88	0,24
10,47	3,10	10,47	0,39	24,44	4,94	0,00	0,35
14,86	4,41	14,67	0,42	34,35	5,86	0,75	0,31

Concentration NO en ppb	ei Ecart movei	Nbre degrés de liberté	Coeff. de Student t	t = ei / sei	sei	t0.975*sei	ei + tsei	ei - tsei
19,50	0,00	10	1,812	0,00	0,42	0,76	0,76	-0,76
47,20	0,87	13	1,771	1,65	0,53	0,93	1,81	-0,06
92,40	1,15	6	1,913	1,29	0,89	1,71	2,85	-0,56
184,10	3,93	13	1,771	2,22	1,77	3,14	7,07	0,79
275,70	2,39	9	1,833	0,89	2,69	4,93	7,33	-2,54
362,10	6,64	13	1,771	1,88	3,53	6,25	12,89	0,39
500,40	0,00	7	1,895	0,00	4,94	9,37	9,37	-9,37
592,20	4,39	7	1,895	0,75	5,86	11,11	15,49	-6,72

Concentration NO en ppb	% rel. ei + tsei	% rel. ei - tsei
19,50	3,92	-3,92
47,20	3,82	-0,13
92,40	3,09	-0,60
184,10	3,84	0,43
275,70	2,66	-0,92
362,10	3,56	0,11
500,40	1,87	-1,87
592,20	2,62	-1,13

A la concentration la plus basse C = 20 ppb n = 13 Proba. = 95%

C = 20 ppb	n = 13 Proba.= 95%	si en ppb =	0,37

xD = limite de décision

CD

	$xD = si^*t$	en ppb =	0,66
В	= ordonnée à l'origi	A = pente = ne en ppb =	1,08 2,25
= limite de détection	CD = xD/	A en ppb =	0,62

CQ = limite de quantification

CQ = 2CD = 2*xD/A en ppb= 1,23

<u>Tableau 8</u>

Analyseur TOPAZE 3020 S

Pente = 1,094 Ordonnée à l'origine en ppb= 5,04

Concentration	Sc	Nbre de	x _i mesuré	Si	x _i estimé	ei	$s_i^2/n_i = s^2 x_i$	(e _i / C)*100
NO2 en ppb	absolu	répétitions n	daa	Ecart-type		Ecart moven		
10,00	0,0848	11	15,98	1,01	15,98	0,00	0,09	0,00
24,10	0,2045	14	31,37	0,57	31,41	-0,04	0,02	-0,16
47,30	0,4013	8	56,63	1,06	56,80	-0,17	0,16	-0,37
94,20	0,7992	14	108,78	0,86	108,12	0,66	0,05	0,70
141,00	1,1962	10	159,71	0,84	159,33	0,38	0,07	0,27
185,30	1,5721	14	210,25	1,41	207,81	2,44	0,14	1,32
256,00	2,1719	8	285,18	1,71	285,18	0,00	0,37	0,00
302,90	2,5698	8	336,84	1,69	336,50	0,34	0,36	0,11

Sc est l'incertitude absolue des mélanges de gaz pour étalonnage et calibrage. Ces valeurs sont obtenues à partir des bouteilles ou/et des systèmes de génération de mélanges de gaz pour étalonnage

Variances liée	s aux incertitu	des sur	$s^2 x_i$	$s^2 e_i =$	sei	$\mathbf{t} = \mathbf{e}_i / \mathbf{s} \mathbf{e}_i$	(s _i / C)*100
C_a et C_b (1)	$x_a et x_b$ (2)	C (3)	(1)+(2)+(3)	s²xi+s²xi			
0,01	1,01	0,01	0,09	1,12	1,06	0,00	10,06
0,03	0,91	0,05	0,02	1,01	1,00	0,04	2,37
0,14	0,80	0,19	0,16	1,28	1,13	0,15	2,23
0,67	0,78	0,76	0,05	2,26	1,50	0,44	0,91
1,60	1,05	1,71	0,07	4,44	2,11	0,18	0,60
2,87	1,57	2,96	0,14	7,54	2,75	0,89	0,76
5,65	2,93	5,65	0,37	14,59	3,82	0,00	0,67
8,01	4,19	7,91	0,36	20,46	4,52	0,08	0,56
1				1			1

Concentration	e _i	Nbre degrés	Coeff. de	$\mathbf{t} = \mathbf{e}_i / s \mathbf{e}_i$	sei	t0.975*se _i	$e_i + tse_i$	e _i - tse _i
NO2 en ppb	Ecart moven	de liberte	Student t					
10,00	0,00	10	1,812	0,00	1,06	1,92	1,92	-1,92
24,10	-0,04	13	1,771	0,04	1,00	1,78	1,74	-1,82
47,30	-0,17	7	1,895	0,15	1,13	2,15	1,97	-2,32
94,20	0,66	13	1,771	0,44	1,50	2,66	3,32	-2,01
141,00	0,38	9	1,833	0,18	2,11	3,86	4,24	-3,48
185,30	2,44	13	1,771	0,89	2,75	4,86	7,30	-2,42
256,00	0,00	7	1,895	0,00	3,82	7,24	7,24	-7,24
302,90	0,34	7	1,895	0,08	4,52	8,57	8,91	-8,23

A la concentration la plus basse C = 20 ppb $n = 13$ Proba.= 95%	s _i en ppb =	1,01
x _D = limite de décision		1.00
$x_D = s_1 * t$	en ppb =	1,82
B = ordonnée à l'origin	A = pente = e en ppb =	1,09 5,04
$C_D = \text{minite de detection}$ $C_D = x_D/A$	A en ppb =	1,67
C_{Ω} = limite de quantification		
$C_Q = 2C_D = 2*x_D/2$	A en ppb=	3,33

Concentration NO2 en ppb	% rel. e _i + tse _i	% rel. e _i - tse _i
10,00	19,18	-19,18
24,10	7,21	-7,54
47,30	4,17	-4,91
94,20	3,53	-2,13
141,00	3,01	-2,47
185,30	3,94	-1,31
256,00	2,83	-2,83
302,90	2,94	-2,72

40

6.3 LINEARITE

Les directives relatives à la détermination de la linéarité sont reportées en annexe 3.

On a défini dans le domaine de concentration étudié, 8 valeurs réparties sur la gamme 0-1 000 ppb.

L'ordre des concentrations n'étant pas déterminé, on remarquera que parmi ces concentrations figurent celles qui ont servi à établir la droite de calibrage. Pour chaque concentration, il a été effectué au moins 8 cycles afin d'obtenir au moins 8 mesures. Il est à noter que les cycles sont composés d'une phase gaz de concentration et d'une phase de gaz de zéro.

Chaque mesurage ainsi effectué est affranchi du phénomène d'hystérésis.

6.3.1 Pertinence des résultats

Le test de Grubb (Annexe 3) permet d'éliminer les valeurs aberrantes d'une série d'essais.

Parmi les résultats des **tableaux 9-10-11** pour le NO et **tableaux 12 et 13** pour le NO₂, une seule valeur a été rejetée pour le NO.

Le tableau 14 *figure 21* pour le NO, le tableau 15 *figure 22* pour le NO_2 présentent les réponses de l'appareil en fonction de la concentration générée.

