Résultats de la recherche

279 résultats correspondent à Air ambiant
Mardi 1 février 2022
Rapport
Amélioration du système de dopage PM matrice réelle
l’Ineris, en tant que membre du LCSQA, développe et utilise "un système de dopage PM pour la réalisation de comparaisons inter-laboratoires des analyseurs automatiques des PM" (DRC-16-152318-06089A). Ce montage s'appuie sur la génération de particules par nébulisation d'un mélange de sulfate d’ammonium et de nitrate d’ammonium dilué dans de l'eau distillée au moyen d'un nébuliseur TSI modèle 3076. Cependant, cette méthode de génération de particules ne produit que des particules ayant une granulométrie limitée à 2,5µm, écartant ainsi la possibilité d'évaluer les performances de mesures pour les particules de plus grosses tailles, comme les particules contribuant à la masse des PM10 par exemple. L'objectif de cette action était d'évaluer la possibilité de générer des particules ayant une granulométrie supérieure afin de proposer une évolution du protocole de comparaisons inter-laboratoires des analyseurs automatiques des PM. Dans un premier temps, l'impact du nébuliseur sur la concentration massique et la granulométrie des particules générées à partir de la même solution saline que le dispositif actuel a été étudié. Pour cela, 3 nébuliseurs couramment utilisés dans des appareils de spectrométrie de masse à plasma à couplage ont été testés, car ils ont la particularité de présenter des diamètres de coupure de particules très supérieurs (75µm à 300 µm) à celui du TSI modèle 3076. Ces essais ont montré que quel que soit le nébuliseur utilisé (Seaspray, Slurry et Veespray), c’est-à-dire quelle que soit la limite imposée par le diamètre de coupure du système, la génération à partir de solution saline produit des particules présentant une granulométrie centrée autour de 600nm (mesure effectuée au moyen d'un APS TSI modèle 3321), correspondant majoritairement à la fraction PM2,5 (mesure massique effectuée à l'aide d'une méthode optique FIDAS 200). Néanmoins, les nébuliseurs Slurry et Veespray ont permis la génération de particules présentant une granulométrie comprise entre 2,5 et 3,5µm, au prix d'une instabilité de génération caractérisée par un écart-type plus important (entre 1,5 et 3 fois). Ainsi, les meilleurs résultats pour réaliser un dopage particulaire au moyen d’une génération d’aérosols salins ont été obtenus par le nébuliseur Seaspray, notamment grâce à sa simplicité d’utilisation couplée à une génération continue et stable sur le long terme. Dans un second temps, une génération au moyen d’une dispersion de poudre d’Arizona a permis de montrer qu'il est possible de générer des particules de gros diamètre. En effet, même si la répartition granulométrique reste centrée autour de 600nm, la présence de particules de plus gros diamètre a un impact majeur sur la fraction PM10. C'est en particulier le cas avec le nébuliseur Veespray, qui est le seul nébuliseur (sur les 3 testés) ayant permis de générer des particules sur l'ensemble de la gamme granulométrique de la poudre d'Arizona, c’est-à-dire de 0,5µm à 20µm. Ceci est notamment dû à l’utilisation d’une pompe péristaltique qui améliore la stabilité du circuit d'alimentation en solution de dopage et semble permettre une meilleure homogénéité. L'utilisation simultanée des nébuliseurs Seaspray et Veespray a montré la possibilité d'ajouter, dans la matrice de dopage, la fraction PM10 sans impacter négativement la concentration de PM2,5. Cette approche pourrait être utilisée lors de futurs exercices de comparaisons inter-laboratoires des analyseurs automatiques de PM, la concentration de PM10 étant restée pour le moment, lors des CIL, totalement dépendante de la concentration naturellement présente en air ambiant. Cette approche permet ainsi d'allier les avantages des deux nébuliseurs utilisés pour la génération : stabilité et présence de particules ayant un diamètre supérieur à 2,5µm. Enfin, la dernière partie de l'étude a permis de confirmer que les fortes concentrations d’ozone présentes dans la matrice d'air n'impactent pas la génération de particules à partir d'une solution saline ou d'une dispersion de poudre d'Arizona. Les résultats ont montré que, malgré la présence d'une variation de concentration de PM lors des essais avec la solution saline attribuable à des changements de rapports de dilution, ni la présence d’ozone ni ses variations rapides de concentration n'ont provoqué