

Laboratoire Central de Surveillance de la Qualité de l'Air

Contrôle qualité de la chaîne nationale de traçabilité métrologique mise en œuvre pour la surveillance de la qualité de l'air

Laboratoire Central de Surveillance de la Qualité de l'Air

CONTROLE QUALITE DE LA CHAINE NATIONALE DE TRAÇABILITE METROLOGIQUE MISE EN ŒUVRE POUR LA SURVEILLANCE DE LA QUALITE DE L'AIR

Fabien Mary

LNE

Décembre 2022

Approbation : Tatiana Macé

Liste des personnes ayant participé à l'étude : Christophe Sutour, Thomas Venault, Fabrice Perez

LE LABORATOIRE CENTRAL DE SURVEILLANCE DE LA QUALITE DE L'AIR

Le Laboratoire Central de Surveillance de la Qualité de l'Air est constitué des laboratoires de l'IMT Nord Europe, de l'INERIS et du LNE. Il mène depuis 1991 des études et des recherches à la demande du Ministère chargé de l'environnement, et en concertation avec les Associations Agréées de Surveillance de la Qualité de l'Air (AASQA). Ces travaux en matière de pollution atmosphérique ont été financés par la Direction Générale de l'Énergie et du Climat (bureau de la qualité de l'air) du Ministère chargé de l'Environnement. Ils sont réalisés avec le souci constant d'améliorer le dispositif de surveillance de la qualité de l'air en France en apportant un appui scientifique et technique au ministère et aux AASQA.

L'objectif principal du LCSQA est de participer à l'amélioration de la qualité des mesures effectuées dans l'air ambiant, depuis le prélèvement des échantillons jusqu'au traitement des données issues des mesures. Cette action est menée dans le cadre des réglementations nationales et européennes mais aussi dans un cadre plus prospectif destiné à fournir aux AASQA de nouveaux outils permettant d'anticiper les évolutions futures.

TABLE DES MATIERES

RESUME	6
1. OBJECTIF GENERAL	7
•	NNEMENT DE LA CHAINE NATIONALE DE
-	7
	7
•	8
2.4 Planification des essais	8
2.5 Résultats de l'ensemble des campagr	ies8
2.5.1 Comparaison SO ₂	8
2.5.2 Comparaison NO/NO _x	12
2.5.3 Comparaison CO	19
2.5.4 Comparaison NO ₂	21
•	NNEMENT DE LA CHAINE NATIONALE DE
3.1 But	27
3.2 Matériel utilisé	27
3.3 Mode opératoire	27
3.4 Liste des participants	27
3.5 Résultats bruts obtenus	28
3.6 Exploitation des résultats obtenus	31
3.7 Conclusion	33

RESUME

L'objectif de cette étude était d'effectuer des comparaisons interlaboratoires (CIL) entre le LCSQA-LNE et les Association Agréées de Surveillance de la Qualité de l'Air (AASQA) pour s'assurer du bon fonctionnement de la chaîne nationale de traçabilité métrologique et pouvoir détecter d'éventuelles anomalies auxquelles il conviendra d'apporter des actions correctives.

Le LCSQA-LNE fait ainsi circuler dans les stations de mesure des AASQA des mélanges gazeux (NO/NO_x, CO, NO₂ et SO₂) en bouteille de fraction molaire inconnue et un générateur d'ozone portable délivrant un mélange gazeux à une fraction molaire définie. Les valeurs mesurées par les AASQA sont ensuite comparées avec les valeurs de référence du LCSQA-LNE.

La CIL réalisée en 2022 a impliqué les réseaux de mesure suivants : Gwad'air, Atmo Bourgogne Franche-Comté, AtmoSud, Hawa Mayotte, Atmo Nouvelle-Aquitaine, Airparif, Madininair, Atmo Grand Est, Atmo Normandie et Atmo AURA pour les composés NO/NOx, CO, NO₂ et SO₂ et les réseaux de mesure APL, Hawa Mayotte, Lig'Air, Madininair, Atmo AURA, Air Breizh, Atmo BFC et Airparif pour l'ozone.

Les résultats sont traités en calculant les écarts normalisés (*En*) à partir des fractions molaires et des incertitudes associées mesurées par les AASQA et par le LCSQA –LNE. Lorsque l'En est strictement inférieur à 1, l'écart est considéré comme non significatif et les fractions molaires du LNE et du Niveau 3 comme non significativement différentes. Dans le cas contraire, l'écart est considéré comme significatif et il faut rechercher les causes de l'anomalie.

Polluant	Nombre de mesures	Nombre de En supérieur à 1
SO ₂	16 avant réglage* 16 après réglage*	2 avant réglage* => Réseaux E (1 mesure), et I (1 mesure) 3 après réglage* => Réseaux E (1 mesure), F (1 mesure) et I (1 mesure)
СО	13 avant réglage* 13 après réglage*	1 avant réglage* => Réseau F (1 mesure) Aucun après réglage*
NO/NO _x	32 avant réglage* 32 après réglage*	1 avant réglage* => Réseau F (1 mesure) Aucun après réglage*
NO ₂	32 avant réglage* 32 après réglage*	0
O ₃	27	0

(*) Avant ou après réglage de l'analyseur avec l'étalon de transfert 2-3

En conclusion, globalement, la chaîne nationale de traçabilité métrologique mise en place pour assurer la traçabilité des mesures de SO₂, de NO/NO_x, de NO₂, de CO et O₃ aux étalons de référence fonctionne correctement. Toutes les AASQA concernées par des écarts normalisés supérieurs à 1 ont mené des investigations et apporté des éléments pour expliquer les causes des anomalies.

1. OBJECTIF GENERAL

L'objectif de cette étude est d'effectuer des comparaisons interlaboratoires entre le niveau national (LCSQA-LNE) et les AASQA pour s'assurer du bon fonctionnement de la chaîne nationale de traçabilité métrologique et pouvoir détecter d'éventuelles anomalies auxquelles il conviendra d'apporter des actions correctives.

2. Controle qualite du bon fonctionnement de la chaine nationale de traçabilite metrologique NO/NO_x , NO_2 , SO_2 et CO

2.1 But

Le but est de faire circuler des mélanges gazeux en bouteille appelés dans la suite du document « bouteille de comparaison », dans les stations de mesure des AASQA pour valider les différents raccordements effectués dans le cadre de la chaîne nationale de traçabilité métrologique. Les fractions molaires de chaque mélange gazeux étaient inconnues pour l'AASQA.

Des mélanges gazeux de NO/NO_x, de SO₂, de NO₂ et de CO en bouteille ont donc été titrés par le LCSQA-LNE puis envoyés à des AASQA.

Ces AASQA ont ensuite déterminé la fraction molaire de chaque mélange gazeux à l'aide de leurs appareils de mesure étalonnés avec leurs propres moyens, puis les ont renvoyés au LCSQA-LNE qui les a titrés de nouveau.

2.2 Mode opératoire

Le mode opératoire suivi est décrit-ci-après :

- Au LCSQA-LNE : Détermination de la fraction molaire du mélange gazeux de la « bouteille de comparaison » (étalonnage aller).
- En AASQA (stations de mesure) :
 - Détermination de la fraction molaire du mélange gazeux de la « bouteille de comparaison » par l'AASQA avant réglage de l'analyseur de station :
 - Injection du mélange gazeux de la « bouteille de comparaison » dans l'analyseur de station => Lecture de la fraction molaire (F1),
 - Retour à zéro,
 - Nouvelle injection du mélange gazeux de la « bouteille de comparaison » dans l'analyseur de station => Lecture de la fraction molaire (F'1).
 - Réglage de l'analyseur de station avec un étalon de transfert 2-3 par l'AASQA.
 - Détermination de la fraction molaire du mélange gazeux de la « bouteille de comparaison » par l'AASQA après réglage de l'analyseur de station :
 - Injection du mélange gazeux de la « bouteille de comparaison » dans l'analyseur de station ⇒ Lecture de la fraction molaire (F2),
 - Retour à zéro,

- Nouvelle injection du mélange gazeux de la « bouteille de comparaison » dans l'analyseur de station ⇒ Lecture de la fraction molaire (F'2).
- Au LCSQA-LNE : Détermination de la fraction molaire du mélange gazeux de la « bouteille de comparaison » (étalonnage retour).

2.3 Critères de traitement des données

Depuis quelques années, la majorité des AASQA communiquent au LCSQA-LNE les fractions molaires mesurées avec les incertitudes élargies associées.

De ce fait, dans le présent document, le traitement des données a été effectué en utilisant les incertitudes élargies des AASQA, contrairement aux années précédentes où il avait été défini des intervalles maximums dans lesquels devaient se trouver les écarts relatifs entre les fractions molaires déterminées par le LCSQA-LNE et celles déterminées par les AASQA.

