Campagne d’intercomparaison des procédures de calibrage de NO₂, NO, CO, O₃, SO₂ appliquées dans les pays membres de la Communauté Européenne

Annexe 2
Intercomparaison du 10 au 14 avril 2000

Contribution française : INERIS

D. GUILLARD – H. PERNIN – Y. GODET

Unité AIRE
Direction des Risques Chroniques

Aout 2000
Campagne d’intercomparaison des procédures de calibrage de NO2, NO, CO, O3, SO2 appliquées dans les pays membres de la Communauté Européenne

Annexe 2

Intercomparaison du 10 au 14 avril 2000

Contribution française : INERIS

D. GUILLARD – H. PERNIN – Y. GODET
Ce document comporte 10 pages (hors couverture et annexes).

<table>
<thead>
<tr>
<th>NOM</th>
<th>Rédaction</th>
<th>Vérification</th>
<th>Approbation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y. GODET</td>
<td>D. GUILLARD</td>
<td>M. RAMEL</td>
<td>M. NOMINE</td>
</tr>
<tr>
<td>Ingénieur</td>
<td>Technicienne</td>
<td>DRC</td>
<td>DRC</td>
</tr>
<tr>
<td>AIRE DRC</td>
<td>AIRE DRC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualité</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visa</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2/10
TABLE DES MATIERES

1. INTRODUCTION ..5

2. PRESENTATION DU BANC D’ESSAIS DU C.L.A.P. GÉNÉRATEUR DE GAZ CHARGÉ EN NO, NO2, OZONE ET/OU SO2 ET CO7

3. METHODE DE CALIBRAGE ET MATERIELS UTILISES PAR L’INERIS.7
 3.1 Ozone « O₃ » ..7
 3.2 Monoxyde de carbone « CO » ...8
 3.3 Dioxyde de soufre « SO₂ » ..8
 3.4 Monoxyde d’azote « NO » et dioxyde d’azote « NO₂ »8

4. DEROULEMENT DES ESSAIS ...9

5. PRESENTATION DES RESULTATS DE L’EXERCICE D’INTERCOMPARAISON ...9

6. LISTE DES ANNEXES ...10
REMERCIEMENTS

Nous remercions les organismes suivants qui ont bien voulu nous aider à mettre en œuvre cette intercomparaison par les prêts de matériels et les étalonnages :

- AIR NORMAND
- AIRPARIF
- Laboratoire National d’Essais
- Société MEGATEC
CAMPAGNE D’INTERCOMPARAISON DES PROCÉDURES DE CALIBRAGE DU NO₂ ; NO ; SO₂ ; CO ; O₃ APPLIQUÉES DANS LES PAYS MEMBRES DE LA COMMUNAUTE EUROPEENNE

Contribution de l’INERIS (France) à ISPRA Varèse (Italie)

1. INTRODUCTION

Le but de cette intercomparaison est d’apprécier l’incertitude des références nationales pour les mesures du NO₂ ; NO ; SO₂ ; CO ; O₃ et de partager cette expérience entre laboratoires experts. Elle a été réalisée sur trois campagnes distinctes à six mois d’intervalle :

- Ispra en Italie (1er semestre 99) : participation française : Ecole des Mines de Douai
- Essen en Allemagne (2ème semestre 99) : participation française : AIRPARIF
- Ispra en Italie (1er semestre 2000) : participation française : INERIS

Durant cette dernière campagne, qui s’est déroulée du 10 au 14 avril 2000, 7 laboratoires étrangers se sont réunis (voir liste des équipes dans le tableau ci-après), avec leurs méthodes et leurs références spécifiques.

Ce rapport est relatif à la participation de l’INERIS à cette campagne d’intercomparaison.

L’ensemble des résultats avec la participation d’AIRPARIF et de l’Ecole des Mines de Douai, sera rédigé par le Central Laboratory of Air Pollution (C.L.A.P.) d’Ispra.

Rappel concernant les références en France

Concernant la France, rappelons que le LNE (Laboratoire National d’Essais) délivre une référence nationale pour le NO, NO₂, SO₂, CO₂, O₃ appelée niveau 1.