Tableaux 9- 10- 11

AVANT TEST DE GRUBB :Cosma - Topaze 30205

Concentration	40 mCl	Conce	intration m	eaurãe en p	ppb de NO	dans le mé	ange NO-P	102/N2				0		<u>n an a</u>			-	
ginerse en p	-pe	X	ЗG	X	20	Xi	x	30	XI	20	Xi	Xi	>1	20	X	ribre de Xi	Moyenne	Ecert-type
Ct	19.5	23.6	23.1	23	22.0	22	22.9	23.2	23.3	23.6	23.5	24	1000				23.27	0.366
C2 C3	47.2	54.2 104.6	54.2	53.8	54.7	102.9	102.9	103.3	103.4	68.0	34.1	2.3.8	54.5	23.0			103.20	0.855
64	164.1	202.8	204.2	203.2	203.7	203.5	206.3	204.4	205.8	205.A	205.2	205.5	206	205.5	205.3	14	204.63	0.985
03	275.7	303.0	398.0	366.0	331.4	393.6	306.8	400.1	398.5	400.0	322.4	400.3	389.4	400	399	54	888.21	0.902
07	500.4 692.2	648 642.7	540.4 643.2	540.4 644.8	541.6 646.1	540 647	539.9 545.4	543.5 646.9	544.4 843							6	541.05 544.00	1.891

TEST DE GRUBB

N	o ici	Conce	estration m	esuróe en p	pb de NO	dans le mé	lange NO-h	102/N2											test inf.	testalp
générée en po	in .	20	X	20	X	X	20	Xi	X	23	Xi	20	30	X	20	ribra de Xi	Moyenne	Ecari-type	GRUND	GRUBS
50858855	19.5 47.2 92.4 154.1 275.7 362.1 500.4	22.8 53.6 102.4 202.8 293.0 397.5 533.0 542.7	22.9 53.7 102.8 203.2 300.8 390.5 540 943	28 53.0 102.9 203.5 300.9 396.6 546.4 643.2	23 53.6 102.5 203.7 301.1 305.5 540.4 564.5	25.1 83.8 105.3 204.2 301.1 306.8 546.6 546.5	23-2 53.8 103.3 204.4 301.4 398.8 543 544.4	23.3 53.9 108.4 205 302.4 398.9 543.5 640.9	23.5 54.1 154.6 205.2 305.4 309 644.4 647	23.6 54.1 205.3 303.5 309.4	23.8 54.1 206.3 303.8 309.4	24 54.2 205.4 400	54.2 205.5 400.1	54.3 205.6 400.3	64.7 205.8 400.8	11 14 8 14 10 14 8	23.27 54.00 103.20 204.63 301.83 399.21 541.65 644.99	0.306 0.304 0.665 0.565 1.348 0.562 1.361 1.651	0.507 0.731 0.915 0.923 0.960 0.961 0.962 0.964	0.559 0.754 0.935 0.907 0.973 0.969 0.990 0.990

APRES TE	O DE GRO	IBB			_	_													122528	1000
Concentration penantie an pr	i Ci ab	Conce	intration m	esurée en p Xi	Xi Xi	daris le mé	lange NO-N	X02/N2	Xi	XI	20	Xi	x	20	Xi	ettre de 2)	Mayenne	Ecat-type	GRUBB	GRUBB
100366666	12.5 47.2 92.4 184.1 275.7 362.1 500.4	22.8 \$3.5 102.4 202.8 299.0 897.5 539.9 842.2	22.9 53.7 102.8 203.2 300.8 398.5 540 443	23 53.5 102.9 203.5 300.9 395.6 540.4 643.2	23 63.8 102.9 203.7 301.1 306.8 560.4 644.6	23.1 53.6 103.3 294.2 301.1 398.6 541.6	23.2 53.8 105.3 204.4 301.4 301.4 304.8 543 643	28.3 53.9 103.4 205 502.4 396.9 543.5 646.9	23.5 54.1 205.2 303.4 309 544.4 647	23.8 54.1 206.3 303.5 309.4	23.6 54.1 205.3 303.6 399.4	24 54.2 205.4 400	54.2 206.6 400.1	54.3 205.5 400.3	54.7 205.8 400.8	15 14 14 14 10 14 8	23.27 54.00 108.00 204.63 301.89 299.21 541.65 644.99	0.308 0.304 0.356 0.885 1.348 0.862 1.761 1.831	0.507 0.191 0.926 0.923 0.960 0.961 0.982 0.984	0.550 0.754 0.936 0.937 0.973 0.969 0.990 0.991

Conclusion : la teat de GRUSS a rejeté une veleur

Tableaux 12 -13

AVANT TEST DE GRUEB (Cosma - Topaze 30208	ANT TEST DE	GRUB8 :0	Cosma - Te	opaza 30208	
---	-------------	----------	------------	-------------	--

NO	2 Ci	Concer	tration me	surðe en p	pb de NO2	dans te mé	lange NO-M	02/112				10				alter de W	Line second	Erart brie
générée en pa	×	Xì	X	Xi	20	X)	X	20	Xi	X	20	Xi	21		~	ribre de Ar	insystem	eres i diba
1992222	10.0 24.1 47.3 54.2 141 185.3 296	14.1 31.2 54.3 106.7 160 200.3 269.7	15.2 31.2 56.4 107.7 158 206.3 266.8	15.1 31.3 57.4 107.7 160 205.3 290.8	15.2 30.2 66.4 107.7 180 208.3 208.3 208.3	18.1 82.8 56.4 100.8 160 211.3 285.8 937.1	16.2 31.2 57.4 106.0 158 211.3 290.8 340.1	15.1 22.3 57.3 109.5 161.1 210.5 254.8 5537	17.2 31.2 57.4 107.7 100 212.5 285.8 336.1	16.2 31.2 109.7 160 209.3	17.2 31.2 108.5 158 209.5	17.2 32.3 108.7 209.3	31.3 106.7 211.4	31.2 108.7 211.3	31.2 109.8 212.9	11 11 6 14 10 14 8 8	15.98 31.37 55.53 108.79 159.71 210.25 295.19 235.54	1.008 0.570 1.057 0.858 0.841 1.415 1.711 1.584

APRES TEST DE GRUBB

No Concentration	02	Concer	tration me	surée en p	pb de NO2	dans le mé	lange NO-I	NO2/N2				-		~		L eters de VI	Management	Enatione	test int. Groups	test sup ORUBB
panérée en p	ob	Xi	Xi	XG	X	Xi	X	X	20	Xi	20	- 20	<u> </u>	A	~	Some de Au	. resperse	Eres colles	Contra Marc	
122226512	10.0 14.1 47.3 04.2 141 155.3 256	14.1 30.2 54.3 107.7 158 208.3 208.3 208.5	15.1 31.2 50.4 107.7 159 208.3 298.7 298.7	18.3 91.2 56.4 107.7 159 209.3 269.3 269.5	16.2 31.2 68.4 107.7 160 209.3 285.8 330.1	16.1 81.2 57.3 108.0 160 209.3 286.0 337	16.1 31.2 57.4 100.6 100 209.3 285.5 337.1	16.2 31.2 57.4 108.7 160 209.3 296.9 330.2	15.2 31.2 57.4 108.7 150 210.5 285.9 345.1	17.2 31.2 108.7 100 211.3	17.2 81.2 108.7 161.1 211.9	17.2 31.3 109.7 211.3	32.3 100.8 211.4	82,3 109,6 212,8	32.3 109.8 212.5	11 14 8 14 10 14 8 8	15.06 31.37 56.63 100.70 150.71 210.25 205.18 338.54	1.008 0.570 1.067 0.858 0.641 1.415 1.311 1.094	0.194 0.618 0.818 0.927 0.927 0.924 0.900 0.971	0.388 0.500 0.872 0.001 0.946 0.944 0.944 0.978 0.998

Conclusion: auture valeur n'est rejotée par le test de GRUBS

NO	Х	Y	Modèle	écarts	Х	Y	modèle		droite de calibrage	
	19,5	23,27	23,27	0,00					en deux points	
	47,20	54,00	53,13	0,87	19,50	23,27	0	A=	1,077937201	
	92,40	103,00	101,85	1,15	500,40	541,65	0	B=	2,25E+00	
	184,10	204,63	200,70	3,93						
	275,70	301,83	299,44	2,39						
	362,10	399,21	392,57	6,64		ANALYSEUR	Cosma : Topa	ze 3020S		
	500,40	541,65	541,65	0,00						
	592,20	644,99	640,60	4,39						

Tableau 14 figure 21

44

Tableau 15 figure 22

Х	Y	Modèle	écarts	х	Y	modèle		droite de calibra
10	15,98	15,98	0,00					en deux points
24,10	31,37	31,41	-0,04	10,00	15,98	0	A=	1,0943
47,30	56,63	56,80	-0,17	256,00	285,18	0	B=	5,04E+00
94,20	108,78	108,12	0,66					
141,00	159,71	159,33	0,38					
185,30	210,25	207,81	2,44		ANALYSEUR	Cosma : Topa	ze 30208	6
256,00	285,18	285,18	0,00					
302,90	336,84	336,50	0,34					

6.3.2 Etude de la variance

L'étude de la variance permet de mettre en évidence les valeurs aberrantes qui pourraient apparaître tout au long de l'exploration de la plage de concentrations.