La prise en compte des incertitudes élargies permet de calculer un écart normalisé qui permet de tester si les écarts entre les fractions molaires des AASQA et les fractions molaires de référence du LCSQA-LNE sont significatifs :

$$E_n = \left| \frac{\bar{F}_{LNE} - F_{Niveau \, 3}}{\sqrt{U^2(\bar{F}_{LNE}) + U^2(F_{Niveau \, 3})}} \right|$$

Où $U(\bar{F}_{LNE})$ est l'incertitude élargie associée à la moyenne des fractions molaires de référence du LCSQA-LNE avant et après la CIL (\bar{F}_{LNE}) et $U(F_{Niveau\ 3})$ est l'incertitude élargie associée à la fraction molaire du niveau 3 considéré $(F_{Niveau\ 3})$.

Si $E_n < 1$, l'écart est considéré comme non significatif et les fractions molaires du LCSQA-LNE et du Niveau 3 comme non significativement différentes.

Si $E_n \ge 1$, l'écart est considéré comme significatif et il faut rechercher les causes de l'anomalie.

2.4 Planification des essais

Des comparaisons interlaboratoires ont été réalisées en 2022 avec 10 réseaux de mesure : Gwad'air, Atmo Bourgogne Franche-Comté, AtmoSud, Hawa Mayotte, Atmo Nouvelle-Aquitaine, Airparif, Madininair (suite à leur demande et uniquement pour NO/NOx et pour NO₂), Atmo Grand Est, Atmo Normandie et Atmo AURA.

Pour préserver l'anonymat de chacun des laboratoires, un code confidentiel leur a été attribué.

2.5 Résultats de l'ensemble des campagnes

2.5.1 Comparaison SO₂

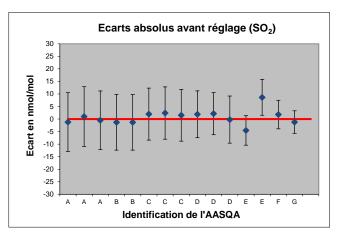
2.5.1.1 Résultats bruts obtenus

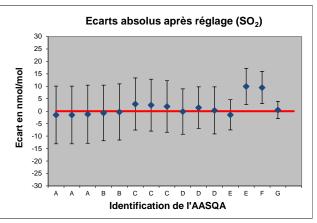
L'ensemble des résultats obtenus est reporté dans le tableau 1 ci-après.

	Etalor	nnage LCSQ (aller)	A-LNE		Fractio	ons molaires relev	ées par les AASQ	A	Etalor	nnage LCSQ (retour)	A-LNE
N° de la bouteille	Date	Fraction molaire (*)	U (k=2) (*)	Ident.	Date	Fraction molaire Avant réglage (*)	Fraction molaire Après réglage (*)	Analyseur utilisé	Date	Fraction molaire (*)	U (k=2) (*)
					02/03/ 22	92,2±11,6	91,9±11,5	43i (TEI) – 2012			
D496516 / H33N3MA	26/01/ 22	93,3	1,5	А	03/03/ 22	94,4±11,8	91,9±11,5	ASPA 370 (Horiba) – 2011	10/05/ 22	93,5	1,4
					31/03/ 22	92,9±11,6	92,2±11,6	43i (TEI) – 2013			
D842748 /	25/01/	74,7	1,3	В	11/04/ 22	73,5±11,0	74,1±11,1	AF22E (ENVEA) - 2019	20/05/	74,9	1,3
H3222H4	22				04/04/ 22	73,5±11,0	74,5±11,2	43i (TEI) – 2008	22		
					21/03/ 22	74,9±10,26	75,8±10,38	43i (TEI) – 2021			
D842745 / H3222LH	26/02/ 22	72,8	1,4	С	28/03/ 22	75,3±10,32	75,35±10,32	43i (TEI) – 2008	11/05/ 22	73,0	1,4
					01/04/ 22	74,4±10,19	74,8±10,25	43i (TEI) – 2009			
					31/03/ 22	80,70±9,22	78,65±9,01	43i (TEI) – 2009			
D722370 / H3222N5	25/01/ 22	79,2	1,3	D	13/04/ 22	80,95±8,30	80,25±8,23	AF22E (ENVEA) - 2017	17/05/ 22	78,4	1,4
					25/04/ 22	78,57±9,30	79,12±9,36	T100 (API) - 2021			
D496516/	10/05/				05/09/ 22	89,0±5,7	92,1±5,9	43i (TEI) – 2011	29/09/		
H33N3MA	22	93,5	1,4	E	30/08/ 22	102,2±7,0	103,5±7,1	AF21M (ENVEA) - 2001	22	93,6	1,5
D235119 / H17W07N	08/06/ 22	93,0	1,4	F	15/07/ 22	95,0±5,5	102,7±6,3	43i (TEI) – 2012	14/12/ 22	93,4	1,5
D842748 / H3222H4	20/05/ 22	74,9	1,3	G	18/07/ 22	73,8±4,3	75,5±3,2	100E (API) - 2010	27/09/ 22	75,1	1,3
D235026 / H26AUDK	08/06/ 22	92,0	1,5	I	23/11/ 22	202,60±42,2	200,95±41,8	AF22E (ENVEA) - 2017	09/01/ 23	92,8	1,5

<u>Tableau 1 :</u> Ensemble des résultats bruts obtenus lors de la comparaison SO₂ effectuée entre le LCSQA-LNE et 8 AASQA en 2022

^(*) Les fractions molaires et les incertitudes élargies (U) sont exprimées en nmol/mol


2.5.1.2 Traitement des résultats bruts obtenus


Les écarts normalisés entre les fractions molaires du LCSQA-LNE et celles des AASQA ont été calculés comme indiqué dans le paragraphe 2.3 et sont reportés dans le tableau ci-après.

	Fraction molaire	Avant rég	lage	Après régla	ige
Identification de l'AASQA	LCSQA-LNE (nmol/mol)	Fraction molaire de l'AASQA (nmol/mol)	En	Fraction molaire de l'AASQA (nmol/mol)	En
		92,2	0,10	91,9	0,13
Α	93,4	94,4	0,08	91,9	0,13
		92,9	0,04	92,2	0,10
В	74.0	73,5	0,12	74,1	0,06
В	74,8	73,5	0,12	74,5	0,03
		74,9 0,19		75,8	0,28
С	72,9	75,3	0,23	75,35	0,24
		74,4	0,15	74,8	0,18
		80,70	0,20	78,65	0,02
D	78,8	80,95	0,26	80,25	0,17
		78,57	0,02	79,12	0,03
E	02.55	89,0	0,77	92,1	0,24
	93,55	102,2	1,21	103,5	1,37
F	93,2	95,0	0,32	102,7	1,47
G	75,0	75,0 73,8 0,27 75,5		75,5	0,14
l l	92,4	202,60	2,61	200,95	2,60

Tableau 2 : Synthèse des écarts normalisés obtenus lors de la comparaison SO₂ effectuée entre le LCSQA-LNE et 8 AASQA en 2022

Les écarts absolus avec les incertitudes élargies associées sont représentés sur les figures ciaprès.

Figures 1 et 2 :

Représentation de l'ensemble des écarts absolus et des incertitudes élargies associées obtenus lors de la comparaison SO₂ effectuée entre le LCSQA-LNE et 8 AASQA en 2022 (sans prendre en compte le résultat du réseau I)

2.5.1.3 Conclusion

En conclusion, sachant que le réseau H n'a pas rendu de mesures, les résultats montrent :

➤ Qu'avant réglage de l'analyseur avec un étalon de transfert 2-3, les écarts normalisés entre les fractions molaires en SO₂ déterminées par les réseaux de mesure A, B, C, D, E (excepté la 2^{ème} mesure) et G et celles déterminées par le LCSQA-LNE sont inférieurs à 1, ce qui montre que ces mesures ne sont pas significativement différentes des fractions molaires de référence déterminées par le LCSQA-LNE.

Par contre, l'écart normalisé (1,21) entre la 2ème mesure du réseau E et celle déterminée par le LCSQA-LNE est supérieur à 1. Après les essais du 30/08/2023, l'appareil indiquait une dérive de +5,5% pour la bouteille de contrôle H44501H - BT84309 de la station de mesure le 05/12/2022, alors que la carte de contrôle sur l'ensemble de la période présentait une bonne stabilité (il s'agissait du réglage 3 mois prévu par leurs procédures). Cette dérive est conforme à leurs spécifications, mais met en évidence une sur-estimation de l'appareil de 5 nmol/mol par rapport à la valeur de référence, ce qui est en adéquation avec l'écart observé. Cet écart peut certainement s'expliquer par une défaillance de l'appareil vieillissant (datant de 2001) le jour de la comparaison, car cet appareil est particulièrement sensible notamment au niveau des cartes électroniques.