Les laboratoires régionaux (ASPA, AIRPARIF, AIR PAYS DE LOIRE,…) sont raccordés au LNE sous la désignation niveau 2.

Les autres stations de mesure de la pollution, réparties sur l’ensemble du territoire, sont raccordées aux laboratoires régionaux sous la désignation niveau 3.
Participants of intercompararison exercise Ispra, 10-14.04.2000
2. PRESENTATION DU BANC D’ESSAIS DU C.L.A.P. GENERATEUR DE GAZ CHARGE EN NO, NO₂, OZONE ET/OU SO₂ ET CO

Le banc de génération de gaz comprend, d’une part une alimentation en air comprimé avec un système de traitement (KMnO₄, charbon actif), des régulateurs de débit massique, et un humidificateur suivi d’un détecteur d’humidité et, d’autre part, des alimentations en :

- monoxide d’azote,
- ozone,
- monoxide de carbone,
- dioxyde de soufre.

Une chambre de réaction permet de réaliser une T.P.G. (Titration en Phase Gazeuse) pour convertir une partie de NO en NO₂.

La chambre de réaction est reliée à une conduite de distribution en verre qui comprend une chambre de mélange et 12 postes de travail sur une longueur de plusieurs dizaines de mètres.

Les postes 1 et 2 sont situés à 1 mètre du générateur de gaz.

On trouvera en annexe n° 1 les explications et le schéma du banc d’essais.

3. METHODE DE CALIBRAGE ET MATERIELS UTILISES PAR L’INERIS

L’INERIS a mis en œuvre les moyens suivants :

3.1 OZONE « O₃ »

Transfert

Photomètre Thermo Environmental Modèle 49 PS raccordé à la référence nationale au LNE (Paris) « UMEG ».

Remarque : Cette référence est 1,5 % inférieure à celle du NIST qui est la nouvelle reconnaissance en matière de référence nationale.

Analyseur de comparaison

Analyseur Thermo-Environmental 49 C prêté par la Société MEGATEC.
3.2 Monoxyde de carbone « CO »

Transfert
Bouteille à 9113 ppm suivie d’une dilution à l’aide du mélangeur SONIMIX SX 3002-10 et du générateur d’air catalytique 3052 A donnant les différentes concentrations (voir la liste de concentrations générées pour le calibrage des instruments (*annexe 2*).

Remarque : La bouteille n’a pas pu être raccordée au LNE. La concentration de comparaison à 45,084 ppm a été comparée à une autre bouteille COFRAC de 49,83 ppm ± 0,07 ppm à 0,15 % près, disponible à l’INERIS.

Analyseur de comparaison
- Analyseur UNOR 610 MAIHAK plage : 0-20 ppm,
- Analyseur Environnement S.A. CO11M plage 0-100 ppm.

Remarque : 2 analyseurs ont été mis en œuvre pour les raisons suivantes (voir courbe de réponse *annexe 3*) :
- l’analyseur UNOR 610 MAIHAK dispose d’une plage de mesure inadaptée pour mesurer 50 ppm environ,
- l’analyseur CO 11 M de Environnement S.A. a bien une échelle permettant de mesurer 0 à 50 ppm mais nous avions constaté un défaut de non-linéarité de l’appareil par rapport à notre système de dilution (voir tableau en *annexe 2*).

3.3 Dioxyde de soufre « SO₂ »

Transfert
Bouteille haute concentration « Air Liquide » à 45 ppm, retitrée par rapport à une bouteille « Messer Grissheim » associée à un système de dilution (Voir tableau en *annexe 4*).

Remarque : Le raccordement au LNE n’a pas pu être effectué.

Analyseur de comparaison
Analyseur de SO₂ Thermo-Environmental Modèle 43 C.

3.4 Monoxyde d’azote « NO » et dioxyde d’azote « NO₂ »

Transfert
Bouteille basse concentration appartenant à AIRPARIF (n° 67934) à 811 ppb en NO et 813 ppb en NOx raccordée au LNE et une autre bouteille à une autre concentration permettant de mettre en œuvre la TPG afin de déterminer le taux de rendement du four de conversion de l’analyseur d’oxyde d’azote.