Cette étude complète le test de Grubb.

Les **tableaux 16** et **17** font apparaître les variances calculées aux différentes concentrations respectivement pour NO et NO₂.

Les *figure 23* et 24 représentent graphiquement les variations de NO et NO_2 . En fonction de la concentration.

On n'observe pas de valeur aberrante de la variance tant pour le NO que le NO_2 bien que certaines valeurs de variance soient assez élevées :

Pour NO = au voisinage de zéro $\sqrt{S_i}$ régression linéaire = $\sqrt{[0,0933]} = 0,30$ ppb

Pour NO₂ = au voisinage de zéro $\sqrt{S_i}$ régression linéaire = $\sqrt{[0,4552]}$ = 0,67 ppb

0,30 ppb pour le NO et 0,67 ppb pour NO_2 sont des valeurs basses soit une valeur d'écart type acceptable.

[] = valeur absolue.

Tableau 16 figure 23

pente A= 0,005781 ordonnée à l'orig.B= -0,20605

C	oncentration (Si carré	Reg liné.	E cart-type
	ppb	Si^2		si
	19,50	0,1342	-0,0933	0,3663
	47,20	0,0923	0,0668	0,3038
	92,40	0,1267	0,3281	0,3559
	184,10	0,9699	0,8582	0,9848
	275,70	1,8179	1,3877	1,3483
	362,10	0,7423	1,8872	0,8615
	500,40	3,1029	2,6867	1,7615
	592,20	3,3527	3,2174	1,8310

Tableau 17 figure 24

С	oncentration (Si carré	Reg liné.	Ecart-type
	ppb	Si^2	_	si
	10,00	1,0116	0,4552	1,0058
	24,10	0,3253	0,5710	0,5703
	47,30	1,1164	0,7615	1,0566
	94,20	0,7357	1,1465	0,8577
	141,00	0,7077	1,5307	0,8412
	185,30	2,0012	1,8944	1,4146
	256,00	2,9279	2,4749	1,7111
	302,90	2,8684	2,8599	1,6936

pente A= 0,008210 ordonnée à l'orig.B= 0,37313

6.3.3 Comparaison au modèle linéaire

Voir les directives de la norme en annexe 4.

Pour l'analyseur Topaze 3020 S, les coefficients A et B calculés à partir de la droite de calibrage sont :

А	=	1.0779 ppb	В	=	2,2531 ppb pour le NO
А	=	1,094 ppb	В	=	5,0390 ppb pour le NO ₂ .

Ces coefficients ont été calculés après élimination de valeurs aberrantes (voir résultats donnés aux **tableaux 12** pour le NO et **13** pour le NO_2).

Les différents résultats extraits des **tableaux 7 et 8** sont regroupés ci-dessous dans les **tableaux 18** pour le NO et **19** pour le NO_2 .

Tableau18-19

Analyseur Topaze 3020S NO dans le mélange NO-NO2/N2

Concentration	Sc	Nbre de	xi mesuré	si	xi estimé	ei	si2/ni= s2xi	(ei / C)*100
NO en ppb	absolu	répétitions n	ppb	Ecart-type		Ecart moyen		
19,50	0,1170	- 11	23,27	0,37	23,27	0,00	0,01	0,00
47,20	0,2832	14	54,00	0,30	53,13	0,87	0,01	1,85
92,40	0,5544	7	103,00	0,36	101,85	1,15	0,02	1,24
184,10	1,1046	14	204,63	0,98	200,70	3,93	0,07	2,14
275,70	1,6542	10	301,83	1,35	299,44	2,39	0,18	0,87
362,10	2,1726	14	399,21	0,86	392,57	6,64	0,05	1,83
500,40	3,0024	8	541,65	1,76	541,65	0,00	0,39	0,00
592,20	3,5532	8	644,99	1,83	640,60	4,39	0,42	0,74

Pente = 1,078 Ordonnée à l'origine en ppb= 2,25

Sc est l'incertitude absolue des mélanges de gaz pour étalonnage et calibrage. Ces valeurs sont obtenues à partir des bouteilles ou/et des bouteilles ou/et des systèmes de génération de mélanges de gaz pour étalonnage

Analyseur Topaze 3020S NO2 dans le mélange NO-NO2/N2

Concentration	Sc	Nbre de	xi mesuré	si	xi estimé	ei	si2/ni= s2xi	(ei / C)*100
NO2 en ppb	absolu	répétitions n	ppb	Ecart-type		Ecart moyen		
10,00	0,0848	- 11	15,98	1,01	15,98	0,00	0,09	0,00
24,10	0,2045	14	31,37	0,57	31,41	-0,04	0,02	-0,16
47,30	0,4013	8	56,63	1,06	56,80	-0,17	0,16	-0,37
94,20	0,7992	14	108,78	0,86	108,12	0,66	0,05	0,70
141,00	1,1962	10	159,71	0,84	159,33	0,38	0,07	0,27
185,30	1,5721	14	210,25	1,41	207,81	2,44	0,14	1,32
256,00	2,1719	8	285,18	1,71	285,18	0,00	0,37	0,00
302,90	2,5698	8	336,84	1,69	336,50	0,34	0,36	0,11

Pente = 1,094 Ordonnée à l'origine en ppb= 5,04

Sc est l'incertitude absolue des mélanges de gaz pour étalonnage et calibrage. Ces valeurs sont obtenues à partir des bouteilles ou/et des bouteilles ou/et des systèmes de génération de mélanges de gaz pour étalonnage

6.3.4 Calcul des variances

- <u>Principe de calcul</u> permettant de déterminer $S\hat{x}_{i}^{2}$ (voir annexe 4).
- a) Calcul de la variance associée aux concentrations C_a et C_b . Soit σc_a^2 et σc_b^2 : les variances associées aux concentrations C_a et C_b
- b) Calcul de la variance associée aux résultats de mesurage \overline{x}_{a} et \overline{x}_{b}

soit $\sigma_{\overline{x}_a}^2$ et $\sigma_{\overline{x}_b}^2$: variances associées aux résultats de mesurage \overline{x}_a et \overline{x}_b

c) Calcul de la variance associée à une concentration vraie C

soit σ^2 la variance associée à une concentration vraie C c

- La somme des variances S $\hat{x}_{i}^{2} = (a) + (b) + (c)$

- Application numérique pour NO et NO2
- Pour NO :

Ca	=	19,50 ppb	C _b =	500,4 ppb
\overline{x}_a	=	23,27 ppb	\overline{x}_b =	541,65 ppb
$\sigma_{\overline{x}_{a}}^{2}$	=	0,134	$\sigma_{\overline{x}_{b}}^{2}$ =	3,103

• Pour NO₂ :

C _a	=	10,00 ppb	C_b =	= 256,0 pp	b
\overline{x}_a	=	15,98 ppb	\overline{x}_b	= 285,18 p	pb
$\sigma_{\overline{\mathbf{x}}_a}^2$	=	1,011	$\sigma_{\overline{x}_{h}}^{2}$	= 2,928	

Les valeurs sont calculées à partir des tableaux 7 et 8.

• Détermination de l'incertitude sur les concentrations C, C_a et C_b.

Les concentrations de mélange de gaz générées en NO et NO_2 s'appuient sur un prédilueur-dilueur SONIMIX dont la précision relative est donnée par le constructeur LNI. Cette précision est de 0,3 % à 0,5 % selon les débits, cf. certificats d'étalonnage en **annexe 6**.

Dans le cadre de l'étude elle-même, il est à noter :

- a) la bouteille de gaz de test est la même pour tous les tests,
- b) les bouteilles de gaz de travail NO NO₂ / N₂ et NO / N₂ ont été comparées à une bouteille de « transfert » prêtée par le réseau AIRPARIF, bouteille raccordée à la référence nationale par le LNE. Cette bouteille de transfert a également permis d'effectuer des mesures d'intercomparaisons européennes.