de changement sur la concentration massique ou sur la répartition granulométrique des particules. Improvement of the enhanced PM system based on real air matrix During the last years, as a member of the LCSQA, Ineris has been developing and using "a PM enhanced system for inter-laboratory comparisons of automatic PM analysers" (DRC-16-152318-06089A). This facility is based on particle generation by nebulising a mixture of ammonium sulphate and ammonium nitrate diluted in distilled water using a TSI model 3076 nebuliser. However, this method of generation only produces particles with a distribution size limited to 2.5µm, excluding the possibility of evaluating the performance of measurements for the sole larger particles, such as those contributing to the PM10 mass. The objective of this action is to evaluate the possibility of generating particles with a larger granulometry in order to propose an evolution of the protocol for inter-laboratory comparisons of automatic PM analysers. Firstly, the impact of the nebuliser on the mass concentration and granulometry of particles generated from the same saline solution as the current device was studied. For this purpose, 3 nebulisers commonly used in coupled plasma mass spectrometry devices were tested, as they have the particularity of having much larger particle cut-off diameters (75µm to 300 µm) than the TSI model 3076. These tests showed that whatever the nebuliser used (Seaspray, Slurry and Veespray), i.e. whatever the limit imposed by the cut-off diameter of the system, the generation from saline solution produces particles with a particle size centred around 600nm (measurement carried out by means of a TSI model 3321 APS) corresponding mainly to the PM2.5 fraction (mass measurement carried out by means of an optical FIDAS 200 method). Nevertheless, the Slurry and Veespray nebulisers allowed the generation of particles with a particle size between 2.5 and 3.5µm, at the cost of a generation instability characterised by a higher standard deviation (between 1.5 and 3 times). Thus, the best results for particle spiking by means of saline aerosol generation were obtained by the Seaspray nebuliser, in particular thanks to its simplicity of use coupled with a continuous and stable generation over the long term. In a second phase, a generation using an Arizona powder dispersion showed that it is possible to generate large diameter particles. Indeed, even if the particle size distribution remains centred around 600nm, the presence of larger diameter particles has a major impact on the PM10 fraction. This is particularly the case with the Veespray nebuliser, which is the only nebuliser (out of the 3 tested) that was able to generate particles over the entire particle size range of the Arizona powder, i.e. from 0.5µm to 20µm. This is due in particular to the use of a peristaltic pump which improves the stability of the spiking solution feed circuit and seems to allow better homogeneity. The simultaneous use of the Seaspray and Veespray nebulisers showed the possibility of adding the PM10 fraction to the spiking matrix without negatively impacting the PM2.5 concentration. This approach could be used in future inter-laboratory comparisons of automatic PM analysers, as the PM10 concentration is still totally dependent on the concentration naturally present in ambient air. This approach allows to combine the advantages of the two nebulisers used for the generation: stability and presence of particles with a diameter higher than 2.5µm. Finally, the last part of the study confirmed that the high ozone concentrations present in the air matrix do not impact the generation of particles from a saline solution or an Arizona powder dispersion. The results showed that, although there was a variation in PM concentration in the saline tests due to changes in dilution ratios, neither the presence of ozone nor its rapid variations in concentration caused any change in mass concentration or particle size distribution
Lundi 19 avril 2021
Rapport
Guide de calcul de l'indice ATMO
  Référentiel technique national Ce guide fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air ambiant. Il a été approuvé en CPS (comité de pilotage de la surveillance) du 15 décembre 2020. Mise en application : 1er janvier 2021     Ce guide a été élaboré conformément à l'arrêté du 10 juillet 2020 relatif à l'indice de la qualité de l'air ambiant et fixant les modalités de calcul.