De même, l'écart normalisé (2,61) entre la mesure du réseau I et celle déterminée par le LCSQA-LNE est supérieur à 1. Le réseau I explique que l'analyseur a été remis en service pour la comparaison. Une vérification de cet instrument avec un étalon a été effectuée le 07/11/2022 conduisant à une mesure de l'analyseur à 30 nmol/mol (durée de stabilisation : 30 à 40 min) pour une valeur de référence de 120,8 nmol/mol. Par conséquent, ceci a impliqué un changement du coefficient de réglage de 2 à 8. La comparaison a été ensuite effectuée avec ce nouveau coefficient. L'écart important observé entre la valeur du réseau I et celle du LCSQA-LNE pourrait s'expliquer par un problème au niveau de la ligne de prélèvement entre l'étalon et l'analyseur lors de la vérification le 07/11/2022. L'analyseur AF22E a un débit assez faible de 0,4 L/min et la longueur de la ligne de prélèvement entre l'étalon et l'analyseur était de 2m environ (temps de résidence élevé). Cela pourrait expliquer la non-atteinte de la fraction molaire lors de la vérification entraînant un coefficient d'étalonnage erroné. Par ailleurs, le réseau I indique que c'est leur première comparaison et qu'ils manquent d'expérience. Il est également à noter le départ fin août 2022 de leur technicienne d'exploitation et de maintenance qui était dans l'AASQA depuis 2016.

➤ Qu'après réglage de l'analyseur avec un étalon de transfert 2-3, les écarts normalisés entre les fractions molaires en SO₂ déterminées par les réseaux de mesure A, B, C, D, E (excepté la 2ème mesure) et G et celles déterminées par le LCSQA-LNE sont inférieurs à 1, ce qui montre que ces mesures ne sont pas significativement différentes des fractions molaires de référence déterminées par le LCSQA-LNE.

Par contre, l'écart normalisé (1,37) entre la 2ème mesure du réseau E et celle déterminée par le LCSQA-LNE est supérieur à 1. Après les essais du 30/08/2023, l'appareil indiquait une dérive de +5,5% pour la bouteille de contrôle H44501H - BT84309 de la station de mesure le 05/12/2022, alors que la carte de contrôle sur l'ensemble de la période présentait une bonne stabilité (il s'agissait du réglage 3 mois prévu par leurs procédures). Cette dérive est conforme à leurs spécifications, mais met en évidence une sur-estimation de l'appareil de 5 nmol/mol par rapport à la valeur de référence, ce qui est en adéquation avec l'écart observé. Cet écart peut certainement s'expliquer par une défaillance de

l'appareil vieillissant (datant de 2001) le jour de la comparaison, car cet appareil est particulièrement sensible notamment au niveau des cartes électroniques.

De même, l'écart normalisé (1,47) entre la mesure du réseau F et celle déterminée par le LCSQA-LNE est supérieur à 1. Cet écart pourrait s'expliquer par une dérive du diluteur T750 servant à l'étalonnage des analyseurs au cours du temps. Une action corrective sera mise en œuvre par le réseau F si le problème se confirme lors du prochain raccordement.

Enfin, l'écart normalisé (2,60) entre la mesure du réseau I et celle déterminée par le LCSQA-LNE est supérieur à 1. Le réseau I explique que l'analyseur a été remis en service pour la comparaison. Une vérification de cet instrument avec un étalon a été effectuée le 07/11/2022 conduisant à une mesure de l'analyseur à 30 nmol/mol (durée de stabilisation: 30 à 40 min) pour une valeur de référence de 120,8 nmol/mol. Par conséquent, ceci a impliqué un changement du coefficient de réglage de 2 à 8. La comparaison a été ensuite effectuée avec ce nouveau coefficient. L'écart important observé entre la valeur du réseau I et celle du LCSQA-LNE pourrait s'expliquer par un problème au niveau de la ligne de prélèvement entre l'étalon et l'analyseur lors de la vérification le 07/11/2022. L'analyseur AF22E a un débit assez faible de 0,4 L/min et la longueur de la ligne de prélèvement entre l'étalon et l'analyseur était de 2m environ (temps de résidence élevé). Cela pourrait expliquer la non-atteinte de la fraction molaire lors de la vérification entraînant un coefficient d'étalonnage erroné. Par ailleurs, le réseau I indique que c'est leur première comparaison et qu'ils manquent d'expérience. Il est également à noter le départ fin août 2022 de leur technicienne d'exploitation et de maintenance qui était dans l'AASQA depuis 2016.

2.5.2 Comparaison NO/NO_x

2.5.2.1 Résultats bruts obtenus

L'ensemble des résultats obtenus est reporté dans le tableau 3 ci-après.

	Etalor	Etalonnage LCSQA-LNE (aller)			Fractions molaires relevées par les AASQA						Etalonnage LCSQA-LNE (retour)		
N° de la bouteille	Date	Fraction molaire (*) (**)	U (k=2) (*) (**)	ldent.	Date	Fraction molaire avant réglage (*) (**)	Fraction molaire après réglage (*) (**)	Analyseur utilisé	Date	Fraction molaire (*) (**)	U (k=2) (*) (**)		
6335/H25	26/01/	201,3/			01/03/ 22	202,8±19,4/ 204±20,2	210,4±20,0/ 209,6±20,7	T200E (API) - 2008	BOUTEI	LLE VIDEE LO	ORS DE LA		
XPL7	22	201,7	2,0/2,0	A	02/03/ 22	211,1±20,1/ 211,3±20,8	204,5±19,5/ 204,9±20,2	APNA-370 (HORIBA) - 2012		COMPARAIS			

Tableau 3 : Ensemble des résultats bruts obtenus lors de la comparaison NO/NO_x effectuée entre le LCSQA-LNE et 10 AASQA en 2022

(*) Les fractions molaires et les incertitudes élargies (U) sont exprimées en nmol/mol (**) La première valeur correspond à la fraction molaire ou à l'incertitude élargie en NO, la seconde à la fraction molaire ou à l'incertitude élargie en NO_x

	Etaloi	nnage LCSQ (aller)	A-LNE		Fracti	ons molaires rele	vées par les AASQ	А	Etalo	nnage LCSC (retour)	QA-LNE	
N° de la bouteille	Date	Fraction molaire (*) (**)	U (k=2) (*) (**)	ldent.	Date	Fraction molaire avant réglage (*) (**)	Fraction molaire après réglage (*) (**)	Analyseur utilisé	Date	Fraction molaire (*) (**)	U (k=2) (*) (**)	
					09/03/ 22	205,5±28,6/ 206±28,4	208±28,9/ 208±28,7	42I (TEI) – 2020				
	26/01/ 22	204,6/ 204,6	1,9/2,0	В	17/03/ 22	206,5±28,7/ 207,5±28,6	207,0±28,8/ 207,0±28,6	AC32E (ENVEA) - 2019	20/05/ 22	204,5/ 204,5	2,1/2,5	
	H3XF1Y1 22 204,0			21/03/ 22	204,0±28,4/ 204,5±28,2	207,5±28,4/ 208,0±28,7	42I (TEI) – 2012		204,3			
				30/03/ 22	205,5±28,6/ 206,0±28,4	207,5±28,8/ 207,5±28,6	42I (TEI) – 2012					
		25/01/ 22 197,8/19 7,9 1,9/1,9			16/03/ 22	195,3±29,30/ 192,9±28,93	199,4±29,91/ 199,3±29,89	APNA-370 (HORIBA) - 2018				
					21/03/ 22	198,6±29,79/ 199,35±29,90	198,65±29,80/ 199,15±29,87	APNA-370 (HORIBA) - 2017				
1859/H4R	25/01/		٥			28/03/ 22	200,30±30,05/ 199,75±29,96	200,55±30,08/ 200,55±30,08	APNA-370 (HORIBA) - 2010	13/05/	196,8/19	2.1/2.1
			1,9/1,9	С	01/04/	197,0±29,55/ 197,1±29,57	199,35±29,90/ 199,40±29,91	APNA-370 (HORIBA) - 2018	22	6,9	2,1/2,1	
					07/04/ 22	193,5±29,03/ 194,85±29,23	193,8±29,07/ 194,8±29,22	AC32M (ENVEA) - 2009				
					14/04/ 22	194,31±29,15/ 195,685±29,35	194,705±29,21 /196,28±29,44	AC32E (ENVEA) - 2019				

Tableau 3 (suite):

Ensemble des résultats bruts obtenus lors de la comparaison NO/NO_x effectuée entre le LCSQA-LNE et 10 AASQA en 2022

^(*) Les fractions molaires et les incertitudes élargies (U) sont exprimées en nmol/mol

^(**) La première valeur correspond à la fraction molaire ou à l'incertitude élargie en NO, la seconde à la fraction molaire ou à l'incertitude élargie en NO_x