Se reporter au paragraphe 5-6 pour la validation de la ligne fluidique.

En appliquant les formules (1), (2), (3) du calcul des variances données dans l'annexe 4 pages 2/3, on détermine la variance liée à l'incertitude sur les valeurs vraies C_a et C_b, la variance liée à l'incertitude sur les valeurs de mesurage x_a et x_b et la variance liée à l'incertitude sur la concentration vraie C.

Les résultats de calculs extraits des tableaux 7 et 8 sont présentés ci-après.

Analyseur Topaze 3020S NO dans le mélange NO-NO2/N2

Variances lié	s2xi	s2ei =	sei	t = ei / sei	(si / C)*100		
Ca et Cb (1)	xa et xb (2)	C (3)	(1)+(2)+(3)	s²xi+s²xi			
0,02	0,13	0,02	0,01	0,18	0,42	0,00	1,88
0,05	0,13	0,09	0,01	0,28	0,53	1,65	0,64
0,25	0,17	0,36	0,02	0,80	0,89	1,29	0,39
1,23	0,42	1,42	0,07	3,14	1,77	2,22	0,53
2,98	0,91	3,18	0,18	7,25	2,69	0,89	0,49
5,32	1,59	5,48	0,05	12,44	3,53	1,88	0,24
10,47	3,10	10,47	0,39	24,44	4,94	0,00	0,35
14,86	4,41	14,67	0,42	34,35	5,86	0,75	0,31

Analyseur Topaze 3020S NO2 dans le mélange NO-NO2/N2

Variances liées aux incertitudes sur			s2xi	s2ei =	sei	t = ei / sei	(si / C)*100
Ca et Cb (1)	xa et xb (2)	C (3)	(1)+(2)+(3)	s²xi+s²xi			
0,01	1,01	0,01	0,09	1,12	1,06	0,00	10,06
0,03	0,91	0,05	0,02	1,01	1,00	0,04	2,37
0,14	0,80	0,19	0,16	1,28	1,13	0,15	2,23
0,67	0,78	0,76	0,05	2,26	1,50	0,44	0,91
1,60	1,05	1,71	0,07	4,44	2,11	0,18	0,60
2,87	1,57	2,96	0,14	7,54	2,75	0,89	0,76
5,65	2,93	5,65	0,37	14,59	3,82	0,00	0,67
8,01	4,19	7,91	0,36	20,46	4,52	0,08	0,56

Extraits des tableaux 7 et 8

Calculs des varainces liées

6.3.5 - Etude de la fonction discriminante.

La somme des variances liées nous donne S ${\hat{x}}_{i}^{2}$

Les valeurs de $S \frac{2}{x_i}$ et de $S \frac{2}{x_i}$ sont données dans les **tableaux 7 et 8**.

Application de l'annexe 4 page 3 :

Examinons les valeurs t = ei/sei en fonction de la concentration donnée dans les tableaux ci-dessous et comparons-les au coefficient t⁽ⁿ⁻¹⁾⁾_(1-α/2) : on constate que l'appareil est parfaitement linéaire à 2,1 % pour le NO et 3,3 % pour le NO₂. Le coefficient de Student est toujours supérieur à t = ei / sei.

Le Topaze 3020 S suit donc une loi linéaire avec un intervalle de confiance de 95 % pour la plage étudiée de 20 à 600 ppb pour le NO et 10 à 300 ppb pour le NO₂

Extraits des tableaux 7 et 8

Concentratio	ei Faart maya	Nbre degrés de liberté	Coeff. de Student t	t = ei / sei	sei	t0.975*sei	ei + tsei	ei - tsei
NO en ppo	Ecalt move	ue inder te	Student t					
19,50	0,00	10	1,812	0,00	0,42	0,76	0,76	-0,76
47,20	0,87	13	1,771	1,65	0,53	0,93	1,81	-0,06
92,40	1,15	6	1,913	1,29	0,89	1,71	2,85	-0,56
184,10	3,93	13	1,771	2,22	1,77	3,14	7,07	0,79
275,70	2,39	9	1,833	0,89	2,69	4,93	7,33	-2,54
362,10	6,64	13	1,771	1,88	3,53	6,25	12,89	0,39
500,40	0,00	7	1,895	0,00	4,94	9,37	9,37	-9,37
592,20	4,39	7	1,895	0,75	5,86	11,11	15,49	-6,72

Analyseur Topaze 3020S NO dans le mélange NO-NO2/N2

Concentratio	ei	Nbre degrés	Coeff. de	t = ei / sei	sei	t0.975*sei	ei + tsei	ei - tsei
NO2 en ppb	Ecart move	de liberté	Student t					
10,00	0,00	10	1,812	0,00	1,06	1,92	1,92	-1,92
24,10	-0,04	13	1,771	0,04	1,00	1,78	1,74	-1,82
47,30	-0,17	7	1,895	0,15	1,13	2,17	1,99	-2,34
94,20	0,66	13	1,771	0,44	1,50	2,66	3,32	-2,01
141,00	0,38	9	1,833	0,18	2,11	3,86	4,24	-3,48
185,30	2,44	13	1,771	0,89	2,75	4,86	7,30	-2,42
256,00	0,00	7	1,895	0,00	3,82	7,24	7,24	-7,24
302,90	0,34	7	1,895	0,08	4,52	8,57	8,91	-8,23

Après observation de la linéarité, on vérifie que les écarts mesurés se trouvent dans un intervalle de $\pm \delta$ autour de la valeur vraie avec un niveau de confiance de (1- α) % pour toute valeur de Ci, i variant de 1 à Ni soit :

 $-\delta_i < \overline{e}_i < +\delta_i$ (annexe 4 page 3)

 δ_i n'est pas connu actuellement, néanmoins on détermine :

 $(\overline{e}_i + t.S_{\overline{e}i})$ et $(\overline{e}_i - t.S_{\overline{e}i})$ que nous avons exprimés en % relatif par rapport à la concentration C théorique : tableaux ci-après.

Concentration NO en ppb	% rel. ei + tsei	% rel. ei - tsei
19,50	3,92	-3,92
47,20	3,82	-0,13
92,40	3,09	-0,60
184,10	3,84	0,43
275,70	2,66	-0,92
362,10	3,56	0,11
500,40	1,87	-1,87
592,20	2,62	-1,13

NO dans le mélange NO-NO2/N2

Analyseur TOPAZE 3020 S

NO2 dans le mélange NO-NO2/N2

Concentration NO2 en ppb	% rel. ei + tsei	% rel. ei - tsei
10,00	19,18	-19,18
24,10	7,21	-7,54
47,30	4,22	-4,95
94,20	3,53	-2,13
141,00	3,01	-2,47
185,30	3,94	-1,31
256,00	2,83	-2,83
302,90	2,94	-2,72

6.3.6 Répétabilité

Les écarts-types absolus et relatifs sont regroupés ci-dessous et extraits des **tableaux 7 et 8**.

Les tableaux nous permettent de constater que, d'une manière générale, l'écart-type est plus bas pour le NO dans un mélange de NO-NO₂ dans l'azote.

Concentration	NO	réponse	écart type	écart type
n°	ppb généré	moyenne ppb		relatif %
C1	19,50	23,27	0,366	1,88
C2	47,20	54,00	0,304	0,64
C3	92,40	103,00	0,356	0,39
C4	184,10	204,63	0,985	0,53
C5	275,70	301,83	1,348	0,49
C6	362,10	399,21	0,862	0,24
C7	500,40	541,65	1,761	0,35
C8	592,20	644,99	1,831	0,31

REPETABILITE: mesure du NO dans le mélange NO-NO2/N2 - TOPAZE 3020S

REPETABILITE: mesure du NO2 dans le mélan	nge NO-NO2/N2 - Topaze 3020S
--	------------------------------

Concentration	NO2	réponse	écart type	écart type
n°	ppb généré	moyenne ppb		relatif %
C1	10,00	15,98	1,006	10,06
C2	24,10	31,37	0,570	2,37
C3	47,30	56,63	1,057	2,23
C4	94,20	108,78	0,858	0,91
C5	141,00	159,71	0,841	0,60
C6	185,30	210,25	1,415	0,76
C7	256,00	285,18	1,711	0,67
C8	302,90	336,84	1,694	0,56

6.4 DERIVE

6.4.1 Principe de la méthode

Il est donné en **annexe 5**.