Jeudi 18 mars 2021
Rapport
Développement d’étalons de référence pour l’ammoniac (NH3)
La mesure de l'ammoniac (NH3) dans l'air ambiant est un sujet sensible et prioritaire en raison de ses effets nuisibles sur la santé humaine et sur les écosystèmes. La Directive européenne sur les plafonds d'émissions nationaux (NEC) 2001/81/EC, définit des plafonds d'émission individuels notamment pour l’ammoniac pour chaque État membre, basés sur le Protocole de Göteborg. Cependant, cette directive ne donne aucune recommandation permettant de réaliser des mesures fiables d'ammoniac dans l’air ambiant notamment en termes d’étalonnage des appareils (procédures, fréquences…), d’incertitude maximale tolérée, de procédures d’assurance qualité et de contrôle qualité (QA/QC) aussi bien que d'infrastructure pour assurer la traçabilité métrologique des mesures. Pour pallier ce manque de traçabilité métrologique, le LCSQA-LNE a développé un étalon de référence d’ammoniac dans l’azote basé sur la méthode de génération dynamique par perméation en phase gazeuse sur une gamme de fractions molaires allant de 1 à 400 nmol/mol, en collaboration étroite avec la société 2MProcess selon le cahier des charges établi par le LCSQA-LNE. L’étalon de référence développé pour assurer la traçabilité des mesures de NH3 consiste en un banc à perméation avec des mesures de débit très précises (débitmètres massiques) et une maitrise de la pesée du tube à perméation. Ce système permet de garantir des incertitudes élargies relatives sur la fraction molaire d’ammoniac dans le gaz étalon généré inférieures à 2 % (k=2). Ce résultat est très satisfaisant au regard des difficultés engendrées par le niveau très faible des fractions molaires d’intérêt et les problèmes d’adsorption de l’ammoniac sur les surfaces en contact. Le développement du banc de référence d’ammoniac a déjà suscité un grand intérêt au sein du dispositif de surveillance de la qualité de l’air, puisqu’en fin d’année 2020, le LCSQA-LNE a réalisé l’étalonnage de 4 analyseurs pour les Associations Agréées de la Surveillance de la Qualité de l’Air (AASQA). Ces demandes pré-augurent de l’intérêt porté par les AASQA au développement de ce nouvel étalon de référence gazeux permettant de garantir la traçabilité et la qualité des mesures de NH3 réalisées sur le territoire français. De plus en 2021, le LCSQA en collaboration avec les AASQA définira une stratégie de surveillance nationale pour ce polluant.   Development of reference standard for ammonia (NH3) The measurement of ammonia (NH3) in ambient air is a sensitive and priority subject because of its harmful effects on human health and ecosystems. The European Directive on National Emissions Ceilings (NEC) 2001/81/EC sets individual emission ceilings, particularly for ammonia for each Member State, based on the Gothenburg Protocol. However, this directive does not give any recommendations for reliable ammonia measurements in ambient air, particularly in terms of calibration of devices (procedures, frequencies, etc.), maximum allowable uncertainty, quality assurance and quality control (QA/QC) procedures as well as infrastructure to ensure the metrological traceability of the measurements. To remedy the lack of metrological traceability, the LCSQA-LNE has developed a reference standard for ammonia in nitrogen based on the dynamic gas phase permeation generation method over a range of amount fractions ranging from 1 to 400 nmol/mol, in close collaboration with 2MProcess according to the specifications established by the LCSQA-LNE. The reference bench developed to ensure the traceability of NH3 measurements consists of a permeation bench with very precise flow measurements (mass flow meters) and with very precise control of the weighing of the permeation tube. This system ensures that the expanded uncertainties (k=2) on the amount fraction of ammonia in the standard gas generated are lower than 2%. This result is very satisfactory given the difficulties caused by the very low level of amount fractions of interest and by the problems of ammonia adsorption on contact surfaces. The development of the ammonia reference bench has already generated a great deal of interest in the air quality monitoring system, since at the end of 2020, the LCSQA-LNE carried out the calibration of 4 analyzers for the Air Quality Monitoring Associations (AASQA). These requests pre-augur the interest of the AASQA in the development of this new gas reference standard to guarantee the traceability and the quality of the NH3 measurements carried out on French territory. In addition, in 2021, the LCSQA, in collaboration with the AASQA, will define a national monitoring strategy for this pollutant. .