	Etaloi	nnage LCSQ. (aller)	A-LNE		Fracti	ons molaires rele	vées par les AASO	А	Etalo	nnage LCSC (retour)	A-LNE
N° de la bouteille	Date	Fraction molaire (*) (**)	U (k=2) (*) (**)	ldent.	Date	Fraction molaire avant réglage (*) (**)	Fraction molaire après réglage (*) (**)	Analyseur utilisé	Date	Fraction molaire (*) (**)	U (k=2) (*) (**)
					28/02/ 22	206,15±28,59/ 206,05±27,87	205,2±28,46/ 206,0±27,86	AC32M (ENVEA) – 2013			
D496593					01/03/ 22	206,40±28,62/ 207,60±28,07	204,90±28,42/ 205,50±27,79	AC32M (ENVEA) – 2011			
/ H31YNW	25/01/ 22	204,1/20 4,1	1,9/2,0	D	23/03/ 22	202,70±18,00/ 202,25±16,77	207,00±18,37/ 208,00±17,23	200E (API) - 2008	18/05/ 22	203,9/ 204,1	2,0/2,0
G					31/03/ 22	201,20±27,93/ 201,25±27,24	206,80±28,68/ 208,30±28,15	AC32M (ENVEA) – 2016			
					29/04/ 22	204,15±28,32/ 204,70±27,69	202,70±28,13/ 203,00±27,53	AC32M (ENVEA) – 2014			
D770908	09/06/	211,2/21	2,0/2,3	E	04/08/ 22	211±17/ 212±20	211±17/ 212±20	APNA-370 (HORIBA) - 2016	28/09/	213,2/	2,0/2,0
/ H525TM5	22	2,4	2,0/2,3	L	04/08/ 22	211±17/ 212±21	211±17/ 212±21	APNA-370 (HORIBA) - 2010	22	213,3	2,0/2,0
	08/06/	198,6/19			17/07/ 22	206,3±8,2/ 205,7±8,7	208,5±10,6/ 209,0±11,0	42I (TEI) – 2022	22/12/	199,6/	
D721928	22	8,6	2,0/2,0	F	01/07/ 22	214,2±10,7/ 214,4±10,9	204,8±12,7/ 204,8±12,8	AC32E (ENVEA) - 2020	22	199,6	1,9/2,1
D496593	18/05/	203,9/20			03/08/ 22	207,2±8,0/ 205,7±8,0	205,0±5,9/ 208,0±6,1	200E (API) - 2011	27/09/	206,0/	
H31YNW G	22	4,1	2,0/2,0	G	19/07/ 22	202,6±6,7/ 203,4±8,9	204,6±5,3/ 205,3±6,1	APNA-370 (HORIBA) - 2021	22	206,2	2,0/2,1

Tableau 3 (suite):

Ensemble des résultats bruts obtenus lors de la comparaison NO/NO_x effectuée entre le LCSQA-LNE et 10 AASQA en 2022

^(*) Les fractions molaires et les incertitudes élargies (U) sont exprimées en nmol/mol

^(**) La première valeur correspond à la fraction molaire ou à l'incertitude élargie en NO, la seconde à la fraction molaire ou à l'incertitude élargie en NO_x

	Etalonr	age LCSQ (aller)	A-LNE		Fractio	ons molaires rele	evées par les AAS	QA	Etalo	onnage LCSC (retour)	QA-LNE
N° de la bouteille	Date	Fractio n molaire (*) (**)	U (k=2) (*) (**)	ldent.	Date	Fraction molaire avant réglage (*) (**)	Fraction molaire après réglage (*) (**)	Analyseur utilisé	Date	Fraction molaire (*) (**)	U (k=2) (*) (**)
					03/08/ 22	203,35±14,9/ 205,3±14,5	204,05±14,9/ 205,1±14,5	AC32E (ENVEA) – 2021			
					05/08/ 22	198,3±16,0/ 199,15±16,0	203,5±16,0/ 205,0±16,0	42I (TEI) – 2019			
7479 / H3XF1Y1	20/05/22	204,5/ 204,5	2,1/2,5	Н	05/08/ 22	198,3±16,0/ 199,2±16,0	203,5±16,0/ 205,0±16,0	42I (TEI) – 2019	06/09/ 22	203,0/ 203,0	1,9/1,9
					09/08/ 22	203,0±16,0/ 204,0±16,0	205,0±16,0/ 206,0±16,0	42I (TEI) – 2019			
					01/09/ 22	201,5±15,7/ 201,5±15,7	204,5±16,0/ 205,0±16,0	42I (TEI) – 2019			
1859/H4R UWHH	13/05/22	196,8/ 196,9	2,1/2,1	1	28/11/ 22	195,2±37,8/ 195,2±38,7	194,7±37,7/ 194,5±38,5	AC32E (ENVEA) - 2021	23/01/ 23	195,5/ 195,8	1,9/1,9
					22/11/ 22	205,6±7,5/ 205,7±7,3	207,3±9,5/ 207,4±9,2	AC32E (ENVEA) - 2020			
D287884 / H4RUW62	26/08/22	203,8/ 205,4	2,0/2,0	J	24/11/ 22	205,5±7,4/ 206,1±8,0	206,8±10,5/ 207,1±10,4	AC32E (ENVEA) - 2020	22/12/ 22	205,6/ 206,4	2,3/2,3
					23/11/ 22	204,9±7,7/ 205±8,1	205,7±10,7/ 206,1±10,3	AC32M (ENVEA) - 2003			

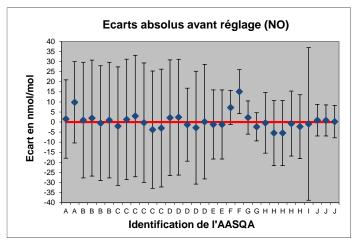
Tableau 3 (suite):

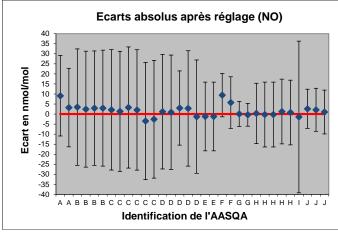
Ensemble des résultats bruts obtenus lors de la comparaison NO/NO_x effectuée entre le LCSQA-LNE et 10 AASQA en 2022

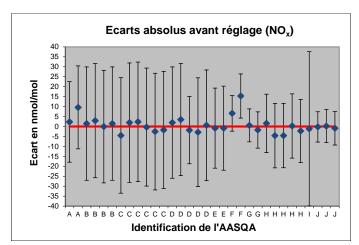
- (*) Les fractions molaires et les incertitudes élargies (U) sont exprimées en nmol/mol
- (**) La première valeur correspond à la fraction molaire ou à l'incertitude élargie en NO, la seconde à la fraction molaire ou à l'incertitude élargie en NO_x

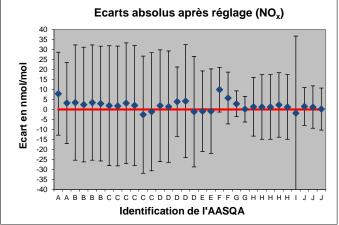
2.5.2.2 Traitement des résultats bruts obtenus

Les écarts normalisés entre les fractions molaires du LCSQA-LNE et celles des AASQA ont été calculés comme indiqué dans le paragraphe 2.3 et sont reportés dans le tableau ci-après.


	Function modeling	Avant ré	glage	Après ré	glage
Identification de l'AASQA	Fraction molaire LCSQA-LNE (nmol/mol)	Fraction molaire de l'AASQA (nmol/mol)	En	Fraction molaire de l'AASQA (nmol/mol)	En
А	201,3	202,8	0,08	210,4	0,45
		211,1	0,49	204,5	0,16
		205,5	0,03	208	0,12
В	204,6	206,5	0,07	207	0,08
5	204,0	204	0,02	207,5	0,10
		205,5	0,03	207,5	0,10
		195,3	0,07	199,4	0,07
		198,6	0,04	198,65	0,05
С	197,3	200,3	0,10	200,55	0,11
	137,3	197	0,01	199,35	0,07
		193,5	0,13	193,8	0,12
		194,31	0,10	194,705	0,09
		206,15	0,08	205,2	0,04
		206,4	0,08	204,9	0,03
D	204,0	202,7	0,07	207	0,16
		201,2	0,10	206,8	0,10
		204,15	0,01	202,7	0,05
Е	212,2	211	0,07	211	0,07
L	212,2	211	0,07	211	0,07
F	199,1	206,3	0,85	208,5	0,87
Г	199,1	214,2	1,39	204,8	0,44
G	205,0	207,2	0,27	205	0,01
G	205,0	202,6	0,34	204,6	0,06
		203,35	0,03	204,05	0,02
		198,3	0,34	203,5	0,02
Н	203,8	198,3	0,34	203,5	0,02
		203	0,05	205	0,08
		201,5	0,14	204,5	0,05
I	196,2	195,2	0,03	194,7	0,04
		205,6	0,12	207,3	0,27
J	204,7	205,5	0,10	206,8	0,20
		204,9	0,03	205,7	0,09


<u>Tableau 4 :</u> Synthèse des écarts normalisés obtenus lors de la comparaison NO effectuée entre le LCSQA-LNE et 10 AASQA en 2022