6.4.2 Application à l'analyseur TOPAZE 3020 S.

L'instrument a fonctionné successivement avec des cycles comprenant une phase de gaz de zéro et une phase de gaz de concentration avec le mélange NO et NO₂ / N₂.

L'ensemble des résultats a été traité de deux façons :

- un calcul sur 13 jours comprenant une forte variation de pression,
- un calcul sur 7 jours correspondant à une période de pressions plutôt stables.

Le suivi de l'évolution de la pression atmosphérique lors de l'essai de dérive a permis de tracer la courbe de réponse des analyseurs et de la pression atmosphérique en fonction du temps.

Les résultats sont reportés dans les différents tableaux et figures qui leur correspondent :

Gaz	Tableau	Figures	Tableau	Figures
	Essai 7 jours	Essai 7 jours	Essai 13 jours	Essai 13 jours
NO	20	25	21	26
NO ₂	22	27	23	28

La réponse de l'analyseur est affectée par les variations de la pression atmosphérique (voir paragraphe 7.1).

Indépendamment de cet effet, la dérive sur 7 jours peut être estimée à :

1,5 % / jour pour le NO et

1,3 % / jour pour le NO₂.

RECAPITULATION DES RESULTATS DE L'ESSAI DE DERIVE

COSMA -TOPAZE 3020S

	Essai sur 7 jours
	NO (NO +NO 2/N2)
DER IVE DU SIGNAL	NO
Concentration d'essai ppb	405,5
Dérive sur 7 jours % / jour	1,53
intervalle de confiance % /jour	0,31
Nombre de mesures	66
Moyennes des réponses ppb	367,8
Ecart type sur la pente ppb	9,7
Température °C	21,2
Pression hPa	993,4

Tableau 20

COSMA -TOPAZE 3020S

	Essai sur 13 jours
	NO (NO +NO 2/N2)
DER IVE DU SIGNAL	NO
Concentration d'essai ppb	405,4
Dérive sur 7 jours % / jour	-0,80
intervalle de confiance % /jour	0,29
Nombre de mesures	107
Moyennes des réponses ppb	381,5
Ecart type sur la pente ppb	19,6
Température °C	20,9
Pression hPa	1000,4

Tableau 21

COSMA -TOPAZ<u>E 3020S</u>

COSMA -TOPAZE 3020	S
	Essai 7 jours
	NO2 (NO + NO2 N2)
DER IVE DU SIGNAL	NO2
Concentration d'essai ppb	173,8
Dérive sur 7 jours % / jour	1,30
intervalle de confiance % /jour	0,30
Nombre de mesures	66
Moyennes des réponses ppb	157,2
Ecart type sur la pente ppb	4,1
Température °C	21,2
Pression hPa	993,4

Tableau 22

Essai 13 jours NO2 (NO+NO2/N2) DER IVE DU SIGNAL NO2 Concentration d'essai ppb Dérive sur 7 jours % / jour 173,8 -1,26 intervalle de confiance % /jour 0,31 Nombre de mesures 107 Moyennes des réponses ppb 164,9 Ecart type sur la pente ppb Température °C 9,0 20,9 Pression hPa 1000,4

Tableau 23

Figure 26

59

Figure 28

7. ETUDE DE L'INFLUENCE DE PARAMETRES PHYSIQUES

7.1 INFLUENCE DE LA PRESSION ATMOSPHERIQUE

Au paragraphe 6, nous avons noté que les résultats de l'essai de dérive sont affectés par la variation de la pression atmosphérique.

On a donc tracé une courbe de réponse de l'appareil en fonction de la pression atmosphérique.

La *figure 29* montre une influence de la pression qui se chiffre, dans les conditions d'essais à :

- NO : 18,7 ppb / 10 hPa à 381,5 ppb de moyenne,

- NO₂ : 9,9 ppb / 10 hPa à 164,9 ppb de moyenne.

Figure 29

Influence de la pression atmosphérique sur la réponse de l'appareil mélange de NO-NO2 /N2 (405.4 / 173.8 ppb)

7.2 INFLUENCE DE LA TEMPERATURE

2 essais ont été effectués : montée en température et descente en température.

Les essais difficiles à interpréter sont regroupés dans les **tableaux 24 et 25**, la *figure 30* donne les courbes pour le NO et le NO_2 .

Il serait intéressant d'examiner non seulement la réponse de l'appareil mis dans une enceinte à température variable mais aussi de voir si la température de l'échantillon perturbe l'analyseur. Cet essai sera effectué et fera l'objet d'un rapport complémentaire.

Tableaux 24 – 25 Figure 30

EPREUVE DE LA TEMPERATURE : résultats NO et NO2 dans le mélange NO+NO2/N2

Analyseur	teneur générée	Concentration moyenne	Température	Ecart relatif	Ecart relatif	Ecart relatif
-	ppb -NO	mesurée en ppb	en °C	en % / °C	en % / 19.2°C	en % / °C
COSMA	405,4	453	34,0	+0.437		
Topaze		417,6	20,1		+4.45	+0.232
3020S		439,4	14,8	-0.669		

Analyseur	teneur générée Concentration moyenne		Température	Ecart relatif	Ecart relatif	Ecart relatif
	ppb -NO2	mesurée en ppb	en °C	en % / °C	en % /19.2 C	en % / °C
COSMA		204,1	34,0	+0.211		
Topaze	173,2	197,4	20,1		-9.789	-0.510
3020S		223,5	14,8	-2.204		

7.3 INFLUENCE DE L'HUMIDITE

Cet essai a été mené avec le même mélange gazeux que les précédents tests : NO - NO₂ / N_2 à des concentrations respectives de 405,4 et 173,8 ppb.

Les résultats sont regroupés dans les tableaux 26-27 et la figure 31 ci-après :

NO dans le mélange NO-NO2/N2

Туре	concentration	Réponse	humidité	écart relatif	Ecart relatif	Ecart relatif
appareil	ppb NO	ppb	ppb	en %/écart de HR	en % / 50%HR	en % / %HR
COSMA	405,4	361,10	0,7			
Topaze 3020S		317,71	89,2	-12,0	-6,79	-0,14

NO2 dans le mélange NO-NO2/N2

		1101 44				
Туре	concentration	Réponse	humidité	écart relatif	Ecart relatif	Ecart relatif
appareil	ppb NO2	ppb	% HR	en %/écart de HR	en % / 50%HR	en % / %HR
COSMA	173,8	156,00	0,7			
Topaze 3020S		138,28	89,2	-11,4	-6,4	-0,13

Les résultats sur les taux de dilution sont calculés et corrigés en tenant compte de la présence de 12.7g d'eau / Kg d'air sec à 20°c pour 90% d'humidité relative.

Au delà de 90-95% d'humidité relative , l'appareil ne donnne plus de mesure; .

L'écran de l'analyseur affiche alors "dépassement d'échelle"

Lorsque le taux d'humidité relative redescend à 90% environ, la mesure "NO-NO2-NOx" s'affiche à nouveau mais les résultats sont pertubés . Cet effet de mémoire dure une dizaine d'heure environ

<u>Nota</u> : Le dispositif expérimental a conduit à une sursaturation de l'effluent en humidité. Les résultats issus de cette situation anormale n'ont pas été exploités.

7.4 INFLUENCE DE LA TENSION D'ALIMENTATION ELECTRIQUE SUR LE FONCTIONNEMENT DE L'ANALYSEUR

L'essai a été mené avec le même type de mélange : NO et NO_2 / N_2 .

Les résultats sont regroupés dans les tableaux 28 et 29 figure 32 ci-après.

L'influence de l'alimentation électrique est importante notamment aux tensions 230 V - 10 % où la variation atteint + 7 %.