Lundi 27 février 2017
Rapport
Guide méthodologique pour la surveillance des PM10 et PM2,5 par TEOM-FDMS dans l’air ambiant
  Référentiel technique national Ce document fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air. "Guide méthodologique pour la surveillance des PM10 et PM2,5 par TEOM-FDMS dans l’air ambiant" : Il est une mise à jour du guide paru en 2013. Ce guide a été approuvé en CPS (comité de pilotage de la surveillance) du 1er février 2017. Mise en application : immédiate.     Ce guide se conçoit comme le référentiel français en termes d’exigences de qualité des données obtenues par TEOM-FDMS sur l’ensemble du territoire pour la surveillance des PM10 et PM2,5 comme préconisé par l’arrêté du 21 octobre 2010 relatif aux modalités de surveillance de la qualité de l'air et à l'information du public. Ce guide a pour objectif principal de rappeler les exigences minimales en matière de contrôles et assurances qualités (AQ/CQ) à respecter pour garantir une mesure fiable par TEOM-FDMS de la matière particulaire (PM) dans l’air ambiant au sein du dispositif français de surveillance de la qualité de l’air. Les critères AQ/CQ définis dans ce guide, en concertation avec les AASQA, respectent les exigences de la norme pr_NF EN 16450 « Air ambiant — Systèmes automatisés de mesurage de la concentration de matière particulaire (PM10 ; PM2,5) » élaborée par le comité technique CEN/TC 264 et actuellement à l’état de projet dont la publication est prévue pour la fin d’année 2016, début d’année 2017. Il incombe à chaque AASQA de mettre en œuvre ces critères AQ/CQ et ces exigences selon la périodicité indiquée, de les documenter et de mettre en place les actions correctives adéquates en cas de non-respect des exigences minimales. De son côté, le LCSQA continuera son travail de centralisation des retours d’expérience AASQA et de synthèse des problèmes rencontrés et solutions trouvées au travers de rapports annuels et/ou de son site internet. Dans l’ensemble du guide, sauf mention contraire, les exigences en matière de contrôle et d’assurance qualité indiquées concernent tous les types de TEOM-FDMS (i.e. type 8500, 1405F et 1405DF). En complément : Lire le guide de dépannage "suivi et optimisation de l'utilisation des TEOM-FDMS" (2014)
Jeudi 15 avril 2021
Rapport
Guides méthodologiques pour la prévision de la qualité de l'air
  Référentiel technique national Ces documents font partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air ambiant. Ils ont été approuvés en CPS (comité de pilotage de la surveillance) du 18 mars 2021. Mise en application : 1er janvier 2022     Qualité et traçabilité de la chaîne de prévision des épisodes de pollution Ce document constitue la partie dédiée à la qualité et traçabilité du guide de prévision de la qualité de l’air. Il décrit les éléments de la chaine de prévision de la qualité de l’air, tant sur les aspects organisationnels que sur le plan de son fonctionnement opérationnel et technique.   Evaluation des performances des prévisions de la qualité de l'air Ce document constitue le second volet du référentiel dédié à la prévision de la qualité de l’air qui concerne l’harmonisation des pratiques d’évaluation faisant l’objet d’un rapportage annuel comme défini dans l’arrêté surveillance.   Checklist du référentiel prévision : Qualité et traçabilité de la chaîne de prévision des épisodes de pollution Cette checklist fournit les références des éléments de la chaine de prévision de la qualité de l’air, tant sur les aspects organisationnels que sur le plan de son fonctionnement opérationnel et technique.  