	Fraction molaire	Avant ré	glage	Après ré	glage
Identification de l'AASQA	LCSQA-LNE (nmol/mol)	Fraction molaire de l'AASQA (nmol/mol)	En	Fraction molaire de l'AASQA (nmol/mol)	E _n
А	201,7	204,00	0,11	209,60	0,38
A	201,7	211,30	0,46	204,90	0,16
		206,00	0,05	208,00	0,12
В	204,6	207,50	0,10	207,00	0,09
Б	204,6	204,50	0,00	208,00	0,12
		206,00	0,05	207,50	0,10
		192,90	0,16	199,30	0,06
		199,35	0,07	199,15	0,06
С	197,4	199,75	0,08	200,55	0,10
C	197,4	197,10	0,01	199,40	0,07
		194,85	0,09	194,80	0,09
		195,69	0,06	196,28	0,04
		206,05	0,07	206,00	0,07
		207,60	0,12	205,50	0,05
D	204,1	202,25	0,11	208,00	0,22
		201,25	0,10	208,30	0,15
		204,70	0,02	203,00	0,04
Е	212.0	212,00	0,04	212,00	0,04
С	212,9	212,00	0,04	212,00	0,04
F	100.1	205,70	0,74	209,00	0,88
Г	199,1	214,40	1,38	204,80	0,44
6	205.2	205,70	0,07	208,00	0,44
G	205,2	203,40	0,19	205,30	0,02
		205,30	0,11	205,10	0,09
		199,15	0,28	205,00	0,08
Н	203,8	199,20	0,28	205,00	0,08
		204,00	0,02	206,00	0,14
		201,50	0,14	205,00	0,08
ı	196,4	195,20	0,03	194,50	0,05
		205,70	0,03	207,40	0,16
J	205,9	206,10	0,02	207,10	0,11
		205,00	0,11	206,10	0,02


<u>Tableau 5 :</u> Synthèse des écarts normalisés obtenus lors de la comparaison NO_x effectuée entre le LCSQA-LNE et 10 AASQA en 2022

Les écarts absolus avec les incertitudes élargies associées sont représentés sur les figures ciaprès.

<u>Figures 3, 4, 5 et 6 :</u> Représentation de l'ensemble des écarts absolus et des incertitudes élargies associées obtenus lors de la comparaison NO/NO_x effectuée entre le LCSQA-LNE et 10 AASQA en 2022

2.5.2.3 Conclusion

En conclusion, les résultats montrent :

Qu'avant réglage de l'analyseur avec un étalon de transfert 2-3, les écarts normalisés entre les fractions molaires en NO et NO_x déterminées par les réseaux de mesure A, B, C, D, E, F (1^{ère} mesure), G, H, I et J et celles déterminées par le LCSQA-LNE sont inférieurs à 1, ce qui montre que ces mesures ne sont pas significativement différentes des fractions molaires de référence déterminées par le LCSQA-LNE.

Par contre, l'écart normalisé (1,39) de la 2ème mesure du réseau F et celle déterminée par le LCSQA-LNE est supérieur à 1. Le réseau F indique que les analyseurs ne peuvent pas être mis en cause, car ils sont récents et leur maintenance est réalisée selon leur procédure. Cependant, ils émettent un doute sur la valeur de raccordement du mélange gazeux basse fraction molaire (dérive, condition de transport...) servant à l'étalonnage des analyseurs et sur la procédure utilisée pour le réglage pendant la comparaison. Le réseau F prévoit donc de réaliser des comparaisons en interne pour identifier la source d'une potentielle dérive de la fraction molaire du mélange gazeux basse fraction molaire.

➤ Qu'après réglage de l'analyseur avec un étalon de transfert 2-3, les écarts normalisés entre les fractions molaires en NO et NO_x déterminées par l'ensemble des réseaux de mesure et celles déterminées par le LCSQA-LNE sont inférieurs à 1, ce qui montre que ces mesures ne sont pas significativement différentes des fractions molaires de référence déterminées par le LCSQA-LNE.

2.5.3 Comparaison CO

2.5.3.1 Résultats bruts obtenus

L'ensemble des résultats obtenus est reporté dans le tableau 6 ci-après.

N° de la	Etalor	nnage LCSQ (aller)	A-LNE		Fraction	ons molaires rele	vées par les AASC	QA	Etalor	nnage LCSQ (retour)	A-LNE
bouteille	Date	Fraction molaire (*)	U (k=2) (*)	Ident.	Date	Fraction molaire avant réglage (*)	Fraction molaire après réglage (*)	Analyseur utilisé	Date	Fraction molaire (*)	U (k=2) (*)
					03/03/ 22	8,2±0,9	8,2±0,9	48i (TEI) - 2010			
4832 / H46RX2M	04/02/ 22	8,210	0,073	Α	03/03/ 22	8,2±0,9	8,1±0,9	48i (TEI) - 2009	10/05/ 22	8,210	0,073
					26/04/ 22	8,2±0,9	8,1±0,9	48i (TEI) - 2010			
					16/03/ 22	7,66±1,15	7,85±1,18	APMA-370 (Horiba) - 2009			
1347 / H46RX1E	03/02/ 22	7,860	0,070	С	04/04/ 22	7,745±1,16	7,535±1,13	APMA-370 (Horiba) - 2009	11/05/ 22	7,873	0,067
					05/05/ 22	7,955±1,19	7,95±1,19	APMA-370 (Horiba) - 2009			
4699 / H16RRC1	04/02/ 22	8,120	0,072	D	24/03/ 22	7,97±0,87	8,08±0,88	CO12M (ENVEA) - 2016	16/05/ 22	8,140	0,072
1312 /	08/06/	8,123	0,069	E	29/07/ 22	8,1±0,9	8,2±1,0	APMA-370 (Horiba) - 2009	28/09/	8,197	0,063
H16RG5R	22	8,123	0,069	L	29/07/ 22	8,3±0,9	8,4±1,0	APMA-370 (Horiba) - 2011	22	8,197	0,063
1446 / H320FX1	08/06/ 22	8,220	0,073	F	19/07/ 22	9,300±0,775	8,785±0,793	CO12M (ENVEA) - 2015	16/12/ 22	8,170	0,066
26209 / 976231 / H43ER9M	09/06/ 22	6,530	0,060	G	18/07/ 22	6,34±0,39	6,36±0,38	APMA-370 (Horiba) - 2016	27/09/ 22	6,197	0,049

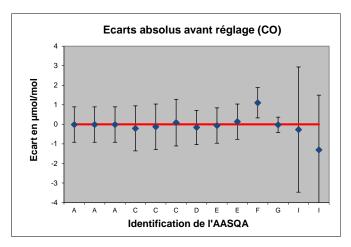
<u>Tableau 6 :</u> Ensemble des résultats bruts obtenus lors de la comparaison CO effectuée entre le LCSQA-LNE et 7 AASQA en 2022

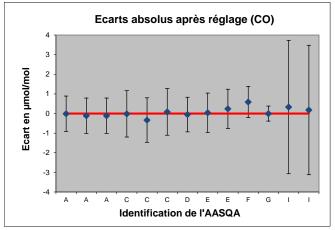
^(*) Les fractions molaires et les incertitudes élargies (U) sont exprimées en µmol/mol

N° de la	Etalonnage LCSQA-LNE (aller)			Fractions molaires relevées par les AASQA						Etalonnage LCSQA-LNE (retour)		
bouteille	bouteille Date		U (k=2) (*)	Ident.	Date	Fraction molaire avant réglage (*)	Fraction molaire après réglage (*)	Analyseur utilisé	Date	Fraction molaire (*)	U (k=2) (*)	
4699 /	16/05/		23/11/	7,9±3,2	8,5±3,4	CO12M (ENVEA) - 2015	06/01/	0.107	0.000			
H16RRC1	22	8,140	0,072	ı	28/11/ 22	6,86±2,8	8,35±3,3	CO12E (ENVEA) - 2017	23	8,197	0,066	

<u>Tableau 6 (suite)</u>: Ensemble des résultats bruts obtenus lors de la comparaison CO effectuée entre le LCSQA-LNE et 7 AASQA en 2022

(*) Les fractions molaires et les incertitudes élargies (U) sont exprimées en μ mol/mol


2.5.3.2 Traitement des résultats bruts obtenus


Les écarts normalisés entre les fractions molaires du LCSQA-LNE et celles des AASQA ont été calculés comme indiqué dans le paragraphe 2.3 et sont reportés dans le tableau ci-après.

	Frantian malaina	Avant rég	glage	Après régla	age
Identification de l'AASQA	Fraction molaire LCSQA-LNE (nmol/mol)	Fraction molaire de l'AASQA (nmol/mol)	En	Fraction molaire de l'AASQA (nmol/mol)	En
		8,2	0,01	8,2	0,01
Α	8,21	8,2	0,01	8,1	0,12
		8,2	0,01	8,1	0,12
		7,66	0,18	7,85	0,01
С	7,87	7,745	0,10	7,535	0,29
		7,955	0,07	7,95	0,07
D	8,13	7,97	0,18	8,08	0,06
E	0.16	8,1	0,07	8,2	0,04
Е	8,16	8,3	0,16	8,4	0,24
F	8,20	9,3	1,42	8,785	0,74
G	6,36	6,34	0,06	6,36	0,01
	0 17	7,9	0,08	8,5	0,10
I	8,17	6,86	0,47	8,35	0,05

<u>Tableau 7 :</u> Synthèse des écarts normalisés obtenus lors de la comparaison CO effectuée entre le LCSQA-LNE et 7 AASQA en 2022

Les écarts absolus avec les incertitudes élargies associées sont représentés sur les figures ciaprès.