Analyseur COSMA - Topaze 3020S					
	Concentration d'es	sai: 322.3ppb de N	VO dans un i	mélange NO-NO2 / N2	
Туре	concentration	Réponse	tension	tension	écart relatif
appareil	ppb	ppb	volt		en %
	322,3	324,00	230,8	référence=U	
Topaze		316,1	246,2	U+10%U	-2,44
3020S		329,7	231,3	référence=U	
		306,80	215,4	U-10%U	6,95

Tableaux 28-29 Figure 32

Analyseur COSMA - Topaze 3020S					
	Concentration d'ess	ai: 164.8 ppb de N	IO2 dans un	mélange NO-NO2 / N	2
Туре	concentration	Réponse	tension	tension	écart relatif
appareil	ppb	ppb	volt		en %
	164,8	155,50	230,8	référence=U	
Topaze		153,40	246,2	U+10%U	-1,35
3020S		160,20	231,3	référence=U	
		148,90	215,4	U-10%U	7,05

Réponse de l'appareil en fonction de la tension d'alimentation électrique

8. INFLUENCE DES INTERFERENTS GAZEUX

8.1 **DEFINITION**

On appelle substance interférente, toute substance autre que le constituant dosé qui, de par sa présence dans l'échantillon entraîne des variations de réponse de l'instrument.

Le coefficient d'interférence positif ou négatif est exprimé de la façon suivante :

$$I_{en\%} = \frac{X_i - X_0}{C_i} x \ 100$$

Où	X_i	=	réponse de l'instrument avec l'interférent
	Xo	=	réponse de l'instrument sans interférent
	C_i	=	concentration de l'interférent.

L'essai a été mené avec du gaz SO₂ et NH₃ :

NH ₃	$NO - NO_2/N_2$	Effet d'interférent
		pour 100 ppb
189,6 ppb	329,4 – 141,2 ppb	0.0

SO ₂	$NO - NO_2/N_2$	Effet d'interférent
		pour 100 ppb
192 ppb	355,5 – 155,5 ppb	0.0

9. REMARQUES SUR L'APPAREIL TOPAZE 3020 S

9.1 MISE EN SERVICE

Septembre 2000 : Mise en service de l'analyseur par le constructeur : rien à signaler.

9.2 FONCTIONNEMENT DE L'APPAREIL

- Aucune panne pendant les 5 mois de fonctionnement.
- Difficulté à maintenir un zéro stable.

- Difficulté pour obtenir une valeur de calibration correcte et constante Nous avons dû recourir au mode manuel pour régler la valeur de la case « 23 » (voir relevé des paramètres § 4-3).
- Tout arrêt technique de quelques heures nécessite un calibrage.
- A la fin des tests, le rendement du four a été vérifié et la valeur moyenne de 2 TPG a donné un taux de rendement de 94,7 % pour une valeur initiale de 98 %.

ANNEXES 1 à 6

DEFINITION ET PRINCIPES D'ESSAIS DES CARACTERISTIQUES DES ANALYSEURS SELON LA NORME NFX 20-300

<u>Annexe 1</u> :	Temps de réponse, mort, de montée et de descente	(2 pages)
Annexe 2 :	Limites de décision, de détection et de quantification	(2 pages)
Annexe 3 :	Linéarité	(1 page)
<u>Annexe 4</u> :	Comparaison au modèle linéaire	(3 pages)
<u>Annexe 5</u> :	Dérive	(1 page)
<u>Annexe 6</u> :	Certificat d'étalonnage du constructeur LN Industrie en ce qui concerne le raccordement de la débitmétrie selon la marque d'étalonnage OFMET	
	(Office Fédéral de la Métrologie)	(2 pages)

1/2

ANNEXE 1

(2 pages)

TEMPS DE REPONSE, TEMPS MORT, TEMPS DE MONTEE ET DE DESCENTE

Définition

Le **temps de réponse** est l'intervalle qui sépare le moment où une variation instantanée de concentration est produite à l'entrée de l'analyseur et l'instant où la réponse de l'analyseur atteint un niveau correspondant à 90 % de la valeur finale de la lecture.

Le **temps mort** est égal à l'intervalle de temps qui sépare le moment où une variation instantanée de concentration est produite à l'entrée de l'analyseur et l'instant où la réponse atteint un niveau correspondant à 10 % de la valeur finale de lecture.

Le **temps de montée** (et **de descente**) est la différence entre le temps de réponse et le temps mort.

Principe de la méthode d'essais

On adresse à l'analyseur la concentration C_o nulle ou proche de zéro, sa réponse est x_o.

Puis à l'entrée de l'analyseur, on fait varier instantanément la concentration de C_o à C : la réponse de l'analyseur varie alors de x_o à x.

On renouvelle l'opération.

Pour une variation croissante de concentration :

- le temps de réponse est l'intervalle de temps qui sépare le moment où a été produite la variation $C_o \rightarrow C$ de l'instant où la réponse a atteint le niveau x + 0.9 (x-x_o).
- le temps mort est l'intervalle de temps qui sépare le moment où a été produite la variation de $C_o \rightarrow C$ de l'instant où la réponse a atteint le niveau x + 0,1 (x-x_o).

Pour une variation décroissante de concentration :

- le temps de réponse est l'intervalle de temps qui sépare le moment où a été produite la variation $C \rightarrow C_o$ de l'instant où la réponse a atteint le niveau $x_o 0.9$ (x-x_o).
- le temps mort est l'intervalle de temps qui sépare le moment où a été produite la variation de C \rightarrow C_o de l'instant où la réponse a atteint le niveau x_o 0,1 (x-x_o).

D'après la norme, l'opérateur doit déterminer les valeurs de ces quatre paramètres (temps de réponse, temps mort, temps de montée, temps de descente) pour un saut de concentration faible et un saut de concentration aussi important que possible dans la gamme de concentration mesurable.
ANNEXE 1 (suite)

2/2

La *figure ci-dessous* présente les schémas illustrant le temps de réponse, le temps mort de montée et le temps de descente.

indicateur de l'analyseur-

a) Variations croissantes de concentration

1/2

ANNEXE 2

(2 pages)

LIMITES DE DECISION, DE DETECTION ET DE QUANTIFICATION

Définition

La limite de décision x_D [à un niveau de confiance (1- α), soit 95 %] est la valeur de mesurage en dessous de laquelle on ne peut pas affirmer avec une probabilité au moins égale à (1- α) que la concentration vraie conduisant à cette mesure ne soit pas égale à la concentration nulle.

La limite de détection C_D [à un niveau de confiance (1- α), soit 95 %] est la concentration vraie déduite de la limite de décision par application de la droite de calibrage.

La limite de quantification C_Q [à un niveau de confiance (1- α), soit 95 %] est la concentration vraie qui a la probabilité au moins égale à (1 - β) d'être supérieure à la limite de détection C_D .

Par convention, les valeurs retenues pour α et β sont de 5 %.

Principe de la méthode d'essais - Détermination des limites

Le principe de détermination de ces limites est celui décrit dans la norme X 20-300 « Evaluation des caractéristiques des analyseurs de gaz sur banc d'essai ».

On réalise de préférence de l'ordre de 10 mesures indépendantes, c'est-à-dire avec injection d'un gaz de concentration nulle entre chaque mesurage, afin de limiter les phénomènes d'hystérésis.

L'intervalle de confiance est évalué à partir de l'écart-type estimé S, à une concentration C faible qui commodément pourra être la concentration C_a , la plus faible des deux concentrations utilisées pour la détermination de la droite de calibrage.

De plus, on peut comparer la valeur S au niveau C_a à celle obtenue au niveau zéro pour s'assurer qu'il n'y a pas de dispersion importante dans la plage des faibles concentrations, zéro compris.

En ayant choisi un risque de première espèce α , on calcule la limite de décision x_D qui est de la forme :

 $\mathbf{X}_{\mathrm{D}} = \mathbf{t}_{(1-\alpha)}^{(n-1)} \cdot \mathbf{S}$ avec t coefficient de Student.