Mardi 31 août 2021
Rapport
Contrôle des paramètres de fonctionnement et raccordement à l'aide de cales étalon des analyseurs automatiques de particules
Les procédures de raccordement des mesures aux étalons de référence nationaux mis en place par le LCSQA-IMT Lille Douai depuis plusieurs années, permettent aux Associations Agréées pour la Surveillance de la Qualité de l’Air (AASQA) de vérifier le bon fonctionnement de leurs appareils de mesure automatiques (AMS) utilisés pour la surveillance réglementaire des particules en suspension dans l’air ambiant. Le présent rapport présente les bilans des années 2017 à 2020 des contrôles de paramètres métrologiques suivants : Débit de prélèvement, constante d’étalonnage et linéarité pour les microbalances à variation de fréquence de marque américaine Thermo Scientific modèle 1400AB + FDMS 8500C et modèle 1405-F (appareils distribués en France par la société Ecomesure) ; Cale étalon et linéarité de réponse pour les jauges radiométriques (communément appelées « jauges bêta ») de marque française ENVEA (anciennement Environnement SA) modèle MP101M et de marque américaine MetOne modèle BAM 1020 (appareils distribués en France par la société Envicontrol). Les résultats montrent que l’ensemble des spécifications fixées ont été globalement respectées depuis 2018 et que les moyens mis en œuvre ont permis d’identifier les dysfonctionnements d’un appareil parmi l’ensemble des analyseurs et moyens d’étalonnage contrôlés. L’efficacité de cette « chaîne de contrôle pour la mesure réglementaire des particules » mise en place par le LCSQA-IMT Lille Douai peut être qualifiée de très satisfaisante. Ce bilan a également permis d’effectuer une analyse du parc instrumental entre les années 2016 et 2020, mettant en évidence un accroissement du taux de mise au rebut par les AASQA des microbalances à variation de fréquence modèle TEOM 1400AB au profit de l’utilisation de techniques plus robustes ou à dynamique de mesures plus élevée comme notamment les jauges radiométriques BAM 1020 et les granulomètres par diffusion lumineuse FIDAS 200 E (de marque PALAS, distribuée en France par ADDAIR).     Traceability and check of AMS used for regulated monitoring of particles in ambient air The scheme for traceability of the measurements to national reference standards established by the French National reference laboratory (LCSQA-IMT Lille Douai) provide to Air quality monitoring Networks (AASQA) a mean to check the correct operation of AMS used for regulated monitoring of particles in ambient air. This report presents a synthesis of the metrological tests done between 2017 and 2020 for the following parameters: Sampling rate, calibration constant and linearity of microbalances model 1400AB + FDMS 8500C and model 1405-F made by the American company Thermo Scientific and distributed in France by Ecomesure; Control of reference span membrane and linearity for radiometric gauges model MP101M of the French company ENVEA and model BAM 1020 of the American one Met One (distributed in France by the company Envicontrol). Results show that the overall specifications were respected since 2018 and that the implemented scheme allows to identify malfunction on a device among the tested ones. The "control chain for particles monitoring" implemented by the French National reference laboratory (LCSQA-IMT Lille Douai) is well adapted and efficient. In addition, the report presents an analysis of the distribution of approved particle analyzers between 2016 and 2020, showing an increase of the rejection rate concerning oscillating microbalance model TEOM 1400 AB in favor of more robust techniques or devices with higher temporal dynamic (like radiometric gauges BAM 1020 or light diffusion granulometer FIDAS 200 E).  