Analyseur de comparaison
- Analyseur de NO – NOx – NO₂ Thermo-Environmental Modèle 42 C.
4. DEROULEMENT DES ESSAIS

Les essais se sont déroulés selon le calendrier ci-après :

<table>
<thead>
<tr>
<th>Date</th>
<th>Heure</th>
<th>Activités</th>
</tr>
</thead>
<tbody>
<tr>
<td>lundi 10 avril</td>
<td>9 h. – 17 h.</td>
<td>• formalités douanières</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• installation des équipements (voir liste du matériel transporté pour cette intercomparaison en annexe 5)</td>
</tr>
<tr>
<td>mardi 11 avril</td>
<td>9 h. – 11 h.</td>
<td>• calibration des analyseurs de SO₂, CO, O₃, NOx</td>
</tr>
<tr>
<td></td>
<td>11 h. jusqu’au mercredi 16 h</td>
<td>• mesures continues des gaz en mélange SO₂ et CO</td>
</tr>
<tr>
<td>du mercredi 12</td>
<td>12 h. – 7 h.</td>
<td>• mesures continues du NO, NO₂, O₃</td>
</tr>
<tr>
<td>au vendredi 14 avril</td>
<td></td>
<td>• démontage du matériel</td>
</tr>
</tbody>
</table>

On trouvera, en annexe 6, la chronologie détaillée des mesures. Nos données étaient enregistrées en continu à l’aide d’une station d’acquisition AOIP. L’exploitation des résultats étant effectuée durant la journée à l’aide d’un autre micro-ordinateur.

5. PRESENTATION DES RESULTATS DE L’EXERCICE D’INTERCOMPARAISON

26 essais ou « runs » ont été mis en œuvre par le CLAP avec des concentrations en SO₂, CO, NO, NO₂, O₃ pendant des durées variant selon les « runs » entre 1 heure pour les zéros de concentration et 3 heures pour les niveaux d’essais.

Les résultats de l’INERIS sont compilés dans les tableaux de l’annexe 7.

Les résultats de l’ensemble des participants, essai par essai, gaz par gaz, nous ont été envoyés par courrier en juin 2000, avec le nom de chacun des 7 participants (voir tableaux de l’annexe 8), avec les indications suivantes :

a/ intervalle de tolérance,

b/ valeur médiane marquée d’un trait foncé. Les valeurs de chaque participant sont jugées par rapport à la valeur médiane pour chacun des polluants considérés : 3 participants sont au-dessus, trois autres participants sont en dessous, sachant que la valeur vraie n’est pas connue.

Dans l’ensemble, les résultats sont satisfaits.

Au niveau du gaz « CO », nous avons observé un écart par rapport à la médiane sur les faibles concentrations probablement dû à un rattrapage de défaut de linéarité de notre analyseur, constaté en cours d’exercice. Les valeurs de l’INERIS sont cependant très proches de celles de l’EMPA, laboratoire suisse à Dubendorf (Voir courbe de comparaison en annexe n° 9).
6. LISTE DES ANNEXES

<table>
<thead>
<tr>
<th>Repère</th>
<th>Désignation précisė</th>
<th>Nb/N° pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mélangeur de gaz piloté par ordinateur (Marque MCZ) mis en œuvre par le C.L.A.P. dans leur laboratoire d’intercomparaison</td>
<td>5 pages</td>
</tr>
<tr>
<td>2</td>
<td>Tableau des mélanges obtenus avec la SONIMIX 3002 et une bouteille de gaz constituant à 9113 ppm de CO</td>
<td>1 page</td>
</tr>
<tr>
<td>3</td>
<td>Courbe : réponses de deux analyseurs de CO mettant en évidence un problème de linéarité</td>
<td>1 page</td>
</tr>
<tr>
<td>4</td>
<td>Tableau des mélanges obtenus avec le SONIMIX 3002 et une bouteille de gaz constituant à 45 ppm de SO₂</td>
<td>1 page</td>
</tr>
<tr>
<td>5</td>
<td>Matériel utilisé pour l’intercomparaison</td>
<td>1 page</td>
</tr>
<tr>
<td>6</td>
<td>Tableau chronologique des mesures durant la campagne d’intercomparaison</td>
<td>1 page</td>
</tr>
<tr>
<td>7</td>
<td>Résultats par concentrations analysées par l’INERIS selon la chronologie</td>
<td>17 pages</td>
</tr>
<tr>
<td>8</td>
<td>Tableaux correspondant aux 23 « runs » envoyés par le CLAP</td>
<td>23 pages</td>
</tr>
<tr>
<td>9</td>
<td>Courbe de comparaison INERIS /EMPA et concentrations</td>
<td>1 page</td>
</tr>
</tbody>
</table>
ANNEXE 1