Figures 7 et 8 : Représentation de l'ensemble des écarts absolus et des incertitudes élargies associées obtenus lors de la comparaison CO effectuée entre le LCSQA-LNE et 7 AASQA en 2022

2.5.3.3 Conclusion

En conclusion, sachant que les réseaux B et H n'ont pas rendu de mesures, les résultats montrent :

- Qu'avant réglage de l'analyseur avec un étalon de transfert 2-3, les écarts normalisés entre les fractions molaires en CO déterminées par les réseaux de mesure A, C, D, E et G et celles déterminées par le LCSQA-LNE sont inférieurs à 1, ce qui montre que ces mesures ne sont pas significativement différentes des fractions molaires de référence déterminées par le LCSQA-LNE.
 - Par contre, l'écart normalisé (1,42) entre la mesure du réseau F et celle déterminée par le LCSQA-LNE est supérieur à 1. Le réseau F utilise un analyseur ENVEA type CO12M de 2015. Ils ont observé que cet instrument pouvait dériver en zéro à cause des variations de température dans la station de mesure ou de l'état de la cartouche « zéro ». Un réglage automatique du « zéro réf » pourrait expliquer l'écart observé.
- Qu'après réglage de l'analyseur avec un étalon de transfert 2-3, les écarts normalisés entre les fractions molaires en CO déterminées par l'ensemble des réseaux de mesure et celles déterminées par le LCSQA-LNE sont inférieurs à 1, ce qui montre que ces mesures ne sont pas significativement différentes des fractions molaires de référence déterminées par le LCSQA-LNE.

2.5.4 Comparaison NO₂

2.5.4.1 Résultats bruts obtenus

L'ensemble des résultats obtenus est reporté dans le tableau 8 ci-après.

	Etalo	nnage LCSQ (aller)	A-LNE		Fract	tions molaires rele	vées par les AASC	ĮA	Etalonnage LCSQA-LNE (retour)		
N° de la bouteille	Date	Fraction molaire (*)	U (k=2) (*)	ldent.	Date	Fraction molaire avant réglage (*)	Fraction molaire après réglage (*)	Analyseur utilisé	Date	Fraction molaire (*)	U (k=2) (*)
					01/03/ 22	187,0±18,6	188,9±18,8	200E (API) - 2008			
D320183 / H452HW1	28/01/ 22			Α	02/03/ 22	188,2±18,7	187,6±18,7	APNA-370 (HORIBA) - 2012	12/05/ 22	186,0	2,0
					03/03/ 22	190,3±18,9	188,7±18,8	42I (TEI) – 2015			
					09/03/ 22	184,5±25,1	185,0±25,2	42I (TEI) – 2020			
D320286 /	28/01/	187,9	2,2	В	17/03/ 22	186,5±25,4	187,5±25,5	AC32E (ENVEA) – 2019	23/05/	185,8	2,4
H14CXFD	H14CXFD 22 107,3				21/03/ 22	185,5±25,2	188,0±25,6	42I (TEI) – 2012	22		
					30/03/ 22	184,2±25,1	185,0±25,2	42I (TEI) – 2012			
					16/03/ 22	145,0±21,75	146,6±21,99	APNA-370 (HORIBA) - 2018			
					21/03/ 22	147,0±22,05	147,75±22,16	APNA-370 (HORIBA) - 2017			
1762 /	27/01/				28/03/ 22	147,15±22,07	148,4±22,26	APNA-370 (HORIBA) - 2010	12/05/		
H444XN3		148,8	2,1	С	01/04/ 22	146,9±22,04	147,2±22,08	APNA-370 (HORIBA) - 2018	22	149,6	1,9
				07/04/ 22	146,4±21,96	146,5±21,98	AC32M (ENVEA) – 2009				
					14/04/ 22	147,5±22,13	147,9±22,19	AC32E (ENVEA) – 2019			

<u>Tableau 8 :</u> Ensemble des résultats bruts obtenus lors de la comparaison NO₂ effectuée entre le LCSQA-LNE et 10 AASQA en 2022

	Etalo	nnage LCSQ (aller)	A-LNE		Fract	tions molaires rele	vées par les AASC	ĮA	Etalonnage LCSQA-LNE (retour)													
N° de la bouteille	Date	Fraction molaire (*)	U (k=2) (*)	Ident.	Date	Fraction molaire avant réglage (*)	Fraction molaire après réglage (*)	Analyseur utilisé	Date	Fraction molaire (*)	U (k=2) (*)											
					28/02/ 22	180,30±19,04	177,20±18,62	AC32M (ENVEA) – 2013														
					01/03/ 22	180,5±19,07	177,0±18,59	AC32M (ENVEA) – 2011		177,2												
1728 / H0KT0N3	28/01/ 22	179,5	1,9	D	23/03/ 22	174,1±14,01	177,1±14,29	200E (API) - 2008	18/05/ 22		2,2											
																31/03/ 22	176,6±18,54	181,2±19,17	AC32M (ENVEA) – 2016			
					29/04/ 22	175,7±18,4	174,0±18,19	AC32M (ENVEA) – 2014														
1728 /	18/05/	177,2	2,2	F	04/08/ 22	179±13	178±13	APNA-370 (HORIBA) - 2016	17/10/	1=0.0	2,1											
H0KT0N3	22	177,2	2,2	Е	04/08/ 22	180±14	180±14	APNA-370 (HORIBA) - 2010	22	179,0												
D320286 /	23/05/				18/07/ 22	198,2±10,4	198,2±12,0	42I (TEI) – 2022	19/01/													
H14CXFD	23/05/	185,8	2,4	F	01/07/ 22	199,4±11,3	191,3±13,6	AC32E (ENVEA) – 2020	23	191,3	1,9											
D320183 /	12/05/				03/08/ 22	186,6±6,1	186,9±5,9	200E (API) - 2011	14/10/													
H452HW1	22	186,0	2,0	G	19/07/ 22	184,0±8,1	185,4±5,5	APNA-370 (HORIBA) - 2021	22	187,5	1,9											
					03/08/ 22	150,8±13,1	150,35±13,1	AC32E (ENVEA) – 2021														
1762 /		149,6	149,6 1,9) Н _	05/08/ 22	141,8±16,1	146,35±16,1	42I (TEI) – 2019	14/10/	0/ 149,3	1,5											
	22	149,6			09/08/ 22	145±16	146,5±15,9	42I (TEI) – 2019	22													
					01/09/ 22	145,5±15,9	147,0±15,8	42I (TEI) – 2019														

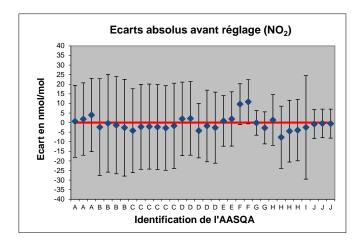
<u>Tableau 8 (suite)</u>: Ensemble des résultats bruts obtenus lors de la comparaison NO₂ effectuée entre le LCSQA-LNE et 10 AASQA en 2022

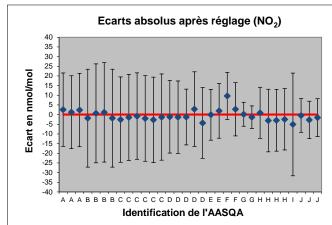
	Etalo	nnage LCSQ (aller)	A-LNE		Frac	tions molaires rele	vées par les AASC	ĮA	Etalonnage LCSQA-LNE (retour)		
N° de la bouteille	Date	Fraction molaire (*)	U (k=2) (*)	ldent.	Date	Fraction molaire avant réglage (*)	Fraction molaire après réglage (*)	Analyseur utilisé	Date	Fraction molaire (*)	U (k=2) (*)
43268 / H4528DP	14/06/ 22	194,1	1,9	I	25/11/ 22	193,2±26,9	190,6±26,5	AC32E (ENVEA) – 2021	10/02/ 23	197,3	2,0
					22/11/ 22	187,1±7,3	187,4±8,5	AC32E (ENVEA) – 2020			
H33N491	30/08/ 22	186,4	1,9	J	24/11/ 22	187,4±7,2	185,1±9,5	AC32E (ENVEA) – 2020	19/01/ 23	189,3	1,9
					23/11/	187,3±7,3	186,3±9,6	AC32M (ENVEA) – 2003			

<u>Tableau 8 (suite)</u>: Ensemble des résultats bruts obtenus lors de la comparaison NO₂ effectuée entre le LCSQA-LNE et 10 AASQA en 2022

2.5.4.2 Traitement des résultats bruts obtenus

Les écarts normalisés entre les fractions molaires du LCSQA-LNE et celles des AASQA ont été calculés comme indiqué dans le paragraphe 2.3 et sont reportés dans le tableau ci-après.