Vendredi 18 décembre 2020
Rapport
Guide méthodologique pour la mesure du « Black Carbon » par Aethalomètre multi longueur d’onde AE33 dans l’air ambiant (version2020)
  Référentiel technique national Ce document fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air ambiant. Il a été approuvé en CPS (comité de pilotage de la surveillance) du 15 décembre 2020. Mise en application : 15 décembre 2020     Ce document constitue la mise à jour du guide méthodologique LCSQA paru en 2018, relatif à l’utilisation de l’aéthalomètre multi-longueurs d’onde AE33 fabriqué par « Magee Scientific » en air ambiant. Cet instrument permet la mesure des concentrations de carbone suie (ou Black Carbon, BC), émis par les sources de combustion. Ce guide méthodologique ne constitue pas un mode opératoire ou un manuel d’utilisation. Le lecteur est invité à se reporter au manuel fourni par le distributeur pour les informations relatives au fonctionnement de l’instrument lui-même. Ce document s’attache à recenser les bonnes pratiques, les fréquences de maintenance, les différentes étapes inhérentes à la validation des données ainsi que les méthodes d’exploitation des données à travers notamment l’utilisation d’un modèle d’estimation des sources reliées aux combustions de biomasse ou de carburant fossile. Il a été rédigé sur la base des documents des constructeurs, des échanges avec le distributeur, de l’état de l’art scientifique. Il s’appuie aussi sur les retours d’expérience des utilisateurs des AASQA, émis notamment lors des réunions LCSQA du « Groupe Utilisateur AE33 » et du « Groupe de travail du programme CARA ». Enfin, il intègre les retours des séminaires techniques à destination des associations agrées pour la surveillance de la qualité de l’air (AASQA), organisées conjointement avec le constructeur, le distributeur français et le LCSQA. Ce guide pour l’utilisation des AE33 pourra être remis à jour en fonction des retours d’expériences des utilisateurs, des préconisations du constructeur ou des avancées de l’état de l’art scientifique.
Vendredi 28 janvier 2022
Procédure préfectorale
Procédure du 28/01/2022 - AVEYRON - HAUTES-PYRENEES - Alerte
Jeudi 17 décembre 2020
Rapport
Guide méthodologique validation des données de mesures à analyse différée
  Référentiel technique national Ce guide fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air ambiant. Il a été approuvé en CPS (comité de pilotage de la surveillance) du 24 septembre 2020. Mise en application : 1er janvier 2021     Ce document participe à la mise à jour du guide sur la validation et l’agrégation des données (ADEME, 2003). Ce dernier est désormais séparé en deux parties, l’une sur l’agrégation des données et l’autre sur la validation des données. La partie consacrée à l’agrégation des données a fait l’objet de travaux spécifiques en 2013/2014 et est actuellement abordée dans un document spécifique . La partie portant sur la validation des données est quant à elle divisée en deux sous-parties : •           L’une traitée en 2014-2015 dans le cadre d’un groupe de travail organisé au sein de la Commission de Suivi « Mesures automatiques » et qui porte sur la validation des données de mesures automatiques  ; •           L’autre traitée dans le cadre d’un groupe de travail organisé au sein de la Commission de Suivi « Benzène, HAP et métaux lourds » et qui porte sur la validation des données de mesures à analyse différée des polluants HAP, benzène, métaux lourds, NO2, et la spéciation des PM2.5 ; ces travaux font l’objet du présent document. Note : compte-tenu du constat actuel de l’absence de surveillance du mercure dans les dépôts en France, ce polluant n’est pas repris dans ce guide. Sa mesure dans les dépôts doit donc se conformer aux termes de la norme NF EN 15853 (Qualité de l’air ambiant – Méthode normalisée pour la détermination des dépôts de mercure). L’objectif principal de ce guide est de fournir aux acteurs de la qualité de l’air les informations nécessaires pour la validation et l’expertise des données issues de mesures à analyse différée afin de garantir le niveau de qualité souhaité ou exigé des informations produites par les Associations Agréées de la Surveillance de la Qualité de l’Air (AASQA) et d’harmoniser les pratiques au niveau national. Il explicite les prérequis et les connaissances que doivent maîtriser les personnes habilitées pour pouvoir effectuer la validation et l’expertise des données. Il détaille les différentes étapes du processus de validation et d’expertise. A partir de ces éléments généraux, ce guide décline également les règles et critères de validation et d’expertise applicables aux différents types de polluants à analyse différée couverts par la réglementation en vigueur.
Jeudi 27 janvier 2022
Procédure préfectorale
Procédure du 28/01/2022 - TARN-ET-GARONNE - Alerte