(5 pages)

« Mélangeur de gaz piloté par ordinateur (Marque MCZ) mis en œuvre par le C.L.A.P. dans leur laboratoire d’intercomparaison et diagram of the calibration bench »
ANNEXE 2

(1 page)

« Tableau des mélange obtenus avec le SONIMIX 3002 et une bouteille de gaz constituant à 9113 ppm de CO »
ANNEXE 3

(1 page)

« Courbe : réponses de deux analyseurs de CO mettant en évidence un problème de linéarité »
ANNEXE 4

(1 page)

« Tableau des mélanges obtenus avec le SONIMIX 3002
et une bouteille à gaz constituant à 45 ppm de SO2 »
ANNEXE 5

(1 page)

« Matériel utilisé pour l’intercomparaison »
MATERIEL UTILISE POUR L’INTERCOMPARAISON

<table>
<thead>
<tr>
<th>Matériel</th>
<th>Quantité</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO 11M MCE 15103</td>
<td>1</td>
</tr>
<tr>
<td>NOX-42C MEGATEC n° 66038-351</td>
<td>1</td>
</tr>
<tr>
<td>49 PS MCE 15404 Calibrateur d’ozone</td>
<td>1</td>
</tr>
<tr>
<td>SO2 - 43 C THERMO-ENVIRONMENTAL n° 65808-351 43 C</td>
<td>1</td>
</tr>
<tr>
<td>03-49 C THERMO-ENVIRONMENTAL 99 CE 196</td>
<td>1</td>
</tr>
<tr>
<td>CO Mahiac UNOR 610 MCV 15014 351867</td>
<td>1</td>
</tr>
<tr>
<td>Générateur d’air zéro SONIMIX 3052A-M-CE. 12706-n° 352690</td>
<td>1</td>
</tr>
<tr>
<td>SAM 70 AOIP n° 349937</td>
<td>1</td>
</tr>
<tr>
<td>PC portable 351867 n° 352337</td>
<td>1</td>
</tr>
<tr>
<td>PC portable 359935 n° 349935</td>
<td>1</td>
</tr>
<tr>
<td>Sonde de température</td>
<td>1</td>
</tr>
<tr>
<td>Imprimante Laser n° 350318</td>
<td>1</td>
</tr>
<tr>
<td>Bouteille 52539 Air Liquide N2/SO2</td>
<td>1</td>
</tr>
<tr>
<td>Bouteille Air Liquide NO/NOX n° 14 281</td>
<td>1</td>
</tr>
<tr>
<td>Bouteille d’air liquide N2/CO à 9 113 ppm</td>
<td>1</td>
</tr>
<tr>
<td>Petit matériel détendeurs, tuyaux, outils…</td>
<td>1</td>
</tr>
<tr>
<td>Petit matériel + sonde d’humidité</td>
<td>1</td>
</tr>
<tr>
<td>Bouteille Air Liquide NO/NOx n° 67934</td>
<td>1</td>
</tr>
<tr>
<td>Notices + outillage</td>
<td>1</td>
</tr>
</tbody>
</table>
ANNEXE 6

(1 page)

« Tableau chronologique des mesures durant la campagne d’intercomparaison »
ANNEXE 7

(17 pages)

« Résultats par concentrations analysées par l’INERIS selon la chronologie »
ANNEXE 8

(23 pages)

Tableaux correspondant aux 23 « runs » envoyés par le CLAP
ANNEXE 9

(1 page)

« Courbe de comparaison INERIS / EMPA et concentrations »

Nota : les valeurs de CO sont multipliées par 10