	Function modeling	Avant rég	glage	Après régl	age
Identification de l'AASQA	Fraction molaire LCSQA-LNE (nmol/mol)	Fraction molaire de l'AASQA (nmol/mol)	En	Fraction molaire de l'AASQA (nmol/mol)	En
		187,0	0,03	188,9	0,13
Α	186,35	188,2	0,10	187,6	0,07
		190,3	0,21	188,7	0,12
		184,5	0,09	185,0	0,07
В	186,85	186,5	0,01	187,5	0,03
Б	100,05	185,5	0,05	188,0	0,04
		184,2	0,11	185,0	0,07
		145,0	0,19	146,6	0,12
		147,0	0,10	147,8	0,07
С	149,2	147,2	0,09	148,4	0,04
C	143,2	146,9	0,10	147,2	0,09
		146,4	0,13	146,5	0,12
		147,5	0,08	147,9	0,06


Tableau 9 : Synthèse des écarts normalisés obtenus lors de la comparaison NO₂ effectuée entre le LCSQA-LNE et 10 AASQA en 2022

	Function modeling	Avant rég	glage	Après régl	age
Identification de l'AASQA	Fraction molaire LCSQA-LNE (nmol/mol)	Fraction molaire de l'AASQA (nmol/mol)	En	Fraction molaire de l'AASQA (nmol/mol)	En
		180,3	0,10	177,2	0,06
		180,5	0,11	177,0	0,07
D	178,35	174,1	0,30	177,1	0,09
		176,6	0,09	181,2	0,15
		175,7	0,14	174,0	0,24
Е	170 1	179,0	0,07	178,0	0,01
	178,1	180,0	0,13	180,0	0,13
F	100 55	198,2	0,91	198,2	0,79
l r	188,55	199,4	0,94	191,3	0,20
G	100.75	186,6	0,02	186,9	0,02
G	186,75	184,0	0,33	185,4	0,23
		150,8	0,10	150,4	0,07
Н	140.45	141,8	0,47	146,4	0,19
П	149,45	145,0	0,28	146,5	0,18
		145,5	0,25	147,0	0,15
I	195,7	193,2	0,09	190,6	0,19
		187,1	0,10	187,4	0,05
J	187,85	187,4	0,06	185,1	0,28
-		187,3	0,07	186,3	0,16

Tableau 9 : Synthèse des écarts normalisés obtenus lors de la comparaison NO₂ effectuée entre le LCSQA-LNE et 10 AASQA en 2022

Les écarts absolus avec les incertitudes élargies associées sont représentés sur les figures ciaprès.

Figures 9 et 10 : Représentation de l'ensemble des écarts absolus et des incertitudes élargies associées obtenus lors de la comparaison NO₂ effectuée entre le LCSQA-LNE et 10 AASQA en 2022

2.5.4.3 Conclusion

En conclusion, les résultats montrent :

- ➤ Qu'avant réglage de l'analyseur avec un étalon de transfert 2-3, les écarts normalisés entre les fractions molaires en NO₂ déterminées par l'ensemble des réseaux de mesure et celles déterminées par le LCSQA-LNE sont inférieurs à 1, ce qui montre que ces mesures ne sont pas significativement différentes des fractions molaires de référence déterminées par le LCSQA-LNE.
- ➤ Qu'après réglage de l'analyseur avec un étalon de transfert 2-3, les écarts normalisés entre les fractions molaires en NO₂ déterminées par l'ensemble des réseaux de mesure et celles déterminées par le LCSQA-LNE sont inférieurs à 1, ce qui montrent que ces mesures ne sont pas significativement différentes des fractions molaires de référence déterminées par le LCSQA-LNE.

3. Controle qualite du bon fonctionnement de la chaine nationale de traçabilite metrologique \mathbf{O}_3

3.1 But

Comme pour les composés SO₂, NO/NO_x, NO₂ et CO, le but est de faire circuler, dans les stations de mesure des AASQA, des générateurs d'ozone portables délivrant un mélange gazeux à une fraction molaire voisine de 100 nmol/mol pour valider les différents raccordements effectués dans le cadre de la chaîne nationale de traçabilité métrologique.

3.2 Matériel utilisé

Les générateurs d'ozone portables utilisés sont des générateurs modèle SYCOS KT O3M de la société allemande ANSYCO.

3.3 Mode opératoire

Le mode opératoire suivi est décrit-ci-après :

- Au LCSQA-LNE : Détermination de la fraction molaire en ozone délivrée par le générateur réglé à une consigne de 90 nmol/mol, à un débit de 2,5 l/min et une durée de génération de 1h30 (Etalonnage aller),
- En AASQA (stations de mesure) : Détermination de la fraction molaire en ozone générée, selon la procédure suivante :
 - Vérification de la couleur du gel de silice (orange),
 - Enlever les bouchons à chaque extrémité du système de filtration et connecter la sortie de système de filtration sur l'entrée « zéro air externe » du générateur Ansyco,
 - Branchement de l'appareil sur secteur et non sur batterie,
 - Utilisation d'un débit d'air de 3 l/min,
 - Utilisation du mode automatique dans lequel il conviendra de rentrer le débit et la consigne de 90 nmol/mol,
 - Relever la valeur indiquée par l'analyseur après un temps de stabilisation suffisant soit au minimum 1h30,
 - Reboucher le système de filtration externe avant réexpédition de l'ensemble dans la caisse de transport.
- Au LCSQA-LNE : Détermination de la fraction molaire en ozone générée (étalonnage retour).

3.4 Liste des participants

La circulation de 2 générateurs d'ozone SYCOS KT O3M a été planifiée pour l'ensemble de l'année 2022 avec 8 AASQA, à savoir : APL, Hawa Mayotte, Lig'Air, Madininair, Atmo AURA, Air Breizh, Atmo BFC et Airparif.

Pour préserver l'anonymat de chacun des laboratoires, un code confidentiel leur a été attribué.

3.5 Résultats bruts obtenus

Les résultats obtenus lors de la comparaison interlaboratoires sont reportés dans le tableau ci-après.

LCSC	onnage (A-LNE ller)				Données AAS	QA			Etalonnage LCSQA-LNE (retour)						
Date	Fraction molaire (nmol/ mol)	ldent.	Date	Fraction molaire (nmol/mol)	Tps de génération avant relevé de la mesure	Analyseur utilisé	Date de raccorde- ment	Etalon utilisé pour les raccorde- ments	Date	Fraction molaire (nmol/mo I)					
			16/02/ 22	87,0±5,3	2h00	APOA370 (Horiba) - 2009	14/02/22	Thermo 49 IPS							
12/01/ 22	91,1±2,3	Réseau 1	10/03/ 22	86,6±8,6	1h52	APOA370 (Horiba) - 2012	10/03/22	Teledyne T703 - E193	21/03/ 22	91,9±2,2					
								15/03/ 22	86,8±8,8	1h30	APOA370 (Horiba) - 2009	18/01/22	Teledyne T703 - E193		
12/01/	00 012 1	1 Réseau 2	25/01/ 22	83,5±8,4	1h45	APOA370 (Horiba) - 2012	10/12/21	Ansyco 16250815	22/03/	05.412.4					
22	88,8±2,1		25/01/ 22	82,5±6,3	1h45	APOA370 (Horiba) - 2009	04/01/22	Ansyco 16250815	22	85,4±2,1					
			20/04/ 22	86,5±6,9	2h30	O342e (ENVEA) – 2021	09/08/21	TAM-O3 (49 CPS)							
22/03/	05 412 4	Déanau 2	02/05/ 22	86,1±7,9	2h00	O342M (ENVEA) – 2014	02/05/22	TAM-O3 (49 CPS)	24/05/	07.212.2					
22	85,4±2,1	1 Réseau 3 04/		87,5±6,9	1h45	O342e (ENVEA) – 2021	10/08/21	TAM-O3 (49 CPS)	22	87,3±2,2					
		(05/05/ 22	87,3±8,0	1h45	O342M (ENVEA) – 2011	28/01/22	TAM-O3 (49 CPS)					

<u>Tableau 10 :</u> Résultats obtenus lors de la comparaison "Ozone" effectuée entre le LCSQA-LNE et 8 AASQA en 2022 (Générateurs d'ozone GEG 012 et GEG 015)