ANNEXE 2 (suite)

2/2

En utilisant la droite de calibrage, on détermine : $C_{\bar{x}}$ abscisse qui correspond à la valeur du mesurage et C_{α} abscisse qui correspond à la valeur :

On en déduit la limite de détection CD qui est de la forme

$$C_{a} - C_{\overline{x}} \text{ soit } \frac{xD}{A}$$

En ayant choisi un risque de deuxième espèce β , et en faisant l'hypothèse que l'écart-type estimé est constant dans cet intervalle de concentration, on détermine, à partir de la droite de calibrage C_β abscisse qui correspond à la valeur

$$\left(\mathbf{x} + \left[\mathbf{t}_{(1-\alpha)}^{(n-1)} + \mathbf{t}_{(1-\beta)}^{(n-1)}\right], \mathbf{s}\right)$$

on en déduit la limite de quantification Co, qui est de la forme

$$C_q = C_p - C_{\overline{x}}$$
 soit $\frac{2x_p}{A}$

La figure ci-dessous résume la procédure de détermination des limites :

ANNEXE 3

(1 page)

LINEARITE

On définit dans le domaine de concentration spécifié au moins 6 concentrations intermédiaires et de préférence de l'ordre de 10 (ou plus). On notera k le nombre de concentrations considérées. Parmi les concentrations d'essais figurent les deux concentrations ayant servi à l'établissement de la droite de calibrage. Pour chaque concentration ainsi définie, on réalise au moins dix mesures avec retour au zéro entre chaque mesurage afin d'éviter les phénomènes d'hystérésis et de travailler sur des réponses indépendantes.

Test de GRUBB

L'estimation de l'écart-type S_i à C_i a la forme :

$$\mathbf{S}_{i} = \sqrt{\frac{\sum j x_{ij}^{2} - \left[\frac{\left(\sum j x_{ij}\right)^{2}}{n_{i}}\right]}{n_{i-1}}}$$

avec
$$\overline{\mathbf{x}_{i}} = \sum j \mathbf{x}_{ij} / n_{i}$$

A C_i , on prend la valeur de mesure x_i extr. qui est la plus éloignée en valeur absolue de la moyenne et on déduit la valeur du test :

$$TC = \left| \mathbf{X}_{i,extr} - \mathbf{X}_{i} \right| / \mathbf{S}_{i}$$

et on compare avec les valeurs du test de Grubb qui est pris comme valeur critique. Si TC est plus grand que la valeur critique, il faut recommencer 2_{ni} mesurages à la concentration C_i et effectuer une nouvelle comparaison de TC avec le test de Grubb. Si TC est à nouveau plus grand que la valeur critique, les valeurs extrêmes ne doivent pas être rejetées et les calculs suivants seront effectuées sur les $3n_i$ mesurages réalisés à C_i . Par contre, si le nouveau TC est inférieur à la valeur critique, on pourra rejeter la valeur extrême et continuer le traitement sur les ($3n_i - 1$) mesurages réalisés à C_i .

Il est recommandé de ne pas éliminer plus de 5 % des valeurs expérimentales.

1/3

ANNEXE 4

(3 pages)

COMPARAISON AU MODELE LINEAIRE

Soient x_{ij} les réponses de l'appareil pour une concentration vraie $C_{i,j}$ variant de 1 à n_i . La moyenne des résultats est :

$$\overline{\mathbf{x}_{i}} = \frac{\sum_{j=1}^{n_{i}} \mathbf{x}_{ij}}{n_{i}}$$

soit x_i la réponse <u>estimée</u> de l'appareil pour une concentration C_i déduite de la droite de calibrage.

l'écart entre la valeur estimée et un résultat de mesurage s'écrit :

$$\mathbf{e}_{ij} = \mathbf{x}_{ij} - \hat{\mathbf{x}}_{i}$$

l'écart moyen :

$$\overline{\mathbf{e}_{i}} = \overline{\mathbf{x}_{i}} - \hat{\mathbf{x}}_{i}$$

 e_i , x_i et \hat{x}_i sont déterminés à partir des résultats de mesures sans les valeurs aberrantes.

La loi de composition des variances nous permet d'écrire la variance de l'écart moyen, soit :

$$S_{\overline{e_i}}^2 = S_{\overline{x}_i}^2 + S_{\hat{x}_i}^2$$

avec
$$S_{\overline{x}_i}^2 = \frac{S_i^2}{n}$$

S_i est donné après application du test de Grubb.

 $S^2_{\hat{x}_i}$ correspond à la somme des variances liées à l'incertitude sur C_a et C_b , \bar{x}_a et \bar{x}_b et C .

ANNEXE 4 (suite)

Principe de calcul permettant de déterminer $S_{\hat{x}_i}^2$

La droite de calibrage étant de la forme $x = A \cdot C + B$

avec

$$A = \frac{x_b - x_a}{C_b - C_a}$$
$$B = \frac{\overline{x}_a C_b - \overline{x}_b C_a}{C_b - C_a}$$

après simplification, on peut écrire :

$$\hat{\mathbf{x}} = \overline{\mathbf{x}}_{a} + \frac{\overline{\mathbf{x}}_{b} - \overline{\mathbf{x}}_{a}}{\mathbf{C}_{b} - \mathbf{C}_{a}} (\mathbf{C} - \mathbf{C}_{a})$$

Soit $\sigma_{C_a}^2$ et $\sigma_{C_b}^2$ les variances associées aux concentrations C_a et C_b Soit $\sigma_{\overline{x}_a}^2$ et $\sigma_{\overline{x}_b}^2$ les variances associées aux résultats de mesurage \overline{X}_a et \overline{x}_b Soit σ_c^2 la variance associée à une concentration vraie C. La variance liée à l'incertitude sur les valeurs de mesurage C_a et C_b est :

$$\left(\frac{\overline{\mathbf{x}}_{b} - \overline{\mathbf{x}}_{a}}{\mathbf{C}_{b} - \mathbf{C}_{a}}\right)^{2} \cdot \frac{1}{\left(\mathbf{C}_{b} - \mathbf{C}_{a}\right)^{2}} \left\{ \left(\mathbf{C} - \mathbf{C}_{a}\right)^{2} \boldsymbol{\sigma}_{\mathbf{C}_{b}}^{2} + \left(\mathbf{C} - \mathbf{C}_{b}\right)^{2} \boldsymbol{\sigma}_{\mathbf{C}_{a}}^{2} \right\}$$
(1)

La variance liée à l'incertitude sur les valeurs de mesurage x_a et x_b est :

$$\frac{1}{(C_{b} - C_{a})^{2}} \left\{ (C - C_{a})^{2} \sigma_{\bar{x}_{b}}^{2} + (C_{b} - C)^{2} \sigma_{\bar{x}_{a}}^{2} \right\}$$
(2)

La variance liée à l'incertitude sur la concentration vraie C est :

$$\left(\frac{\overline{\mathbf{x}}_{\mathrm{b}} - \overline{\mathbf{x}}_{\mathrm{a}}}{\mathbf{C}_{\mathrm{b}} - \mathbf{C}_{\mathrm{a}}}\right)^{2} \cdot \boldsymbol{\sigma}_{\mathrm{C}}^{2} \tag{3}$$

La variance liée à $x(\sigma_{\hat{x}}^2)$ est égale à la somme des variances calculées ci-dessus soit :

$$S_{\hat{x}_i}^2 = (1) + (2) + (3).$$

3/3

ANNEXE 4 (suite)

Détermination de l'incertitude sur les concentrations C_a et C_b

La somme de ces variances liées nous donne $S^2_{\hat{x}_i}$

Il en est déduit :

$$S_{\bar{e}_i}^2 = S_{\bar{x}_i}^2 + S_{\hat{x}_i}^2$$

Il faut maintenant comparer e_i à zéro, ceci revient à comparer la moyenne \overline{x}_i à la valeur estimée \hat{x}_i

Pour ce faire, on calcule la fonction discriminante : t = $\frac{\overline{e}_i}{S_{\overline{e}_i}}$

Le risque de première espèce ayant été préalablement choisi (α), on compare |t| au coefficient de Student $t_{(1 - \alpha/2)}^{(n-1)}$

L'hypothèse $e_i = 0$ (il n'y a pas d'écart) n'est pas rejetée si : $|t| < t_{(1 - \alpha/2)}^{(n-1)}$

Si pour toutes les concentrations C_i , i varie de 1 à k, le même résultat est obtenu, l'hypothèse de linéarité sera acceptée sachant que le risque global est différent de α .