LCSC	onnage QA-LNE Iler)				Données AAS	QA			Etalonnage LCSQA- LNE (retour)					
Date	Fraction molaire (nmol/ mol)	ldent.	Date	Fraction molaire (nmol/mol)	Tps de génération avant relevé de la mesure	Analyseur utilisé	Date de raccorde- ment	Etalon utilisé pour les raccorde- ments	Date	Fraction molaire (nmol/mol)				
	22/03/ 22 85,4±2,1 Ré	,4±2,1 Réseau 3	20/04/	86,5±6,9	2h30	O342e (ENVEA) – 2021	09/08/21	TAM-O3 (49 CPS)						
22/03/			,1 Réseau 3	Réseau 3	Réseau 3	Réseau 3	02/05/ 22	86,1±7,9	2h00	O342M (ENVEA) – 2014	02/05/22	TAM-O3 (49 CPS)	24/05/	07 2+2 2
22					04/05/ 22	87,5±6,9	1h45	O342e (ENVEA) – 2021	10/08/21	TAM-O3 (49 CPS)	22	87,3±2,2		
			05/05/ 22	87,3±8,0	1h45	O342M (ENVEA) – 2011	28/01/22	TAM-O3 (49 CPS)						
			28/03/ 22	88,6±13,3	12 min	O342M (ENVEA) – 2012	28/03/22	Ansyco KTO3 : ET- OZ-A14- 30614						
21/03/		1.9±2.2 Réseau 4		2	01/04/	89±13,4	12 min	O342M (ENVEA) – 2012	04/03/22	KTGPT : ET- OZNO-A17- 51017	24/05/ 22	91,4±2,2		
22			08/04/ 22	89,2±13,4	12 min	O342e (ENVEA) – 2019	06/04/22	KTGPT : ET- OZNO-A17- 51017	22	, ·, -				
					89,1±13,4	12 min	49i (TEI) - 2016	06/04/22	KTGPT : ET- OZNO-A17- 51017					

<u>Tableau 10 (suite) :</u> Résultats obtenus lors de la comparaison "Ozone" effectuée entre le LCSQA-LNE et 8 AASQA en 2022 (Générateurs d'ozone GEG 012 et GEG 015)

LCSC	onnage QA-LNE Iller)				Données AA	N SQA			Etalonnage LCSQA- LNE (retour)		
Date	Fraction molaire (nmol/ mol)	ldent.	Date	Fraction molaire (nmol/mol)	Tps de génération avant relevé de la mesure	Analyseur utilisé	Date de raccorde- ment	Etalon utilisé pour les raccorde- ments	Date	Fraction molaire (nmol/mol)	
			09/06/ 22	86±4,8	1h35	O342M (ENVEA) – 2012	03/05/22	Polypheme.K TO3M.Ansyco			
	· · · · · · · · · · · · · · · · · · ·	7,3±2,2 Réseau 5	13/06/ 22	86,3±4,9	3h00	O342M (ENVEA) – 2012	04/05/22	Ansyco.KTO3 M.ANTICLEE			
24/05/			14/06/ 22	84,7±4,9	2h00	O342M (ENVEA) – 2012	14/06/22	Ansyco.KTO3 M.ANTICLEE	26/08/	27.2.24	
			23/06/ 22	87,02±4,9	1h31	O342E (ENVEA) – 2021	27/04/22	Polypheme.K TO3M.Ansyco	22	87,3±2,1	
			28/06/ 22	87,8±4,9	1h35	O342E (ENVEA) – 2021	01/06/22	Ansyco.KTO3 M.ANTICLEE			
			01/07/ 22	87,6±4,6	1h40	O342E (ENVEA) – 2021	01/07/21	Polypheme.K TO3M.Ansyco			
			15/06/ 22	83,8±7,0	1h30	49i (TEI) - 2012	15/06/22	Ansyco 18220621			
24/05/ 22	91,4±2,2	2 Réseau 6	21/06/ 22	86,7±8,8	1h30	O342e (ENVEA) – 2016	21/06/22	Ansyco 18220621	26/08/ 22	89,8±2,1	
			27/06/ 22	85,5±7,6	1h30	APOA370 (Horiba) - 2021	27/06/22	Ansyco 18220621			
	26/08/		06/10/ 22	89,6±3,3	2h05	49i (TEI) - 2008	26/09/22	Thermo 49 IPS			
26/08/		Réseau	20/10/	89,3±4,4	2h51	49i (TEI) - 2013	06/10/22	Thermo 146I	20/12/	07.5.2.4	
22	87,3±2,1	7	26/10/ 22	87,5±5,8	3h01	49i (TEI) - 2013	17/10/22	Thermo 146I	22	87,5±2,1	
			27/10/ 22	89,2±3,6	3h38	49i (TEI) - 2013	14/09/22	Thermo 49 IPS			

<u>Tableau 10 (suite) :</u> Résultats obtenus lors de la comparaison "Ozone" effectuée entre le LCSQA-LNE et 8 AASQA en 2022 (Générateurs d'ozone GEG 012 et GEG 015)

LCS	onnage QA-LNE aller)	LNE Données AASQA							LCS	onnage QA-LNE etour)
Date	Fraction molaire (nmol/ mol)	ldent.	Ident. Date Fraction molaire (nmol/mol) Tps de génération avant relevé de la mesure Tps de génération avant utilisé ment Etalon utilisé pour raccordements							Fraction molaire (nmol/ mol)
26/08/ 22	89,8±2,1	Réseau 8	23/11/ 22	89,7±25,2	2h40	O342E (ENVEA) – 2017	12/10/22	Ansyco KT- GPTM16 N/S 16600716	06/01/ 23	89,1±2,1

<u>Tableau 10 (suite) :</u> Résultats obtenus lors de la comparaison "Ozone" effectuée entre le LCSQA-LNE et 8 AASQA en 2022 (Générateurs d'ozone GEG 012 et GEG 015)

3.6 Exploitation des résultats obtenus

L'exploitation des résultats à consister à calculer les écarts normalisés, ce qui permet de tester si les écarts entre les fractions molaires des AASQA et les fractions molaires de référence du LCSQA-LNE sont significatifs :

$$E_n = \left| \frac{\bar{F}_{LNE} - F_{Niveau \, 3}}{\sqrt{U^2(\bar{F}_{LNE}) + U^2(F_{Niveau \, 3})}} \right|$$

Où $U(\bar{F}_{LNE})$ est l'incertitude élargie associée à la moyenne des fractions molaires de référence du LCSQA-LNE avant et après la CIL (\bar{F}_{LNE}) et $U(F_{Niveau\ 3})$ est l'incertitude élargie associée à la fraction molaire du niveau 3 considéré $(F_{Niveau\ 3})$.

Si $E_n < 1$, l'écart est considéré comme non significatif et les fractions molaires du LCSQA-LNE et du Niveau 3 comme non significativement différentes.

Si $E_n \ge 1$, l'écart est considéré comme significatif et il faut rechercher les causes de l'anomalie.

Les écarts normalisés obtenus sont reportés dans le tableau ci-après.

Identification de l'AASQA	Fraction molaire moyenne LCSQA-LNE (nmol/mol)	Fraction molaire de l'AASQA (nmol/mol)	Ecart normalisé E _n
		87,0	0,78
Réseau 1	91,5	86,6	0,55
		86,8	0,52
Réseau 2	87,1	83,5	0,42
Nesedu Z	87,1	82,5	0,69
		86,5	0,02
D 4 2	06.4	86,1	0,03
Réseau 3	86,4	87,5	0,16
		87,3	0,11
		88,6	0,23
D 6 4	04.7	89	
Réseau 4	91,7	89,2	0,18
		89,1	0,19
		86	0,25
		86,3	0,19
D 4 5	07.2	84,7	0,49
Réseau 5	87,3	87,02	0,05
		87,8	0,09
		87,6	0,06
		83,8	0,93
Réseau 6	90,6	86,7	0,43
		85,5	0,65
		89,6	0,56
D4.00. 7	07.4	89,3	0,39
Réseau 7	87,4	87,5	0,02
		89,2	0,43
Réseau 8	89,5	89,7	0,01

Tableau 11 : Synthèse des écarts normalisés obtenus lors de la comparaison O₃ effectuée entre le LCSQA-LNE et 8 AASQA en 2022

Les écarts absolus sont représentés sur la figure ci-après.

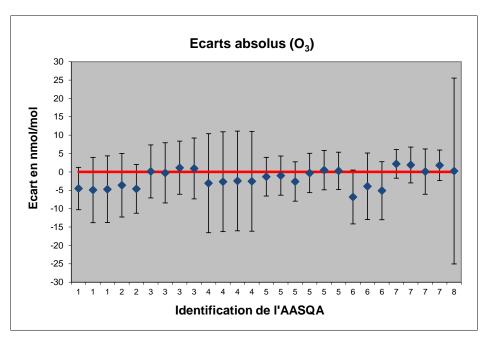


Figure 11 : Représentation de l'ensemble des écarts absolus et des incertitudes élargies associées obtenus lors de la comparaison O₃ effectuée entre le LCSQA-LNE et 8 AASQA en 2022

3.7 Conclusion

Les résultats montrent que les écarts normalisés entre les fractions molaires en O₃ déterminées par l'ensemble des réseaux de mesure et celles déterminées par le LCSQA-LNE sont inférieurs à 1, ce qui montre que ces mesures ne sont pas significativement différentes des fractions molaires de référence déterminées par le LCSQA-LNE.