On observe la non-linéarité. On vérifie aussi si les écarts mesurés se trouvent dans un intervalle de $\pm \delta$ autour de la valeur vraie avec un niveau de confiance de (1- α) % pour toute valeur de C_i,i variant de 1 à n_i, soit :

$$-\delta_{i} < e_{i} < +\delta_{i}$$

Pour toutes les valeurs de C_i, on déduit les deux inégalités suivantes :

$$-\delta_{i} < \overline{e}_{i} - t_{(1-\alpha/2)} \cdot S_{\overline{e}_{i}}$$
$$\overline{e}_{i} + t_{(1-\alpha/2)} \cdot \alpha_{\overline{e}_{i}} < +\delta$$

Si ces deux inégalités sont respectées pour toutes les valeurs de C_i, la spécification de linéarité est respectée.

La valeur de δi n'est actuellement pas déterminée.

ANNEXE 5

(1 page)

DERIVE

Définition

La dérive est la variation systématique des indications d'un analyseur pour des niveaux de concentrations compris entre C_Q et C_{max} pendant une période de temps définie, les conditions d'environnement restant constantes.

Il y a lieu de distinguer la dérive de zéro, ou au voisinage de zéro qui concerne le fonctionnement de l'instrument opérant sur des échantillons de concentration faible, et la dérive de sensibilité, considérée à un ou plusieurs niveaux de concentration.

Principe de la méthode d'essai

On dispose d'un ou plusieurs mélanges de gaz de concentrations constantes ou reproductibles et d'un gaz de concentration nulle ou faible. Une succession de concentrations est assurée sur l'alimentation de l'analyseur à l'aide de ces mélanges de gaz. La séquence est reproduite périodiquement. Des ajustements linéaires, en fonction du temps, sont effectués respectivement pour les indications correspondant à chaque niveau de concentration. Les pentes des ajustements fournissent une estimation de la dérive à chaque niveau.

La droite de régression est donnée par l'équation suivante :

$$\mathbf{x} = \mathbf{A} + \mathbf{B}\mathbf{t}$$

où x est le résultat du mesurage obtenu au temps t,

$$B = \frac{n\Sigma tx - (\Sigma t)(\Sigma x)}{n\Sigma t^{2} - (\Sigma t)^{2}} \qquad A = \frac{\Sigma x - B\Sigma t}{n}$$

et n est le nombre des mesures.

ANNEXE 6 (page ¹/₂)

Eidgenössisches Amt für Messwesen Office fédéral de métrologie Ufficio federale di metrologia Swiss Federal Office of Metrology

N° 223-0027

Certificat d'étalonnage

Objet

1 Référence de débit Fabricant : LN INDUSTRIES SA, Châtelaine N° de série : 900

Requérant

LN INDUSTRIES SA, 1219 Châtelaine

Portée de l'étalonnage

Le débit est généré par huit buses soniques. Chacune est successivement reliée à l'étalon pour étalonnage. Le résultat du mesurage est exprimé sous forme d'une valeur moyenne (\bar{q}_v) et d'un écart-type expérimental (s) calculés sur min. quatre mesurages. Les indications de la pression de régulation et de la température des buses ont été relevées. La pression après le régulateur de pression a également été relevée à l'aide d'un système externe étalonné (WIKA 0-10 bar, certificat d'étalonnage 12.3-0607 du 2.2.1994).

Méthode de mesurage

Le dispositif a été enclenché au moins 12 h avant son utilisation pour assurer sa stabilisation. Le débit est généré dans le dispositif installé horizontalement et il est mesuré par le système d'étalonnage volumétrique primaire pour petits débits de gaz de l'Office fédéral de métrologie (OFMET). Celui-ci est rattaché aux étalons nationaux de longueur, de temps, de température et de pression de l'OFMET. Les valeurs de débit ont été automatiquement ramenées aux conditions de référence. Toutes les valeurs des paramètres ont été enregistrées.

Conditions de mesurage

Pendant le mesurage, la température du gaz se situait entre 20,79 °C et 21,15 °C. La pression du gaz dans le cylindre de mesure de l'étalon de l'OFMET se situait entre 958,84 hPa et 961,96 hPa et la pression ambiante entre 953,95 hPa et 956,82 hPa. De l'azote (qualité 99,995 % vol, Carbagas) avec une surpression de (5000 \pm 100) hPa a été utilisée comme gaz de mesurage. Les conditions de référence sont de 20 °C et 1013,25 hPa.

CH-3003 Bern-Wabern, Lindenweg 50 Tel.: +41 (0)31 32331 11 * Fax: +41 (0)31 32332 10 e-mail: postmaster@eam.admin.ch postmaster@ofmet.admin.ch

Dieses Dokument darf nur in vollständiger Form weitergegeben werden La reproduction de ce document n'est autor sée que dans sa forme intégrale Questo documento può essere pubblicatio oriordotto soltanto integralmente This document may not be published or forwarded other then in tull

Seite Page Pagina	1	von de di	2	Seiten pages pagine
Page		of		pages

ANNEXE 6 (suite)

OFMET FAM UFMET

Eidgenössisches Amt für Messwesen Office fédéral de métrologie Ufficio federale di metrologia Swiss Federal Office of Metrology

N° 223-0027

Certificat d'étalonnage (suite)

Résultats de mesurage

Les débits indiqués se réfèrent aux conditions de référence (20 °C et 1013,25 hPa)

		Pression a inter	après réglage ne [hPa]		
N° de	Val. nom	Mesure	Affichage de	Indication de la	Etalon OFMET
la buse	[ml/min]	externe pression rel.	l'instrument pression abs.	température buse [°C]	ą, ±s [ml/min]
1	1	2950	3902 - 3903	36,71 - 36,83	0,9748 ± 0,0034
2	25	2950	3901 - 3902	37,41 - 37,49	4,4659 ± 0,0046
3	10	2950	3902 - 3903	37,94 - 38,08	9,6896 ± 0,0023
4	50	2950	3902 - 3903	38,32 - 38,54	47,266 ± 0,012
5	100	2950	3902 - 3904	38,43 - 38,68	98,137 ± 0,011
6	500	2950	3903 - 3904	38,42 - 38,69	478,42 ± 0,02
7	1000	2950	3903 - 3904	38,57 - 38,83	981,61 ± 0,09
8	5000	2950	3903 - 3904	37,72 - 37,96	4780,7 ± 0,2
Incertitu	ide de mes	ure por 20 q _v -	ur q _v ≥ 20 ml/mi ml/min > q _v ≥ 4 < 4 ml/min :	in: $U_{95} =$ ml/min $U_{95} =$ $U_{95} =$	0.003 × q _v 0.005 × q _v 0.01 × q _v

La valeur mesurée et l'incertitude qui lui correspond définissent le domaine dans lequel se situe la valeur de la grandeur mesurée avec une probabilité de 95 %. L'incertitude estimée contient les contributions de l'étalon utilisé, de la procédure d'étalonnage, des conditions d'environnement et de l'objet étalonné. Il n'a pas été tenu compte du comportement à long terme de l'objet étalonné.

Date de l'étalonnage

Les mesurages ont été effectués du 26 au 27 novembre 1998. Le dispositif a été muni de la marque d'étalonnage OFMET 11.98 .

Pour le mesurage

ckermann

Wabern, le 30 novembre 1998

Office fédéral de métrologie Division électricité et métrologie pour l'environnement

Ulrich Feller, vice directeur

CH-3003 Bern-Wabern, Lindenweg 50 Tel.: +41 (0)31 323 31 11 • Fax: +41 (0)31 323 32 10 -mail: postmaster@eam.admin.ch postmaster@ofmet.admin.ch

Dieses Ookument darf nur in vollständ ger Form weitergegeben werden La réproduction de ce document n'est al tri sée que dans sa forme intégrale Questo documento può essere pubblicato tinorodotto soltanto integralmente This document may not be published priforwarded other then in full

von pages pagine de di 2 2

Seite

Page

Pagina Page